UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Exam: ECON3150/4150 – Introductory Econometrics

Date of exam: Friday, 27 May 2022 Grades are given: 17 June 2022

Time for exam: 09.00-12.00 (three hours)

The problem set covers 4 pages (incl. cover sheet)

Resources allowed:

• All written and printed resources – as well as two alternative calculators - are allowed

The grades given: A-F, with A as the best and E as the weakest passing grade. F is fail.

Exam ECON3150/4150: Introductory Econometrics – Spring 2022

1. (80%) Suppose you have the following data from the American "Current Population Survey" from 1992, with average hourly earnings (ahe), a dummy variable (bachelor) that equals one if a person holds at least a bachelor degree and is zero for those with only a high-school degree, and finally age (age):

```
##
                                             min
                                                                N
                     mean
                                                         max
## year
            1992.0000000 0.0000000 1992.000000 1992.00000 7612
## ahe
              11.6168339 5.6194795
                                        1.242788
                                                   46.63414 7612
               0.3891224 0.4875832
                                        0.000000
## bachelor
                                                    1.00000 7612
              29.7104572 2.8063185
                                       25.000000
                                                   34.00000 7612
## age
```

You estimate the following OLS regression:

```
reg = feols(ahe ~ bachelor + age + I(age^2), df, vcov="hetero")
reg
```

```
## OLS estimation, Dep. Var.: ahe
## Observations: 7,612
## Standard-errors: Heteroskedasticity-robust
                 Estimate Std. Error t value
                                               Pr(>|t|)
## (Intercept) -17.337506
                            6.990530 -2.48014 0.0131545 *
## bachelor
                 4.340013
                            0.128357 33.81212 < 2.2e-16 ***
                 1.501379
                            0.479201 3.13309 0.0017363 **
## age
                            0.008155 -2.38772 0.0169773 *
## I(age^2)
                -0.019472
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## RMSE: 5.13253
                   Adj. R2: 0.16536
```

```
vcov(reg)
```

```
##
                                                            I(age^2)
               (Intercept)
                                 bachelor
                                                  age
## (Intercept) 48.86750761 -0.0474883117 -3.34648688
                                                       5.678874e-02
## bachelor
               -0.04748831
                            0.0164754481
                                           0.00255322 -3.687860e-05
## age
               -3.34648688
                            0.0025532205
                                           0.22963356 -3.904200e-03
## I(age^2)
                0.05678874 -0.0000368786 -0.00390420
                                                      6.650205e-05
```

- a. Interpret the estimated coefficient on bachelor.
- b. Construct and interpret the 68 percent confidence interval for the estimate in 1.a.

- c. Can we give the estimate in 1.a a causal interpretation? Motivate your answer.
- d. What is the interpretation of the Intercept?
- e. How much does a 25-year-old with a bachelor degree earn on average per hour?
- f. Compute the average marginal effect of age.
- g. Compute the standard error of the estimate in 1.f.
- h. Suppose you want to test the joint significance of the age profile at the 5% level. Explain how you would go about testing this and what exact critical value you would use.

A friend suggests to estimate the following regression instead:

```
feols(log(ahe) ~ bachelor + age, df, vcov="hetero")
## OLS estimation, Dep. Var.: log(ahe)
## Observations: 7,612
## Standard-errors: Heteroskedasticity-robust
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.383033
                          0.055445 24.9440 < 2.2e-16 ***
               0.374641
                          0.010504 35.6653 < 2.2e-16 ***
## bachelor
## age
               0.027219
                          0.001856 14.6683 < 2.2e-16 ***
## ---
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 0.453515
                    Adj. R2: 0.154567
```

- i. Your friend claims that this regression is better. What do you reply?
- j. Interpret the estimated coefficient on age. Is this similar to your results above?
- k. In a next step your friend wants to investigate the hypothesis that people with a bachelor degree have *steeper* age profiles than those with only a high-school degree. Explain how to do this.

2. (20%) In the Netherlands applicants to medical school used to be admitted solely based on a random lottery. Below you find data on such lotteries with information on admissions (admitted), medical school degrees (medschool), and later income when applicants were about 35 years old (income):

```
xtabs( ~ medschool + admitted, df)

## admitted

## medschool 0 1

## 0 1162 154

## 1 965 2409
```

##		${\tt medschool}$	${\tt admitted}$	income
##	1	0	0	21.58743
##	2	1	0	20.80111
##	3	0	1	24.04733
##	4	1	1	23.25962

Use these data to

a. estimate the causal effect of medical school on income,

aggregate(income ~ medschool + admitted, df, mean)

- b. state your assumptions and
- c. discuss their validity in the current setting, providing support from the data where possible, and
- d. interpret your findings.