ECON 4160, Spring term 2014. Lecture 5

Ragnar Nymoen

University of Oslo

12 September 2014
Some references to Lecture 5

- HN Ch 12 and 14, mainly.
 Ch 13, or equivalent from other books, as self study: Standard mis-specification tests of time series models.
- DM Ch 13.
- (BN 2014, kap 6,7)
A time series of order p, AR(p) I

- In Lecture 4, we motivated the AR(1) model by appealing to the idea that conditional independence can be “created” by conditioning on Y_{t-1}.
- As a direct generalization, conditional independence may require conditioning on p lags.
- We write a time series model of order p as the stochastic difference equation

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \ldots + \phi_p Y_{t-p} + \varepsilon_t \quad (1)$$

where $\phi_0 (j = 0, 2, \ldots, p)$ are parameters, and

$$\varepsilon_t \overset{D}{=} N(0, \sigma^2_\varepsilon) \forall t. \quad (2)$$
A time series of order p, AR(p) II

A weaker model formulation is that ε_t is white-noise, conditional on the p lags of Y_t.

- (1) may be of interest “on its own”, as a general model of single time series.
- One example is when Y_t is not a an observable variable, but a residual from OLS estimation.
 - In that interpretation (1) becomes a model of autocorrelated regression residuals, as covered in introductory econometrics courses, see also §13.3.1 in HN.
 - Estimate by NLS or feasible GLS, possibly iterated.
- When Y_t is an observable, the main motivation for using (1) is for forecasting.
A time series of order p, AR(p) III

- The reason for studying (1) in econometrics is however, more fundamental: It gives the framework for defining the all important concepts of dynamic stability and stationarity both for individual time series and for systems of variables (for example dynamic stochastic general equilibrium models, DSGE).
Final equation

AR(p) as the final equation of a system

- We often study systems of stochastic difference equations.
- The simplest case is two time series that are connected in a first order system, without intercepts to save notation.

\[
\begin{pmatrix}
Y_t \\
X_t
\end{pmatrix}
= \begin{pmatrix}
\pi_{11} & \pi_{12} \\
\pi_{21} & \pi_{22}
\end{pmatrix}
\begin{pmatrix}
Y_{t-1} \\
X_{t-1}
\end{pmatrix}
+ \begin{pmatrix}
\varepsilon_{yt} \\
\varepsilon_{xt}
\end{pmatrix},
\]

(3)

where \(\begin{pmatrix}
\pi_{11} & \pi_{12} \\
\pi_{21} & \pi_{22}
\end{pmatrix}\) is the matrix of autoregressive coefficients and we assume that

\[
\begin{pmatrix}
\varepsilon_{yt} \\
\varepsilon_{xt}
\end{pmatrix}
\overset{D}{\sim} N_2\left(\begin{pmatrix}
0 \\
0
\end{pmatrix}, \begin{pmatrix}
\sigma_y^2 & \sigma_{yx} \\
\sigma_{yx} & \sigma_x^2
\end{pmatrix} \right) \mid Y_{t-1}, X_{t-1} \quad \forall \ t
\]

(4)
In fact this is an example of a first order Vector Autoregressive model, \textbf{VAR} with gaussian disturbances.

As an exercise, you can show that (3) can be reduced to the so called \textbf{final equation} for Y_{t+1}

\[Y_{t+1} = (\pi_{11} + \pi_{22}) Y_t + (\pi_{12} \pi_{21} - \pi_{22} \pi_{11}) Y_{t-1} \equiv \phi_1 \]

\[+ \varepsilon_{yt+1} - \pi_{22} \varepsilon_{yt} + \pi_{12} \varepsilon_{xt} \equiv \varepsilon_t \]

\[\equiv \phi_2 \]
AR(p) as the final equation of a system III

But the same equation must hold for Y_t so we obtain (1) for the case of $p = 2$ and $\phi = 0$ as

