## The problems posted in «Messages» for the March 9 seminar

The following note sketches the solution.
Problem 1 Let $Q(\mathbf{x})=\mathbf{x}^{\prime} \mathbf{A x}$. By the extreme value theorem, both $m$ and $M$ exist and are attained somewhere on the unit sphere.

We have for any $\mathbf{y} \neq 0$ that $\mathbf{y}^{\prime} \mathbf{A y}=\|\mathbf{y}\|^{2} Q(\mathbf{x})$ where $\mathbf{x}=\mathbf{y} /\|\mathbf{y}\|$ has length 1 . Thus $Q(\mathbf{y})$ has the same sign as $Q(\mathbf{x})$, and if $m>0$ this is positive; if $M<0$ it is negative; if $m=0$, it is nonnegative, and 0 is attained; if $M=0$, it is nonpositive, and 0 is attained; if $M>0>m$ we have both signs attained.

Consider now the problem to $\max / \min Q(\mathbf{x})$ over the unit sphere - and rewrite the constraint into $\|\mathbf{x}\|^{2}=1$. The Lagrange condition is $\left(\mathbf{A}+\mathbf{A}^{\prime}\right) \mathbf{x}=2 \lambda \mathbf{x}$, and since $\mathbf{A}$ is assumed symmetric, it says precisely that the solution must be an eigenvector. To get the possible values, left-multiply by $\mathbf{x} / 2$ to get $Q(\mathbf{x})=\lambda\|\mathbf{x}\|^{2}$ i.e. $=\lambda$. Thus the possible $\max / \mathrm{min}$ values are the eigenvalues, and we pick the largest for $M$ and the smallest for $m$.

## Problem 2

- Under the assumption, $\mathbf{A V}=\mathbf{V D}$, and by inspection, column $i$ on each side says $\mathbf{A} \mathbf{v}^{(i)}=d_{i i} \mathbf{v}^{(i)}$ (since $\mathbf{D}$ is diagonal), so these are eigenvalues and eigenvectors. Since $V$ is by assumption invertible, the columns are linearly independent, which shows the existence of $n$ linearly independent eigenvectors.
- V satisfies the assumption of the previous bullet point, and $\mathbf{C}$ the ones that point imposed on $\mathbf{D}$, so the conclusions for $\mathbf{A}$ carry over except with $c_{i i}$ in place of $d_{i i}$. To prove the last claim, form the product $\mathbf{B}^{p}$ which equals $\mathbf{V C}^{p} \mathbf{V}^{-1}$, and $\mathbf{C}^{p}=\mathbf{D}$.
- If $\mathbf{V}^{\prime}=\mathbf{V}^{-1}$ then $\mathbf{V}$ takes the form $\mathbf{V C V} \mathbf{V}^{\prime}$, with transpose $\mathbf{V}^{\prime \prime} \mathbf{C}^{\prime} \mathbf{V}^{\prime}$, which equals $\mathbf{B}$ since $\mathbf{C}$ is symmetric. Now the eigenvalues of $\mathbf{B}$ have the same sign as the eigenvalues of $\mathbf{A}$, and so to show that $\mathbf{B}$ is positive (semi-)definite if $\mathbf{A}$ is, we only need to point out that (semi-)definiteness is defined for $\mathbf{B}$, i.e. if it is symmetric.
- Without loss of generality, scale all eigenvectors $\mathbf{v}^{(i)}$ to $\left\|\mathbf{v}^{(i)}\right\|=1$. Let $\mathbf{u}$ and $\mathbf{w}$ be eigenvectors with respective eigenvalues $\mu$ and $\lambda$. Since $\mathbf{u}^{\prime} \mathbf{A w}=\mathbf{w}^{\prime} \mathbf{A}^{\prime} \mathbf{u}$ always and $\mathbf{A}$ is symmetric, we calculate $\mathbf{u}^{\prime} \mathbf{A} \mathbf{w}=\mathbf{u}^{\prime} \lambda \mathbf{w}$ and $\mathbf{w}^{\prime} \mathbf{A} \mathbf{u}=\mathbf{w}^{\prime} \mu \mathbf{u}$. So $\lambda \mathbf{u} \cdot \mathbf{w}=\mu \mathbf{u} \cdot \mathbf{w}$, which if $\mu \neq \lambda$ implies orthogonality.
Now recall that element $(i, j)$ of a matrix product, is row $i$ of the left dot column $j$ of the right. And row $i$ of $\mathbf{V}^{\prime}$ equals column $j$ of $\mathbf{V}$, so the element is the dot product of columns $i$ and $j$. On the main diagonal, we get 1 by the assumed scaling, and off diagonal, the product is zero because of the orthogonality for different eigenvalues.

