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1 Logarithms and rates of change

We often make use of the approximation

ln

(
1 +

∆Y

Y

)
= ln

(
Y + ∆Y

Y

)
= ln (Y + ∆Y )− lnY

≈ ∆Y

Y
,

∆Y

Y
is small.

We will see how this approximation works, and how good it is.
When we consider marginal changes we have the precise relationship, i.e., from

the derivative of a function

d lnY

dY
=

1

Y
, and hence d lnY =

dY

Y
.

To get to the approximation we need the following properties of the logarithmic
function: lnX:

lnX =

{
= (X − 1) , X = 1
< (X − 1) , X 6= 1

The relationships holds because the function f (X) = (X − 1) is a straight line with

slope coefficient d(X−1)
dX

= 1, while the function g (X) = lnX is concave, with a slope
coefficient that decreases with increasing X:

d lnX

dX
=

1

X

{
< 1, X > 1
> 1, X < 1.

This result is illustrated in figure 1.
If we let X = Y+∆Y

Y
= 1+ ∆Y

Y
, we get the relationship between logarithms and

rates of change:

ln

(
1 +

∆Y

Y

)
= ln

(
Y + ∆Y

Y

)
= ln (Y + ∆Y )− lnY ≤ ∆Y

Y
.

Changes in logarithms will therefore never give larger values than the exact rates of
change. But how good is the approximation, and why does it become poorer when

∗This note is a translation of Appendix 3.A in ?.
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Figure 1: The log-function as a an approximation.

the rate of changes becomes larger? We can investigate this by taking a second
order Taylor expansion of lnX around the value X0 = 1:

lnX ≈ lnX0 +
1

X0

(X −X0)−
(

1

X2
0

)
(X −X0)2

2

= ln 1 + 1 (X − 1)− 1

2
(X − 1)2

lnX ≈ (X − 1)− 1

2
(X − 1)2 . (1)

If we substitute X = Y+∆Y
Y

, as above, we can see how close the approximation is,
depending on the size of the rate of change:

ln

(
Y + ∆Y

Y

)
= ln (Y + ∆Y )− lnY ≈ ∆Y

Y
− 1

2

(
∆Y

Y

)2

.

Clearly the approximation is best for smallish rates of change, but it also works well
for a 10 % change in Y , as the table shows:

∆Y
Y

0.01 0.05 0.1 0.2 0.5 1
ln
(
1 + ∆Y

Y

)
0.00995 0.04879 0.09531 0.18232 0.405 47 0.693 15

.
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2 The standard error of a log-linear model esti-

mated by OLS

Assume that we have estimated a model for lnYi, so that we can write:

lnYi = ln Ŷi + ε̂i,

where Ŷi = eβ̂0X β̂1
i in the case of a single explanatory variable. The relationship for

the variable Yi becomes:
Yi = Ŷie

ε̂i .

From (1), and by dropping the second order term for simplicity, we have:

lnYi − ln Ŷi = ε̂i ≈
Yi − Ŷi
Yi

, (2)

Equation (2) shows that the residual ε̂i has an interpretation as a relative prediction

error. Hence 100ε̂i ≈ 100
(
Yi−Ŷi
Yi

)
can be interpreted as percentage prediction error.

The standard errors of the regression:

100σ̂ε = 100

√√√√ 1

n− 2

n∑
i=1

(
Yi − Ŷi

)2

≈ 100

√√√√ 1

n− 2

n∑
i=1

(
Yi − Ŷi
Yi

)2

is the percentage unexplained standard deviation in the dependent variable. For
example, if we have σ̂ε = 0.01, it means that 1 % of the standard deviation of the
dependent variable is unexplained by the model we have estimated.

This interpretation is independent of the number of explanatory variables. If
we have k variables, we replace n− 2 by n− k − 1.
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