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \epsilon_t$$ \hspace{1cm} (6)

$$\phi_1 = (\pi_{11} + \pi_{22})$$ \hspace{1cm} (7)

$$\phi_2 = \pi_{12} \pi_{21} - \pi_{22} \pi_{11}$$ \hspace{1cm} (8)

$$\epsilon_t = \epsilon_{yt} - \pi_{22} \epsilon_{y,t-1} + \pi_{12} \epsilon_{xt-1}$$ \hspace{1cm} (9)

The omission of the intercept (which implies $\phi_0 = 0$) is only to save notation.
AR(p) as the final equation of a system \textit{IV}

- Note that when ε_t is defined as in (9) we have $E(\varepsilon_t) = 0$ and

$$Var(\varepsilon_t) = Var(\varepsilon_{y,t} - \pi_{22}\varepsilon_{y,t-1} + \pi_{12}\varepsilon_{x,t-1})$$

$$= \sigma_y^2 + \pi_{22}\sigma_{yy} + \pi_{12}\sigma_x^2 + 2\pi_{22}\pi_{12}\sigma_{yx}$$

independent of t (homoskedasticity), but

$$Cov(\varepsilon_t, \varepsilon_{t-1}) = -\pi_{22}\sigma_{y}^2 + \pi_{12}\sigma_{yx}$$

$$Cov(\varepsilon_t, \varepsilon_{t-j}) = 0 \ j = 2, 3, \ldots$$

- In this interpretation, the disturbance ε_t in (6) is not white-noise, but a \textit{Moving Average} (MA) process. Following custom the modelled is called ARMA(2,1).
Dynamic stability and stationarity of AR(p) I

Consider again the AR(p) process:

\[Y_t = \phi_0 + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \ldots + \phi_p Y_{t-p} + \epsilon_t \quad (10) \]

Consider next the homogenous version of the difference equation:

\[Y_t^h - \phi_1 Y_{t-1}^h - \phi_2 Y_{t-2}^h - \ldots - \phi_p Y_{t-p}^h = 0 \quad (11) \]
Dynamic stability and stationarity of AR(p) II

- From mathematics we know that (11) has a **global asymptotic stable solution** ($Y_t^h \to 0$ when $t \to \infty$) if and only if all the p roots (eigenvalues) of the associated characteristic polynomial

\[
\lambda^p - \phi_1 \lambda^{p-1} - \phi_2 \lambda^{p-2} - \ldots - \phi_p = 0
\]

are less than one in absolute value.

- From a result that is far from trivial, and which we leave for ECON 5101, we have that the same condition is necessary and sufficient for the **stationarity** of the stochastic process Y_t when it is given by (10) and ε_t is white-noise, or any other stationary time series process (e.g., MA(q), $q = 1, 2, \ldots$).

- But now we have given the condition for stationarity without a definition for stationarity...!
Stationarity defined I

For the time series \(\{ Y_t; t = 0, \pm 1, \pm 2, \pm 3, \ldots \} \) we define the autocovariances \(\gamma_{j,t} \) in slightly more general way than in Lecture 4:

\[
\tau_{j,t} = E[(Y_t - \mu_t)(Y_{t-j} - \mu_t)], \quad j = 0, 1, 2, \ldots, \tag{13}
\]

where \(E(Y_t) = \mu_t \).

If neither \(\mu \) nor \(\gamma_j \), depend on time \(t \):

\[
E(Y_t) = \mu, \forall \; t \tag{14}
\]

and

\[
E[(Y_t - \mu)(Y_{t-j} - \mu)] = \tau_j, \; \forall \; t, \; j. \tag{15}
\]

the \(Y_t \) process \(\{ Y_t; t = 0, \pm 1, \pm 2, \pm 3, \ldots \} \) is covariance stationary (aka weakly stationary).
Stationarity defined II

For a stationary Y_t the variance is time independent

$$Var(Y_t) = \sigma_y^2 \equiv \tau_0 \text{ for } j = 0$$

and the autocovariances are symmetric backwards and forwards:

$$\tau_j = \tau_{-j}$$
The autocorrelation function of stationary AR(p) I

- For a stationary time series variable, the theoretical autocovariances only depend on the distance \(j \) between periods. We can regard the autocovariance as a function of \(j \).

