ECON3120/4120/4140/4145 Mathematics 2/3: An application of Kuhn-Tucker

The following is an information economics application of the Kuhn-Tucker conditions. This note is common to Mathematics 2 and Mathematics 3, and it is expected that at least Mathematics 2 students will find problem 2 demanding.

Assumptions for both problems

For both problems below, let $p \in(0,1)$ and $k>0$ be constants, and U and V given strictly increasing, strictly concave C^{2} (utility) functions defined on $[0, \infty)$. We assume that U^{\prime} and V^{\prime} take all positive values (i.e.: both tend to infinity at zero and to zero at infinity), that $U(0)=V(0)=0$, and that

$$
U^{\prime}(x)>V^{\prime}(x), \quad \text { all } x
$$

Problem 1

It can be shown - and in problem 2 you shall do precisely that - that the maximization of problem 2 reduces to

$$
\begin{equation*}
\max _{q, Q} p[U(Q)-U(q)+V(q)]+(1-p) V(q)-k(p Q+(1-p) q) \quad \text { subject to } Q \geq q \tag{}
\end{equation*}
$$

- Assume that the problem has a solution. Solve in terms of the derivatives of the utility functions U and V.
- The interpretations are that U^{\prime} and V^{\prime} are marginal utilities, and k is marginal production cost. Comments?

Problem 2

Let

$$
f(t, q, T, Q)=p T+(1-p) t-k(p Q+(1-p) q)
$$

(interpretation: you have two kinds of customers, you offer them the menu of either buy the quantity q and pay t, or buy the quantity Q and pay T. There is a fraction p of one type ($« U »$, named after its utility function) and this has by assumption the highest willingness-to-pay - if we then think of Q as the bigger quantity, then this is reserved for this higher-demand customer. Not knowing which customer is which, you will with probability p meet one which accepts the Q offer, and with probability $1-p$ one which accepts the other. Production cost is k per unit. f is then the expected profit.)
Consider the maximization

$$
\begin{array}{ll}
\max _{(t, q),(T, Q)} f(t, q, T, Q) & \text { subject to } \\
& U(Q)-T \geq 0 \tag{1}
\end{array}
$$

(Interpretation: the «U» type customer must break-even in order to accept the offer.)

$$
\begin{equation*}
V(q)-t \geq 0 \tag{2}
\end{equation*}
$$

(Interpretation: the «V» type customer must break-even in order to accept the offer.)

$$
\begin{equation*}
U(Q)-T \geq U(q)-t \tag{3}
\end{equation*}
$$

(Interpretation: if the «U» type customer shall accept the «pay T for Q » deal, it must be preferred to the «pay t for q deal. (If this is violated, then the probabilities in the definition of f will be wrong, invalidating the model.))

$$
\begin{equation*}
V(q)-t \geq V(Q)-T \tag{4}
\end{equation*}
$$

(Interpretation: if the «V» type customer shall accept the «pay t for $q »$ deal, it must be preferred to the «pay T for Q deal. Why bother which customer type chooses what deal? Because otherwise the probabilities p and $1-p$ are wrong.)

Problem 2 is about establishing that - under the above assumptions on U, V, k, p - this problem reduces to (*) of problem 1. Proceed as follows:

- Show that (1) or (2) must be active:

Assume for contradiction that they are both inactive. Then both t and T can be increased by the same small amount x without violating (1), (2); show that this does not affect (3), (4). What happens to f ?

- Recall that $U^{\prime}>V^{\prime}$, with $U(0)=V(0)$. Use this to show that the RHS of (3) is greater than 0 if (2) holds; hence the LHS of (3) is ≥ 0, hence (1) holds automatically - and can therefore be dropped.
- Use the two previous bullet points to show that (2) must be active.
- Eliminating t by inserting for (2), yields

$$
\begin{align*}
& \max _{q,(T, Q)} p T+(1-p) V(q)-k(p Q+(1-p) q) \text { subject to } \\
& U(Q)-T \tag{5}\\
& \geq U(q)-V(q) \tag{6}\\
& 0 \geq V(Q)-T
\end{align*}
$$

Write down the Lagrangian (recall which way the inequalities are in our standard Kuhn-Tucker problem!) and use one of the first-order conditions to show that (5) is active (i.e.: can it not be? What happens if the respective Lagrange multiplier is zero?)

- With (5) being active, we can eliminate $T=U(Q)-U(q)+V(q)$:

$$
\begin{array}{r}
\max _{q, Q} p[U(Q)-U(q)+V(q)]+(1-p) V(q)-k(p Q+(1-p) q) \quad \text { subject to } \\
U(Q)-V(Q)-(U(q)-V(q)) \geq 0 \tag{7}
\end{array}
$$

- Now employ the following trick: Put $\Delta=U-V$. Then the left hand side of (7) equals

$$
\begin{equation*}
\Delta(Q)-\Delta(q)=\int_{q}^{Q} \Delta(x) \mathrm{d} x=\int_{q}^{Q}\left(U^{\prime}(x)-V^{\prime}(x)\right) \mathrm{d} x \tag{8}
\end{equation*}
$$

Show that (8) is nonnegative - i.e. (7) holds - if and only if $Q \geq q$.
(It is actually possible to transform one of these problems into a concave one and hence apply sufficient conditions.)

