The natural logarithm*

Ragnar Nymoen

January 28, 2013

1 Logarithms and rates of change

We often make use of the approximation

$$
\begin{aligned}
\ln \left(1+\frac{\Delta Y}{Y}\right) & =\ln \left(\frac{Y+\Delta Y}{Y}\right)=\ln (Y+\Delta Y)-\ln Y \\
& \approx \frac{\Delta Y}{Y}, \quad \frac{\Delta Y}{Y} \text { is small. }
\end{aligned}
$$

We will see how this approximation works, and how good it is.
When we consider marginal changes we have the precise relationship, i.e., from the derivative of a function

$$
\frac{d \ln Y}{d Y}=\frac{1}{Y}, \text { and hence } d \ln Y=\frac{d Y}{Y}
$$

To get to the approximation we need the following properties of the logarithmic function: $\ln X$:

$$
\ln X= \begin{cases}=(X-1), & X=1 \\ <(X-1), & X \neq 1\end{cases}
$$

The relationships holds because the function $f(X)=(X-1)$ is a straight line with slope coefficient $\frac{d(X-1)}{d X}=1$, while the function $g(X)=\ln X$ is concave, with a slope coefficient that decreases with increasing X :

$$
\frac{d \ln X}{d X}=\frac{1}{X}\left\{\begin{array}{l}
<1, X>1 \\
>1, X<1
\end{array}\right.
$$

This result is illustrated in figure 1.
If we let $X=\frac{Y+\Delta Y}{Y}=1+\frac{\Delta Y}{Y}$, we get the relationship between logarithms and rates of change:

$$
\ln \left(1+\frac{\Delta Y}{Y}\right)=\ln \left(\frac{Y+\Delta Y}{Y}\right)=\ln (Y+\Delta Y)-\ln Y \leq \frac{\Delta Y}{Y}
$$

Changes in logarithms will therefore never give larger values than the exact rates of change. But how good is the approximation, and why does it become poorer when

[^0]

Figure 1: The log-function as a an approximation.
the rate of changes becomes larger? We can investigate this by taking a second order Taylor expansion of $\ln X$ around the value $X_{0}=1$:

$$
\begin{align*}
\ln X & \approx \ln X_{0}+\frac{1}{X_{0}}\left(X-X_{0}\right)-\left(\frac{1}{X_{0}^{2}}\right) \frac{\left(X-X_{0}\right)^{2}}{2} \\
& =\ln 1+1(X-1)-\frac{1}{2}(X-1)^{2} \\
\ln X & \approx(X-1)-\frac{1}{2}(X-1)^{2} . \tag{1}
\end{align*}
$$

If we substitute $X=\frac{Y+\Delta Y}{Y}$, as above, we can see how close the approximation is, depending on the size of the rate of change:

$$
\ln \left(\frac{Y+\Delta Y}{Y}\right)=\ln (Y+\Delta Y)-\ln Y \approx \frac{\Delta Y}{Y}-\frac{1}{2}\left(\frac{\Delta Y}{Y}\right)^{2}
$$

Clearly the approximation is best for smallish rates of change, but it also works well for a 10% change in Y, as the table shows:

$\frac{\Delta Y}{Y}$	0.01	0.05	0.1	0.2	0.5	1
$\ln \left(1+\frac{\Delta Y}{Y}\right)$	0.00995	0.04879	0.09531	0.18232	0.40547	0.69315

2 The standard error of a log-linear model estimated by OLS

Assume that we have estimated a model for $\ln Y_{i}$, so that we can write:

$$
\ln Y_{i}=\ln \hat{Y}_{i}+\hat{\varepsilon}_{i}
$$

where $\hat{Y}_{i}=e^{\hat{\beta}_{0}} X_{i}^{\hat{\beta}_{1}}$ in the case of a single explanatory variable. The relationship for the variable Y_{i} becomes:

$$
Y_{i}=\hat{Y}_{i} e^{\hat{\varepsilon}_{i}} .
$$

From (1), and by dropping the second order term for simplicity, we have:

$$
\begin{equation*}
\ln Y_{i}-\ln \hat{Y}_{i}=\hat{\varepsilon}_{i} \approx \frac{Y_{i}-\hat{Y}_{i}}{Y_{i}} \tag{2}
\end{equation*}
$$

Equation (2) shows that the residual $\hat{\varepsilon}_{i}$ has an interpretation as a relative prediction error. Hence $100 \hat{\varepsilon}_{i} \approx 100\left(\frac{Y_{i}-\hat{Y}_{i}}{Y_{i}}\right)$ can be interpreted as percentage prediction error. The standard errors of the regression:

$$
\begin{aligned}
100 \hat{\sigma}_{\varepsilon} & =100 \sqrt{\frac{1}{n-2} \sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}} \\
& \approx 100 \sqrt{\frac{1}{n-2} \sum_{i=1}^{n}\left(\frac{Y_{i}-\hat{Y}_{i}}{Y_{i}}\right)^{2}}
\end{aligned}
$$

is the percentage unexplained standard deviation in the dependent variable. For example, if we have $\hat{\sigma}_{\varepsilon}=0.01$, it means that 1% of the standard deviation of the dependent variable is unexplained by the model we have estimated.

This interpretation is independent of the number of explanatory variables. If we have k variables, we replace $n-2$ by $n-k-1$.

[^0]: *This note is a translation of Appendix 3.A in ?.