- The same is the case for the (theoretical) autocorrelation function (ACF). In general, it is a function of \(j \) and \(t \):

\[
\zeta_{j,t} = \{ Y_t, Y_{t-j} \} = \frac{\text{Cov}(Y_t, Y_{t-j})}{\text{Var}(Y_t)} = \frac{\tau_{j,t}}{\tau_{0,t}}, \quad (16)
\]

However

\[
\zeta_j = \frac{\tau_j}{\tau_0} = \zeta_{-j} \quad \text{for} \quad j = 1, 2, \ldots \quad (17)
\]

in the stationary case.
Why is stationarity so important? I

- For an observable time series \(\{ Y_t; t = 1, 2, 3, \ldots T \} \), we use the empirical autocovariances,

\[
\hat{\tau}_j = \frac{1}{T} \sum_{t=j+1}^{T} (Y_t - \bar{Y})(Y_{t-j} - \bar{Y}), \quad j = 0, 1, 2, \ldots, T - 1
\]

where \(\bar{Y} = \frac{1}{T} \sum_{t=1}^{T} Y_t \).

- If the process \(\{ Y_t; t = 0, \pm 1, \pm 2, \pm 3, \ldots \} \) is stationary, \(\hat{\tau}_j \) (\(j = 0, 1, 2, \ldots \)) are consistent estimators of the theoretical autocovariances.

- This in turn gives the main premise for consistent estimation of the coefficients of dynamic regression models, of which AR(p) is an example.
Why is stationarity so important? II

- In short: stationary is the main premise for why we can extend the MLE and OLS based estimation and inference theory to time series data!
- Hence the importance of $-1 < \phi_1 < 1$ in the AR(1) model.
- Note that, although stationarity depends on the characteristics roots, it can be “mapped back” to the ϕ_1 and ϕ_2 parameters in the AR(2) case.

\[1 - \phi_1 - \phi_2 > 0, \quad 1 > -\phi_1 + \phi_2 \quad \text{and} \quad 1 > -\phi_2 \iff \text{AR(2) is stationary} \]
AR(2) example revisited I

\(\gamma = 0, \phi_1 = 1.6, \phi_2 = -0.9: \)

\[Y_t = 1.6 Y_{t-1} - 0.9 Y_{t-2} + \varepsilon_t, \quad (19) \]

- The characteristic equation is:

\[\lambda^2 - 1.6\lambda + 0.9 = 0 \]

- The roots are a complex pair:

\[\lambda_1 = 0.8 - 0.5099i \]

\[\lambda_2 = 0.8 + 0.5099i \]

- The module ("absolute value") of the roots is

\[|\lambda| = \sqrt{0.8^2 + 0.5^2} \approx 0.94, \text{ inside the complex unit-circle.} \]
Consistency and distribution I

- We now have better background for assessing the statistical properties of MLEs for AR models.
- Consider the MLE for ϕ_1 that we derived in Lecture 4.
- Simplify by setting $\phi_0 = 0$ in the model equation, the notations in the expression for $\hat{\phi}_1$ can then be simplified:

$$
\hat{\phi}_1 = \frac{\sum_{t=2}^{T} Y_t Y_{t-1}}{\sum_{t=1}^{T} Y_{t-1}^2} = \sum_{t=1}^{T} \left(\frac{\phi_1 Y_{t-1}^2}{\sum_{t=1}^{T} Y_{t-1}^2} \right) + \sum_{t=1}^{T} \left(\frac{Y_{t-1} \varepsilon_t}{\sum_{t=2}^{T} Y_{t-1}^2} \right)
$$

$$(20)

\Rightarrow

E (\hat{\phi}_1 - \phi_1) = E \left(\frac{\sum_{t=1}^{T} Y_{t-1} \varepsilon_t}{\sum_{t=1}^{T} Y_{t-1}^2} \right) .$$
Consistency and distribution II

- Even if we assume \(E(Y_{t-1}\varepsilon_t) = 0 \), we cannot state that the denominator and numerator are independent: For example will \(\varepsilon_2 \) “be in” the numerator and (because of \(Y_2 = \phi_1 + \varepsilon_2 \)) also in \(Y_2 \times Y_2 \) in the denominator.

