Exam ECON3150/4150: Introductory Econometrics. 7 June 2017; 09.00h-12.00h.

This is an open book examination where all printed and written resources, in addition to a calculator, are allowed. If you are asked to derive something, give all intermediate steps. Do not answer questions with a "yes" or "no" only, but carefully motivate your answer.

Question 1

The government of a country wants to investigate whether school size affects schooling outcomes. A government official has a data set with test scores of 25 000 students. The variable $passed_i$ equals one if a student passed the exam at the end of secondary education and zero otherwise and the variable $school \ size_i$ equals the number of students in the school of student i.

a) The government official decides to estimate the following regression model by OLS

$$passed_i = \beta_0 + \beta_1 \cdot ln(school\ size_i) + u_i \tag{1}$$

and obtains the following estimation results

. regress passed ln_school_size, robust

passed	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	terval]
ln_school_size	7994753	.037947	-21.07	0.000	8738537	725097
_cons	5.01307	.2019471	24.82		4.617242	5.408898

Give an interpretation, in words, of the estimated coefficient on $ln(school\ size_i)$.

Solution (10 points): $\widehat{\beta}_1 = -0.799$. This is a linear (probability) log model. If school size increases with 1% this is associated with a decrease in the probability of passing the exam by on average 0.01 *0.799 \approx 0.008 (0.8 percentage points).

b) Compute a 90 percent confidence interval for $\widehat{\beta}_1$.

Solution (10 points): 90% confidence interval for $\widehat{\beta}_1$:

$$\widehat{\beta}_1 \pm 1.64 \times SE(\widehat{\beta}_1)$$

filling in the numbers from the regression output gives

$$-0.799 \pm 1.64 \times 0.038$$

$$(-0.861 , -0.737)$$

c) The government official decides to estimate a probit model and includes $school\ size_i$ instead of $ln(school\ size_i)$ as explanatory variable. She obtains the following estimation results

. probit passed school_size, robust

```
Iteration 0: log pseudolikelihood = -14058.379
Iteration 1: log pseudolikelihood = -13844.51
Iteration 2: log pseudolikelihood = -13844.282
Iteration 3: log pseudolikelihood = -13844.282
```

Probit regression Number of obs = 25,000

Wald chi2(1) = 429.09

Prob > chi2 = 0.0000

Log pseudolikelihood = -13844.282 Pseudo R2 = 0.0152

passed	Coef.	Robust Std. Err.				
school_size _cons	0123639 3.250046	.0005969	26.02	0.000	3.005233	3.49486

Is the coefficient on $school \, size_i$ significantly different from zero at a 5 percent significance level?

Solution (10 points): $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$. Construct the t-statistic:

$$t = \frac{-0.0123639 - 0}{0.0005969} = -20.71$$

The absolute value of the t-statistic is bigger than 1.96 so we reject H_0 . The the coefficient on school size_i is significantly different from zero at a 5 percent significance level.

d) Using the results from the probit model, what is the predicted change in the probability of passing the exam that is associated with an increase in school size from 200 to 220 students?

Solution (10 points): The predicted change in the probability of passing the exam that is associated with an increase in school size from 200 to 220 students equals:

$$\triangle Pr(\widehat{passed_i} = 1) = \Pr(\widehat{passed_i} = 1 | \widehat{school \ size_i} = 220) - \Pr(\widehat{passed_i} = 1 | \widehat{school \ size_i} = 200)$$

$$\triangle Pr(\widehat{Passed_i} = 1) = \Phi(3.25 - 0.012 \cdot 220) - \Phi(3.25 - 0.012 \cdot 200)$$

$$= \Phi(0.61) - \Phi(0.85)$$

$$= 0.729 - 0.802$$

$$= -0.073$$

e) Instead of looking at whether a student passed the exam the government official decides to use the logarithm of the test score as dependent variable. She estimates the following regression model by OLS

$$ln(testscore_i) = \beta_0 + \beta_1 \cdot school \ size_i + u_i \tag{2}$$

and obtains the following estimation results

. regress ln_testscore school_size, robust

ln_testscore	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	nterval]
school_size _cons	003557 4.094445		-222.62 1241.72	0.000	0035883 4.087982	0035257 4.100908

Give an interpretation, in words, of the estimated coefficient on school size.

