
The problems posted in «Messages» for the March 9 seminar

The following note sketches the solution.

Problem 1 Let Q(x) = x′Ax. By the extreme value theorem, both m and M exist and
are attained somewhere on the unit sphere.
We have for any y 6= 0 that y′Ay = ||y||2Q(x) where x = y/||y|| has length 1. Thus

Q(y) has the same sign as Q(x), and if m > 0 this is positive; if M < 0 it is negative; if
m = 0, it is nonnegative, and 0 is attained; if M = 0, it is nonpositive, and 0 is attained;
if M > 0 > m we have both signs attained.
Consider now the problem to max/min Q(x) over the unit sphere – and rewrite the

constraint into ||x||2 = 1. The Lagrange condition is (A +A′)x = 2λx, and since A is
assumed symmetric, it says precisely that the solution must be an eigenvector. To get
the possible values, left-multiply by x/2 to get Q(x) = λ||x||2 i.e. = λ. Thus the possible
max/min values are the eigenvalues, and we pick the largest for M and the smallest for
m.

Problem 2

• Under the assumption, AV = VD, and by inspection, column i on each side says
Av(i) = diiv

(i) (since D is diagonal), so these are eigenvalues and eigenvectors.
Since V is by assumption invertible, the columns are linearly independent, which
shows the existence of n linearly independent eigenvectors.

• V satisfies the assumption of the previous bullet point, and C the ones that point
imposed on D, so the conclusions for A carry over except with cii in place of dii.
To prove the last claim, form the product Bp which equals VCpV−1, and Cp = D.

• If V′ = V−1 then V takes the form VCV′, with transpose V′′C′V′, which equals
B since C is symmetric. Now the eigenvalues of B have the same sign as the
eigenvalues of A, and so to show that B is positive (semi-)definite if A is, we only
need to point out that (semi-)definiteness is defined for B, i.e. if it is symmetric.

• Without loss of generality, scale all eigenvectors v(i) to ||v(i)|| = 1. Let u and w be
eigenvectors with respective eigenvalues µ and λ. Since u′Aw = w′A′u always and
A is symmetric, we calculate u′Aw = u′λw andw′Au = w′µu. So λu·w = µu·w,
which if µ 6= λ implies orthogonality.
Now recall that element (i, j) of a matrix product, is row i of the left dot column j of
the right. And row i of V′ equals column j of V, so the element is the dot product
of columns i and j. On the main diagonal, we get 1 by the assumed scaling, and off
diagonal, the product is zero because of the orthogonality for different eigenvalues.