- This means that \(Y_{t-1} \) cannot be regarded as exogenous in the econometric sense, and therefore \(E(\hat{\phi}_1 - \phi_1) \neq 0 \).

- What about asymptotic properties? With reference to the Law of large numbers and Slutsky’s theorem we have

\[
\text{plim} (\hat{\phi}_1 - \phi_1) = \frac{\text{plim} \frac{1}{T} \sum_{t=2}^{T} Y_{t-1}\varepsilon_t}{\text{plim} \frac{1}{T} \sum_{t=2}^{T} Y_{t-1}^2} = \frac{0}{\frac{\sigma_{\varepsilon}^2}{1 - \phi_1^2}} = 0.
\]

if \(E(Y_{t-1}\varepsilon_t) = 0 \) and \(|\phi_1| < 1 \).
The zero in the numerator seems trivial since it is just a sum of terms with zero expectations, but closer inspection shows that we need that the variance of $Y_{t-1}\varepsilon_t$ is finite. The specification of the AR(1) model above is sufficient for this result.

The denominator is due to the assumption $|\phi_1| < 1$, which entails that the variance of Y_t in (20) is finite and equal to $\sigma^2_{\varepsilon} / (1 - \phi_1^2)$ from the solution of the AR(1) model.
Consistency and distribution IV

- The OLS/ML estimator $\hat{\phi}_1$ is consistent, and it is approximately normal when T is large enough, see §12.7 in HN:

$$\sqrt{T} (\hat{\phi}_1 - \phi_1) \overset{D}{\approx} N(0, (1 - \phi_1^2))$$ \hspace{2cm} (21)

which entails that t-tests can be compared with critical values from the normal distribution.

- This result extend MLE estimators for the AR(1) in Lecture 4 (the model where $\phi_0 \neq 0$).
Hurwitz-bias

- In (??) the finite sample bias can be shown to be approximately

\[E(\hat{\phi}_1 - \phi_1) \approx \frac{-2\phi_1}{T}, \]

this is called the Hurwitz-bias after Leo Hurwitz (1958).

- In CC we can make this more concrete with a Monte-Carlo analysis.
MLE of AR(p)

- The likelihood function of AR(p) is constructed in the same manner as for AR(1), with white-noise or gaussian disturbances (MA is a bit more complicated)
- Since the condition distribution is
 \[Y_t \overset{D}{=} N(\phi_0 + \sum_{i=1}^{p} \phi_i Y_{t-i} + \varepsilon_t, \sigma^2) \]
 we have \(p \) initial values \(Y_0, Y_{-1}, \ldots, Y_{-(p-1)} \)
- With \(y' = (Y_1, Y_2, \ldots, Y_t) \), and suitably defined \(X \) matrix the MLE estimators of \(\phi = (\phi_0, \phi_1, \ldots, \phi_p) \) are given by OLS formula
 \[\hat{\beta} = (X'X)^{-1}X'y \]
- \(\hat{\sigma}^2 \) is the average of the squared residuals
 \[\hat{\sigma}^2 = \frac{1}{T} \varepsilon' \varepsilon = y'My \] (cf. Lecture 3).
Lag operators I

- When we work with stochastic difference equations, it is often useful to express relationships with the use of the lag-operator L.
- The lag operator L changes the dating of a variable Y_t one or more period back in time. It works in the following way:

$$LY_t = Y_{t-1},$$
$$LLY_t = L^2 Y_t = LY_{t-1} = Y_{t-2},$$
$$L^p Y_t = Y_{t-p}.$$

