Note 1 to Computer class: The natural logarithm

Ragnar Nymoen
August 22, 2011

1 Logarithms and rates of change

We often make use of the approximation
\[
\ln \left(1 + \frac{\Delta Y}{Y}\right) = \ln \left(\frac{Y + \Delta Y}{Y}\right) = \ln (Y + \Delta Y) - \ln Y \\
\approx \frac{\Delta Y}{Y}, \quad \frac{\Delta Y}{Y} \text{ is small.}
\]

We will see how this approximation works, and how good it is.

When we consider marginal changes we have the precise relationship, i.e., from the derivative of a function
\[
\frac{d\ln Y}{dY} = \frac{1}{Y}, \quad \text{and hence } d\ln Y = \frac{dY}{Y}.
\]

To get to the approximation we need the following properties of the logarithmic function: \(\ln X\):
\[
\ln X = \begin{cases}
= (X - 1), & X = 1 \\
< (X - 1), & X \neq 1
\end{cases}
\]

The relationships holds because the function \(f (X) = (X - 1)\) is a straight line with slope coefficient \(\frac{d(X-1)}{dX} = 1\), while the function \(g (X) = \ln X\) is concave, with a slope coefficient that decreases with increasing \(X\):
\[
\frac{d\ln X}{dX} = \frac{1}{X} \begin{cases} < 1, & X > 1 \\
> 1, & X < 1
\end{cases}
\]

This result is illustrated in figure 1.

If we let \(X = \frac{Y + \Delta Y}{Y} = 1 + \frac{\Delta Y}{Y}\), we get the relationship between logarithms and rates of change:
\[
\ln \left(1 + \frac{\Delta Y}{Y}\right) = \ln \left(\frac{Y + \Delta Y}{Y}\right) = \ln (Y + \Delta Y) - \ln Y \leq \frac{\Delta Y}{Y}.
\]

Changes in logarithms will therefore never give larger values than the exact rates of change. But how good is the approximation, and why does it become poorer when

This note is a translation of Appendix 3.A in Bårdsen and Nymoen (2011).
the rate of changes becomes larger? We can investigate this by taking a second order Taylor expansion of $\ln X$ around the value $X_0 = 1$:

$$\ln X \approx \ln X_0 + \frac{1}{X_0} (X - X_0) - \left(\frac{1}{X_0^2} \right) \frac{(X - X_0)^2}{2}$$

$$= \ln 1 + 1 (X - 1) - \frac{1}{2} (X - 1)^2$$

$$\ln X \approx (X - 1) - \frac{1}{2} (X - 1)^2. \quad (1)$$

If we substitute $X = \frac{Y + \Delta Y}{Y}$, as above, we can see how close the approximation is, depending on the size of the rate of change:

$$\ln \left(\frac{Y + \Delta Y}{Y} \right) = \ln (Y + \Delta Y) - \ln Y \approx \frac{\Delta Y}{Y} - \frac{1}{2} \left(\frac{\Delta Y}{Y} \right)^2.$$

Clearly the approximation is best for smallish rates of change, but it also works well for a 10% change in Y, as the table shows:

<table>
<thead>
<tr>
<th>$\frac{\Delta Y}{Y}$</th>
<th>0.01</th>
<th>0.05</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ln \left(1 + \frac{\Delta Y}{Y} \right)$</td>
<td>0.00995</td>
<td>0.04879</td>
<td>0.09531</td>
<td>0.18232</td>
<td>0.40547</td>
<td>0.69315</td>
</tr>
</tbody>
</table>
The standard error of a log-linear model estimated by OLS

Assume that we have estimated a model for $\ln Y_i$, so that we can write:

$$\ln Y_i = \ln \hat{Y}_i + \hat{\varepsilon}_i,$$

where $\hat{Y}_i = e^{\hat{\beta}_0 + X_i \hat{\beta}_1}$ in the case of a single explanatory variable. The relationship for the variable Y_i becomes:

$$Y_i = \hat{Y}_i e^{\hat{\varepsilon}_i}.$$

From (1), and by dropping the second order term for simplicity, we have:

$$\ln Y_i - \ln \hat{Y}_i = \hat{\varepsilon}_i \approx \frac{Y_i - \hat{Y}_i}{Y_i}, \quad (2)$$

Equation (2) shows that the residual $\hat{\varepsilon}_i$ has an interpretation as a relative prediction error. Hence $100\hat{\varepsilon}_i \approx 100 \left(\frac{Y_i - \hat{Y}_i}{Y_i} \right)$ can be interpreted as percentage prediction error. The standard errors of the regression:

$$100\hat{\sigma}_e = 100 \sqrt{\frac{1}{n - 2} \sum_{i=1}^{n} \left(\frac{Y_i - \hat{Y}_i}{Y_i} \right)^2}$$

$$\approx 100 \sqrt{\frac{1}{n - 2} \sum_{i=1}^{n} \left(\frac{Y_i - \hat{Y}_i}{Y_i} \right)^2}$$

is the percentage unexplained standard deviation in the dependent variable. For example, if we have $\hat{\sigma}_e = 0.01$, it means that 1% of the standard deviation of the dependent variable is unexplained by the model we have estimated.

This interpretation is independent of the number of explanatory variables. If we have k variables, we replace $n - 2$ by $n - k - 1$.

References