UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Postponed exam:ECON4160 - Econometrics - Modeling and systems estimation, spring 2004
Date of exam: Wednesday, August 18, 2004
Time for exam: 9:00 a.m. - 12:00 noon
The problem set covers 7 pages
Resources allowed:

- All written and printed resources and calculator

The grades given: A-F, with A as the best and E as the weakest passing grade. F is fail.

Problem 1

Page I of the enclosed data sheets reports two regression analyses of the probability of having done unregistered work during the last year. The variables included in the models are:

Unreg $=$ a dummy variable taking the value of 1 if the individual has reported to do unregistered work during the last 12 months and the value of 0 otherwise. This is the dependent variable.
Y80 $=$ a dummy variable taking the value of 1 if the observation is from 1980 and 0 if the observation is from 2003 (only observations from these two years are included in the analyses).
Woman = a dummy variable taking the value of 1 if the individual is a woman. (0 otherwise)
College $=$ a dummy variable taking the value of 1 if the individual has higher education than high-school. (0 otherwise)
Age = the age of the individual
Risk = the perceived probability of being exposed by the tax authorities if the individual undertakes unregistered work. Takes the value from 0 to 1 .

The first model reports results from a Linear probability model. The second model reports results from a Logit model.
a) Explain why the logit-model is preferable to the linear probability model in this case. Based on the results in the logit-model, is it possible to conclude that the level of unregistered work has changed over the twenty years between the two surveys?
b) The mean value of unreg= 0.15 . Calculate the marginal effect of age for the average individual in both the linear probability model and the logit model. Explain how you calculated this effect. Consider an individual with a very small probability of doing unregistered work, for example 0.01 . Calculate the marginal effect of age for this individual in both models.
c) Give an interpretation of the coefficient for the variable risk in the Logit model, using a random utility interpretation of the discrete choice model.

Problem 2

Lnwdisp is a measure of wage dispersion in a country in a given year (measured by the log of the $9^{\text {th }}$ decile over the $1^{\text {st }}$ decile of hourly wages). Theories of wage determination suggest that wage dispersion may be lower where there is coordination across firms in wage negotiations. Page II and III of the data sheets report some regression analyses of the relationship between wage dispersion and coordination in wage negotiations, using a panel of data from several years from 16 countries. The unit of observation is countryXyear. Coordination is measured by an index ranging from 1 to 4 , with 1 being completely decentralised wage setting at the level of the establishment, and 4 being completely centralised wage setting at the national level.

The first model on page II of the data sheets shows that there is a negative correlation between wage dispersion and coordination in wage negotiations. Furthermore, the trend variable t suggests that there has been a negative trend in wage dispersion over the years of observation. The second model confirms that this negative relationship remains significant even when we control for the share of higher education in the population (edushare), the openness of the economy to international trade (open) and the log of union density (lnudens).
a) The coefficient for t changed very little, while the coefficient for coordination became smaller in size after inclusion of the additional variables. Discuss briefly why this happened.

The model may be written like this, for country i in year t :

1) Lnwdens $_{i t}=a+X_{i t} b+$ Coordination $_{i t}+u_{i t}$

X is the vector of explanatory variables in addition to coordination. An objection to the OLS regression model may be that coordination could be endogenous: Perhaps lower wage dispersion promotes coordination in bargaining. Such a relationship could be formalized as follows:
2) Coordination $_{i t}=A+Z_{i t} B+D$ Lnwdens $_{i t}+v_{i t}$

Z is a vector of explanatory variables that may influence the level of coordination. We now have a model with two equations and two endogenous variables.
b) Explain why the OLS regression model of equation (1) may produce biased results in this case. What is required of the vector Z in this model, for equation 1 to be exactly identified?

On Page III) of the data sheets, the results from a 2SLS regression analysis are presented. The effect of coordination is still significantly negative, albeit somewhat smaller in size. In this specification, two political variables (the share of left and right parties in the cabinet) as well as the total size of the population (L, R and $\ln \mathrm{P}$), are used as instruments for coordination in wage negotiations.
c) Specify the assumptions necessary for the three variables L, R and $\ln \mathrm{P}$ to be valid instruments. Explain why these assumptions are necessary to for the 2SLS estimators to be consistent. Based on the information given on the data sheets, what would be your estimate of the bias in the OLS specification? Suggest a way of testing if endogeneity bias is a problem for the OLS specification of equation 1.

PAGE I)

$\begin{aligned} & \text { OLS estimates } \\ & 1317 \end{aligned}$	SS	df	MS		Number of obs $=$		
					$F(5,1311)$	$=$	
32.16							
Model \|	18.6848826	$5 \quad 3.7$	3.73697652		Prob > F	$=$	
0.0000							
Residual \|	152.332581	1311.11	. 116195714		R -squared	$=$	
0.1093							
					Adj R-squared		
0.1059 (0							
Total \|	171.017464	1316.1	. 12995248		Root MSE	$=$	
. 34087							
unreg \|	Coef.	Std. Err.		t	$P>\|t\|$	[95\% Conf.	
Interval]							
y80 \|	. 0564154	. 0204257	2.76	0.006	. 0163447		
.0964862 2 0.76							
woman \|	-. 1185244	. 019515	-6.07	0.000	-. 1568084	-	
. 0802404							
age \|	-. 0035995	. 0007839	-4.59	0.000	-. 0051373	-	
. 0020617							
college \|	-. 0903182	. 02055	-4.40	0.000	-. 1306327	-	
. 0500037							
risk \|	-. 2064121	. 0411888	-5.01	0.000	-. 2872153	-	
. 1256089							
_cons \|	. 4414538	. 0395904	11.15	0.000	. 3637863		
. 5191212							

Logit estimates	Number of obs $=$	
1317	LR chi2 (5)	$=$
160.96	Prob $>$ chi2	$=$
0.0000 Log likelihood $=-483.88787$ 0.1426	Pseudo R2	$=$


```unreg \| Interval]```	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf.	
y80 \|	. 4633312	. 1695316	2.73	0.006	. 1310553	
. 7956071						
woman \|	-1.1454	. 1918774	-5.97	0.000	-1.521473	-
. 7693271						
age \|	-. 0304774	. 0069908	-4.36	0.000	-. 0441791	-
. 0167757						


| college \| | -.8514831 | .1983471 | -4.29 | 0.000 | -1.240236 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .4627299 risk \| | -2.227739 | .4235508 | -5.26 | 0.000 | -3.057884 |
| 1.397595 _cons \| | .6159416 | .3311691 | 1.86 | 0.063 | -.033138 |
| $1.265021_{4}$ |  |  |  |  |  |




Test for	Overidentifying Restrictions		
Num DF	Den DF	F Value	Pr $>$ F
2	186	1.65	0.1943