- From the last property it follows that if $p = 0$, then

$$L^0 = 1,$$
$$L^0 Y_t = Y_t.$$
Lag operators II

- We also have

\[L^p L^s = L^p L^k = L^{(p+s)}, \]

and

\[(aL^p + bL^s) Y_t = aL^p Y_t + bL^s Y_t = aY_{t-p} + bY_{t-s}. \]

- If we want to shift a variable forward in time, we use the forward operator \(L^{-1} \):

\[L^{-1} Y_t = Y_{t+1} \]

and generally

\[L^{-s} = Y_{t+s}. \]
Lag operators III

Because constants are independent of time, we have for the constant b

$$Lb = b.$$

and by induction

$$L^p b = L^{(p-1)} Lb = L^{(p-1)} b = b.$$
Lag-polynomial representation of AR(p) I

We can now write (1) more compactly as

\[\phi(L) Y_t = \phi_0 + \varepsilon_t \] \hspace{1cm} (22)

where is the lag polynomial of order \(p \).

\[\phi(L) Y_t = 1 - \phi_1 L - \phi_2 L^2 - ... \phi_p L^p \] \hspace{1cm} (23)

and we keep the assumption of white-noise \(\varepsilon_t \).
Lag-polyonomial representation of AR(p) II

A root of the characteristic equation associated with the lag-polynomial is:

\[1 - \phi_1 z - \phi_2 z - \ldots \phi_p z^p = 0 \]

(24)

Comparison with the characteristic equation (12) shows that

\[z = \frac{1}{\lambda} \]

meaning that the condition for stationarity can also be expressed in terms of the roots: \((z_1, z_2, \ldots, z_p)\):

\[Y_t \text{ is stationary if all the } z\text{-roots are larger than one in absolute value ("outside the unit circle").} \]
Companion form I

Consider again the VAR system (3)

\[
\begin{pmatrix}
Y_t \\
X_t
\end{pmatrix} = \begin{pmatrix}
\pi_{11} & \pi_{12} \\
\pi_{21} & \pi_{22}
\end{pmatrix} \begin{pmatrix}
Y_{t-1} \\
X_{t-1}
\end{pmatrix} + \begin{pmatrix}
\varepsilon_{yt} \\
\varepsilon_{xt}
\end{pmatrix},
\]

- Assume that \(\varepsilon_{yt}, \varepsilon_{xt}\) are two stationary series. This is secured by (4) for example.
Companion form II

By obtaining the characteristic polynomial to Π:

$$p(\lambda) = |\Pi - \lambda I|$$

you find that the eigenvalues of Π are the roots of

$$|\Pi - \lambda I| = 0 \quad (25)$$

which is the characteristic equation associated with the final equation (5) that we derived above.

Hence the necessary and sufficient condition for stationary of the vector $(Y_t, X_t)'$ is that the two eigenvalues of both less than one in absolute value.

A is a simple example of a so called companion form matrix.
In ECON 5101 we will show that if we have a general VAR with \(n \) time series variables and \(p \) lags, that VAR can be written as a first order system

\[
\mathbf{z}_t = \mathbf{Fz}_{t-1} + \mathbf{e}_t
\]

(26)

where \(\mathbf{z}_t \) and \(\mathbf{e}_t \) are \(1 \times np \) and the companion form matrix \(\mathbf{F} \) is \(np \times np \).

For such a general VAR system, the condition for stationarity and stability is that all the \(np \) eigenvalues from

\[
|\mathbf{F} - \lambda \mathbf{I}| = 0
\]

(27)

are less than one in magnitude.
Companion form IV

- When we estimate a dynamic system in PcGive, the eigenvalues of the companion form are always available after estimation.
MLE of VAR(1) I

Consider the VAR(1) made up of (3) and (4) so that $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_T$ are mutually independent and normal.

