UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Exam: ECON4160 - Econometrics - Modeling and systems estimation

Date of exam: Friday, May 21, 2004

Time for exam: 9:00 a.m. - 12:00 noon

The problem set covers 6 pages

Resources allowed:

• All written and printed resources, as well as calculator are allowed

The grades given: A-F, with A as the best and E as the weakest passing grade. F is fail.

Problem 1

We want to estimate the relationship between log hourly wage and labour market experience. The relationship between log hourly wage and experience is given by:

(1) $LNWAGE_i = \alpha + \beta EXPERIENCE_i + u_i$,

where α and β are unknown parameters and u_i is a stochastic disturbance. We have E(u|EXPERIENCE) = 0 and assume homoskedastic disturbances with no autocorrelation. For this problem we have constructed an experience variable which is considered as the sum of the true experience variable (EXPERIENCE) and a random error (ERROR). We now assume that we cannot observe the true EXPERIENCE variable, only the badly measured one. The badly measured experience variable is thus defined as:

(2) EXPERROR = EXPERIENCE + ERROR,

where ERROR is assumed to be uncorrelated with both EXPERIENCE and u. On the top of page 1 of the printout you will find the mean and variance of the error as well as of the badly measured experience variable for a sample of 681 Norwegian men between ages 18 and 45. The next part of the printout page 1 reports the variances and covariances of log wage (LNWAGE) and the badly measured experience variable. The problem is that we now only observe EXPERROR and not the true value of EXPERIENCE.

a) From the reported information on the empirical first and second order moments of the distributions of EXPERROR, LNWAGE and ERROR on top of page 1 (the means, variances and covariances) it should be possible to identify β . Explain how and calculate a consistent estimator of β based only on these statistics. Suggest which of these empirical moments that one would be less likely to have information on in real-world data samples.

In terms of the observable variables we have:

(3)
$$LNWAGE_i = \alpha + \beta EXPERROR_i + w_i$$

The regression results at (A) in the printout reports an OLS estimate of β in equation (3) of 0.00697.

- b) Explain why this OLS estimator is a biased estimator of β . Do you have enough information on the top of this page to give an estimate of the magnitude of the bias in this case?
- c) The results at (B) in the printout are the results from in instrumental variable regression. In this model, we have used information on the person's AGE as an instrument for the experience variable. Under what crucial assumptions does this method provide us with a consistent estimator of β ? Do you find these assumptions reasonable?

Problem 2

A more comprehensive model of log wages is estimated and the results reported at (C) and (D) in the printout. This model is estimated on data from all workers from 18 to 65 years of age and include years of schooling (YRSCHOOL) as well as a dummy variable for gender (WOMAN) and the true value of experience (EXPERIENCE) and its square (EXPSQUARED):

(4)
$$LNWAGE_i = \alpha_1 + \beta_1 YRSCHOOL_i + X_i \gamma_{11} + u_i,$$
 $i=1,...,n,$

where the vector X include (WOMAN, EXPERIENCE, EXPSQUARED), all of which are assumed to be exogenous. The results reported at (C) are from an OLS regression of equation (4). The coefficient for years of schooling is estimated to 0.05461. Some researchers suspect, however, that the schooling variable is endogenous in such an equation. A simple equation describing the determination of years of schooling could be given by:

(5)
$$\text{YRSSCHOOL}_{i} = \alpha_{2} + \beta_{2} \text{LNWAGE}_{i} + X_{i} \gamma_{21} + Z_{i} \gamma_{22} + v_{i}, \qquad i=1,...,n,$$

where the vector X again includes all the exogenous variables in equation (4) (WOMAN, EXPERIENCE, EXPSQUARED) and the vector Z contains a set of variables that are predetermined. These could be fathers' education, mothers' education, the age of the parents etc. We assume that E(u|X,Z) = E(v|X,Z) = 0 and that the disturbances u and v are homoskedastic.

a) Give the order conditions for identification of the structural parameters in these two equations. Which variables should be included in the first step, reduced form regressions of a two-stage least squares estimation of equation (4)?

Part (D) of the printout gives the two-stage least squares estimator where we have used a set of 12 variables describing the parents' education, age and occupation as our Z-vector.

b) The two-stage least squares estimate of β_1 is 0.07154. This is larger than the OLS estimate of 0.05461. What does this result tell you about the sign of the covariance between YRSCHOOL and u in equation (4)?

c) At Part (E) of the printout you will find results from an OLS regression of equation (4), augmented with the residual from the reduced form regression of YRSCHOOL. The residual is given the name RESIDUALYRSCHOOL.

Based on the results of this equation, which of the two estimators of β_1 would you rely on, OLS or 2SLS? Explain.

PRINTOUT PAGE 1.