Solution (10 points): Equation 2 is a log-linear model, we can therefore interpret the coefficient on school size (approximately) as follows: if school size increases by 1 student this is associated with, on average, a reduction in test scores by about 0.36 percent (0.0036*100).

f) The government official thinks that there might be a quadratic relation between school size and the logarithm of test scores and she estimates the following equation by OLS

$$ln(testscore_i) = \beta_0 + \beta_1 \cdot school \ size_i + \beta_2 \left(school \ size_i \right)^2 + \varepsilon_i$$
 (3)

and obtains the following estimation results

. regress ln_testscore school_size school_size_2, robust

Linear regression	Number of obs	=	25,000
Hinear regression	F(2, 24997)	=	24797.39
	Prob > F	=	0.0000
	R-squared	=	0.6680
	Root MSE	=	.03651

ln_testscore	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
school_size	0036916	.0000956	-38.60	0.000	0038791	0035041
school_size_2	3.24e-07	2.28e-07	1.42	0.155	-1.23e-07	7.70e-07
cons	4.108367	.0102648	400.24	0.000	4.088247	4.128487

Is the model in equation (3) better than the model in equation (2)? Explain why or why not.

Solution (10 points): We can test the linear against the quadratic model by performing the following hypothesis test: $H_0: \beta_2 = 0$ vs $H_1: \beta_2 \neq 0$.

$$t = 1.42$$

The absolute value of the t-statistic is smaller than 1.64 so we do not reject H_0 at a 10% (nor 5% or 1%) level. This means that we do not reject the linear model in favor of the quadratic model and the model in equation 3 does not seem to be better than the model in equation 2.

g) Name and explain one threat to internal validity that might apply when estimating equation(2) by OLS.

Solution (10 points): The most obvious one is omitted variable bias. There might be omitted variables that affect test scores and that are related to school size. For example students that are enrolled in big schools might come from different backgrounds than students enrolled in smaller schools. There might also be reversed causality if schools with high average test scores attract more students.

h) The government decides to set up an experiment and randomly assigns municipalities to a treatment group and to a control group. Schools that are located in a municipality that belongs to the treatment group have to merge with another school in that municipality. The variable $treated_i$ equals 1 when a student lives in a municipality that was assigned to the treatment group en 0 if it was assigned to the control group. The government official decides to use the variable $treated_i$ as instrument for $schoolsize_i$. She obtains the following first stage estimation results.

```
regress school_size treated, robust
Linear regression
                                                  Number of obs
                                                                               25,000
                                                    F(1, 24998)
                                                                             28052.43
                                                     Prob > F
                                                                               0.0000
                                                     R-squared
                                                                       =
                                                                               0.5288
                                                                               9.9941
                                                    Root MSE
                              Robust
 school_size
                                                  P>|t|
                                                             [95% Conf. Interval]
                     Coef.
                              Std. Err.
                                                     0.000
                   21,1735
                               .1264176
                                           167.49
                                                                20.92571
                                                                             21,42129
     treated
                                                     0.000
                  196.8927
                               .0892192
                                          2206.84
                                                                196.7178
                                                                             197.0676
       cons
```

Is $treated_i$ a weak instrument?

Solution (10 points): The first stage F-statistic equals $F = (t)^2 = (167.49)^2 = 28052$ (can also use overall-regression F-statistic since regression includes only 1 regressor), which is bigger than the rule-of-thumb value of 10. The instrument treated_i is therefore not a weak instrument.

i) Do you think that, when using $treated_i$ as an instrument to estimate the effect of $school \ size_i$ on $ln(testscore_i)$, the instrument exogeneity condition holds? Explain why or why not.

Solution (10 points): Instrument exogeneity: $Cov(treated_i, u_i) = 0$. Municipalities are randomly assigned to a treatment or control group and characteristics of students and schools that are contained in the error term u_i should therefore be uncorrelated with the variable treated_i. The instrument exogeneity condition might however be violated if there is a direct effect of treated_i on test scores, for example if schools merge this might lead to a period of disruptions and changes for the students enrolled in these schools which might affect their test scores.

j) The researcher estimates the following two regressions by OLS

$$ln(testscore_i) = \delta_0 + \delta_1 treated_i + \epsilon_i$$

$$school\ size_i = \pi_0 + \pi_1 treated_i + v_i$$

and obtains the following estimation results.

1 . regress ln_testscore treated, robust noheader

ln_testscore	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	nterval]
treated	0737751	.0006519	-113.18	0.000	0750528	0724974
_cons	3.393329	.0004452	7622.87		3.392457	3.394202

2 . regress school_size treated, robust noheader

school_size	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	terval]
treated _cons	21.1735 196.8927		167.49 2206.84	0.000	20.92571 196.7178	21.42129 197.0676

What is the instrumental variable estimate of the effect of $school\ size_i$ on $ln(testscore_i)$?