The pdf of y_t given y_{t-1} is

$$f(y_t \mid y_{t-1}) = \frac{1}{\sigma_y \sigma_x 2\pi \sqrt{(1 - \rho_{xy}^2)}} \times \exp \left[-\frac{1}{2} \frac{(z_{yt}^2 - 2\rho_{xy} z_{yt} z_{xt} + z_{xt}^2)}{(1 - \rho_{xy}^2)} \right]$$

(28)
MLE of VAR(1) II

where $\sigma_j = \sqrt{\sigma_j^2}$ for $j = x, y$, $\rho_{xy} = \sigma_{xy} / (\sigma_x \sigma_y)$ (correlation coefficient) and

$$
\begin{align*}
 z_{yt} &= \frac{Y_t - \mu_{Y|t-1}}{\sigma_y} \\
 z_{xt} &= \frac{X_t - \mu_{X|t-1}}{\sigma_x}
\end{align*}
$$

where the conditional expectations are

$$
\begin{align*}
 \mu_{Y|t-1} &= \pi_{10} + \pi_{11} Y_{t-1} + \pi_{12} X_{t-1} \quad (29) \\
 \mu_{X|t-1} &= \pi_{20} + \pi_{21} Y_{t-1} + \pi_{22} X_{t-1} \quad (30)
\end{align*}
$$

where we have included the two intercepts.
MLE of VAR(1) III

By invoking the Markov property we can write:

\[f(y_1, y_2, \ldots, y_T \mid y_0) = \prod_{t=1}^{T} f(y_t \mid y_{t-1}) \]

cf. page 204 in HN, which is the likelihood function for the gaussian VAR(1):

\[L_{VAR(1)} = \prod_{t=1}^{T} f(y_t \mid y_{t-1}) \] \hspace{1cm} (31)

with \(f(y_t \mid y_{t-1}) \) given by (28)

Consider first the case of \(\pi_{ij} = 0 \) for \(i, j = 1, 2 \) so that \(\mu_{Y|t-1} = \pi_{10} \) and \(\mu_{X|t-1} = \pi_{20} \). In this case the MLE are the OLS estimators \(\hat{\pi}_{10} = \bar{Y} \) and \(\hat{\pi}_{20} = \bar{X} \).

The fact that \(\rho_{xy} \neq 0 \) in general does not change that result!
MLE of VAR(1) IV

- Which also extends to (29) and (30) in general: The MLEs of $\pi_{10}, \pi_{11}, \pi_{21}, \pi_{20}, \pi_{21}, \pi_{22}$ are obtained by estimating each row in VAR(1) by OLS as if they were two separate regressions.

- This is a case of the SURE theorem with identical regressors.
MLE of VAR(p) I

- The result about ML estimation of the VAR by OLS on each row in the system extends to VAR(p) models:

 \[y_t = \sum_{i=1}^{p} \Pi_i y_{t-1-i} + \epsilon_t \]

 where \(\Pi_i (i = 1, 2, \ldots, p) \) are autoregressive matrices and \(\epsilon_t \) is normal.

- We can also extend by other deterministic regressors than the intercepts. And by exogenous explanatory variables, such models are often called open-VARs or VAR-EX models.
The VAR revisited I

Let us now take care to write the gaussian disturbances of the VAR (now including two intercepts)

\[
\begin{pmatrix} Y_t \\ X_t \end{pmatrix} = \begin{pmatrix} \pi_{10} \\ \pi_{20} \end{pmatrix} + \begin{pmatrix} \pi_{11} & \pi_{12} \\ \pi_{21} & \pi_{22} \end{pmatrix} \begin{pmatrix} Y_{t-1} \\ X_{t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{yt} \\ \varepsilon_{xt} \end{pmatrix} \tag{32}
\]

as conditional on period \(t - 1 \):

\[
\begin{pmatrix} \varepsilon_{yt} \\ \varepsilon_{yt} \end{pmatrix} \sim N_2 \left(\mathbf{0}, \begin{pmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{pmatrix} \mid Y_{t-1}, X_{t-1} \right) . \tag{33}
\]