The MEANS Procedure

Variable	Ν	Mean	Variance
fffffffffff	fffffff	ſſſſſſſſſſſſſ	ffffffffffff
error	681	-0.0263547	53.8264442
experror	681	13.5771696	106.3256153
ffffffffff	fffffff	fffffffffffffff	fffffffffff

Covariance Matrix, DF = 680 lnwage

	COVALIANCE	lnwage	Dr -	- 000	experror
lnwage experro:	-	.1222462 .7412236			0.7412236 6.3256153

PART (A)

OLS estimation

	De	pendent Varia	able: lnwag	e				
Analysis of Variance								
		Sum o	of	Mean				
Source	DF	Square	es	Square	F Value	Pr > F		
Model	1	3.513	74 3	.51374	29.97	<.0001		
Error	679	79.6136	56 0	.11725				
Corrected Total	680	83.1274	10					
Ro	ot MSE	0.3424	12 R-Squ	lare	0.0423			
De	pendent Mean	4.5910)5 AdjR	-Sq	0.0409			
Co	eff Var	7.4584	13					
		Parameter Es	stimates					
	Pa	rameter	Standard					
Variable	DF E	stimate	Error	t Val	ue Pr>	t		
Intercept	1	4.49640	0.02171	207.	16 <.	0001		
experror	1	0.00697	0.00127	5.	47 <.	0001		

PART (B)

Instrumental Variables Estimation

Dependent Variable: Inwage								
Analysis of Variance								
Sum of Mean								
Source	DF	Squares	Square	F Value	e Pr > F			
Model	1	12.82006	12.82006	95.63	3 <.0001			
Error	679	91.02443	0.134057					
Corrected Total	680	83.12740						
Root MSE		0.36614	R-Square	0.123	345			
Dependent	Mean	4.59105	Adj R-Sq	0.122	216			
Coeff Var		7.97503						
	Pa	arameter Es	timates					
	Pa	arameter	Standard					
Variable	DF 1	Estimate	Error	t Value	Pr > t			
Intercept	1 4	4.325830	0.030535	141.67	<.0001			
experror	1 (0.019534	0.001998	9.78	<.0001			

PART (C)

OLS estimation

Dependent Variable: lnwage									
	Analysis of Variance								
Sum of Mean									
Source		DF	Squ	ares	Squ	lare	F Va	lue	Pr > F
Model		4	72.3	37514	18.09	379	253	.06	<.0001
Error		1942	138.8	35315	0.07	150			
Corrected Tot	al	1946	211.2	22829					
	Root MSE		0.2	26739	R-Square	2	0.3426		
	Dependent	Mean	4.5	54814	Adj R-So	[0.3413		
	Coeff Var		5.8	37922					
			Paramete	er Est	imates				
		I	Parameter	:	Standard				
Variable	e DF		Estimate		Error	t Va	alue	Pr >	t
Intercep	ot 1		3.67966		0.03639	101	1.13	<.0	0001
woman	1		-0.16676		0.01220	-13	3.67	<.0	0001
yrsschoo	ol 1		0.05461		0.00258	21	1.13	<.0	0001
experier	nce 1		0.02528		0.00190	13	3.32	<.0	0001
expsquar	red 1	-0.	.00038842	0.0	00004122	- 9	9.42	<.0	0001

PART (D)

Two-Stage Least Squares Estimation

Dependent Variable: lnwage Analysis of Variance

	Analysis of variance						
			Sum of	Mean			
Source		DF	Squares	Square	F Value	e Pr > F	
Model		4	42.72578	10.68144	146.16	<.0001	
Error		1942	141.9237	0.073081			
Correcte	ed Total	1946	211.2283				
	Root MSE		0.27034	R-Square	0.231	.39	
	Dependent	Mean	4.54814	Adj R-Sq	0.229	81	
	Coeff Var		5.94387				
Parameter Estimates							
			Parameter	Standard			
Variab	le	DF	Estimate	Error	t Value	Pr > t	
Interce	ept	1	3.479323	0.152962	22.75	<.0001	
yrsscho	pol	1	0.071544	0.012820	5.58	<.0001	
woman		1	-0.16103	0.013040	-12.35	<.0001	
experie	ence	1	0.023863	0.002187	10.91	<.0001	
expsqua	ared	1	-0.00034	0.000053	-6.48	<.0001	

PART (E)

Two-Stage Least Squares Estimation

Dependent Variable: lnwage

Analysis of Variance						
		Sum of	Mean			
Source	DF	Squares	Square	F Value	Pr > F	
Model	5	72.50819	14.50164	202.91	<.0001	
Error	1941	138.72010	0.07147			
Corrected Total	1946	211.22829				
Root	MSE	0.26734	R-Square	0.3433		
Deper	ndent Mean	4.54814	Adj R-Sq	0.3416		
Coefi	f Var	5.87792				

Parameter Estimates

Parameter Standard

Variable	Label	DF	Estimate	Error	t Value	Pr > t
Intercept	Intercept	1	3.47932	0.15127	23.00	<.0001
yrsschool		1	0.07154	0.01268	5.64	<.0001
woman		1	-0.16103	0.01290	-12.49	<.0001
experience		1	0.02386	0.00216	11.03	<.0001
expsquared		1	-0.00034400	0.00005252	-6.55	<.0001
residualyrschool	Residual	1	-0.01767	0.01295	-1.36	0.1726