Solution (10 points): There is an alternative way of computing the instrumental variable estimator:

$$\hat{\beta}_{IV} = \frac{\frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})(Z_i - \bar{Z})}{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(Z_i - \bar{Z})}$$

$$= \frac{\frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})(Z_i - \bar{Z}) / \frac{1}{n-1} \sum_{i=1}^{n} (Z_i - \bar{Z})^2}{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(Z_i - \bar{Z}) / \frac{1}{n-1} \sum_{i=1}^{n} (Z_i - \bar{Z})^2}$$

$$= \frac{S_{ZY}/S_Z^2}{S_{ZX}/S_Z^2}$$

- $\frac{S_{ZY}}{S_Z^2}$ is the OLS estimator when regressing Y_i on Z_i
- $\frac{S_{ZX}}{S_Z^2}$ is the OLS estimator when regressing X_i on Z_i

This implies that the IV estimator of the effect of $school\ size_i$ on $ln(testscore_i)$ equals

$$\widehat{\beta}_{IV} = \frac{\widehat{\delta}_1}{\widehat{\pi}_1} = \frac{-0.074}{21.174} = -0.0035$$

Question 2

Discuss whether each of the following statements is correct or not.

a) In case of perfect multicollinearity the OLS estimator is biased.

Solution (5 points) Incorrect. Perfect multicollinearity is a situation in which one of the regressors is an exact linear function of the other regressors. In this situation the OLS estimator is not biased, but it is impossible to compute the OLS estimator.

b) In case of imperfect multicollinearity the OLS estimator is biased.

Solution (5 points) Incorrect. Imperfect multicollinearity is a situation in which two or more regressors are highly (but not perfectly) correlated. This does not violate any of the OLS assumptions and therefore does not lead to biased OLS estimators. Instead the coefficient on at least one of the regressors will be imprecisely estimated.

c) A confidence interval always contains the true value of the population parameter.

Solution (5 points) Incorrect. A confidence interval is an interval that contains the true value of a population parameter with a prespecified probability when computed over repeated samples.

d) In a panel data model with entity fixed effects you can't estimate the effect of time-invariant characteristics.

Solution (5 points) Correct. Let X_i be a time-invariant characteristic. When the following model is estimated

$$Y_{it} = \beta_1 X_i + \alpha_i + u_{it}$$

with α_i an individual fixed effect, X_i and α_i are perfectly multicollinear and it is impossible to estimate β_1 .

Question 3

Consider the following population regression model $Y_i = \beta_0 + \beta_1 X_i + u_i$ with $Cov(X_i, u_i) = 0$. A researcher wants to estimate β_1 using survey data. It turns out that individuals in the survey systematically under-reported X_i by 50 percent. The researcher therefore has a large data set with i.i.d observations on Y_i and X_i^* , with $X_i^* = 0.5X_i$. He estimates the following equation by OLS

$$Y_i = \beta_0 + \beta_1 X_i^* + v_i$$

a) What is $Cov(X_i^*, v_i)$?

Solution (10 points) $Y_{i} = \beta_{0} + \beta_{1}X_{i} + u_{i}$ $= \beta_{0} + \beta_{1}(2X_{i}^{*}) + u_{i}$ $= \beta_{0} + \beta_{1}X_{i}^{*} + (u_{i} + \beta_{1}X_{i}^{*})$ $= \beta_{0} + \beta_{1}X_{i}^{*} + v_{i}$ This implies that $v_{i} = u_{i} + \beta_{1}X_{i}^{*}$ $Cov(X_{i}^{*}, v_{i}) = Cov(X_{i}^{*}, u_{i} + \beta_{1}X_{i}^{*})$ $= Cov(0.5X_{i}, u_{i}) + Cov(0.5X_{i}, \beta_{1}0.5X_{i})$ $= 0 + 0.5 \cdot 0.5 \cdot \beta_{1}Var(X_{i})$ $= 0.25\beta_{1}Var(X_{i})$

b) Is the OLS estimator of β_1 consistent?

$$\widehat{\beta}_{1} = \frac{s_{X^{*}Y}}{s_{X^{*}}^{2}} \xrightarrow{p} \frac{Cov(X_{i}^{*}, Y_{i})}{Var(X_{i}^{*})}$$

$$\widehat{\beta}_{1} \xrightarrow{p} \frac{Cov(X_{i}^{*}, Y_{i})}{Var(X_{i}^{*})} = \frac{Cov(X_{i}^{*}, \beta_{0} + \beta_{1}X_{i}^{*} + v_{i})}{Var(X_{i}^{*})}$$

$$= \frac{Cov(X_{i}^{*}, \beta_{0}) + \beta_{1}Cov(X_{i}^{*}, X_{i}^{*}) + Cov(X_{i}^{*}, v_{i})}{Var(X_{i}^{*})}$$

$$= \beta_{1} + \frac{Cov(X_{i}^{*}, v_{i})}{Var(X_{i}^{*})}$$

$$= \beta_{1} + \frac{0.25\beta_{1}Var(X_{i})}{Var(0.5X_{i})}$$

$$= \beta_{1} + \frac{0.25\beta_{1}Var(X_{i})}{0.25Var(X_{i})}$$

$$= \beta_{1} + \beta_{1}$$

This means that the OLS estimator of β_1 is inconsistent because it converges to $2 \cdot \beta_1$ so it overestimates the true causal effect by 100%.