Now, (32) can be written as

\[
Y_t = \mu_{y,t-1} + \varepsilon_{yt} \tag{34}
\]

\[
X_t = \mu_{x,t-1} + \varepsilon_{xt} \tag{35}
\]
The VAR revisited II

where the conditional expectations $\mu_{y|t-1} \equiv E(Y_t \mid Y_{t-1}, X_{t-1})$ and $\mu_{x|t-1} \equiv E(X_t \mid Y_{t-1}, X_{t-1})$ are

$$\mu_{y,t-1} = \pi_{10} + \pi_{11} Y_{t-1} + \pi_{12} X_{t-1}$$ \hspace{1cm} (36)$$
$$\mu_{x,t-1} = \pi_{20} + \pi_{21} Y_{t-1} + \pi_{22} X_{t-1}.$$ \hspace{1cm} (37)

Interpretation: Conditional on the history of the system up to time $t-1$, Y_t and X_t are jointly normally distributed.
The conditional model for Y_t

The conditional distribution for Y_t given the history and X_t is also normal, in Lecture note 3 (posted after the lecture for self-study) we show that the conditional distribution for Y_t is:

$$Y \sim N(\phi_0 + \phi_1 Y_{t-1} + \beta_0 X_t + \beta_1 X_{t-1}, \sigma^2 \mid X_t, Y_{t-1}, X_{t-1})$$ \hspace{1cm} (38)

which can be written in model form as

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \beta_0 X_t + \beta_1 X_{t-1} + \varepsilon_t$$ \hspace{1cm} (39)

$$\varepsilon_t \sim N(0, \sigma^2 \mid X_t, Y_{t-1}, X_{t-1})$$ \hspace{1cm} (40)
The conditional model for Y_{II}

\[
\phi_0 = \pi_{10} - \frac{\sigma_{xy}}{\sigma_x^2} \pi_{20} \quad (41)
\]

\[
\phi_1 = \pi_{11} - \frac{\sigma_{xy}}{\sigma_x^2} \pi_{21} \quad (42)
\]

\[
\beta_0 = \frac{\sigma_{xy}}{\sigma_x^2} \quad (43)
\]

\[
\beta_1 = \pi_{12} - \frac{\sigma_{xy}}{\sigma_x^2} \pi_{22} \quad (44)
\]

and

\[
\sigma^2 = \sigma_y^2 (1 - \phi_{xy}^2) \quad (45)
\]

\[
\phi_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y} \quad (46)
\]
The conditional model for Y III

- Some small differences in notation apart, this is the same ADL model as in DM Ch 13.5 eq (13.58) for $p = q = 1$.
- The same ADL type model can be derived from a VAR with IID disturbances, rather than strictly normal.
- $ADL(p,q)$ model can be derived from a VAR or order p. Consequently we must then have $p = q$ in the ADL.
- We will study such ADL models, and their estimation over the next weeks.
The conditional model for \(Y \) IV

- Finally, note that the ADL model

\[
Y_t = \phi_0 + \phi_1 Y_{t-1} + \beta_0 X_t + \beta_1 X_{t-1} + \varepsilon_t \tag{47}
\]

together with the second row in the VAR:

\[
X_t = \pi_{20} + \pi_{21} Y_{t-1} + \pi_{22} X_{t-1} + \varepsilon_{xt} \tag{48}
\]

where the two disturbances are independent, give a regression representation of the VAR, in terms of a conditional model (47) and a marginal model (47).

- Correspondingly, HN shows in §14.1 how the likelihood-function (31) of the VAR can be factorized into a
 - a conditional likelihood (for (47) and
 - a marginal likelihood function (for (31).
The conditional model for Y_V

as long as there are no cross-equation restrictions, meaning exogeneity.

▶ Start with exogeneity in dynamic models in Lecture 6.