UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Exam: ECON4160 - Econometrics - Modeling and systems estimation
Date of exam: Thursday, May 24, 2007
Grades are given: Thursday, June 14
Time for exam: 02:30 p.m. - 05:30 p.m.
The problem set covers 10 pages (incl. cover sheet)
Resources allowed:

- All written and printed resources, as well as calculator

The grades given: A-F, with A as the best and E as the weakest passing grade. F is fail.

ECON 4160: ECONOMETRICS -
 MODELLING AND SYSTEMS ESTIMATION

PROBLEM SET, EXAM SPRING 2007

PROBLEM 1 (weight: 40%)
A relationship is often assumed to exist between finished goods inventories (in Norwegian: lager av ferdigvarer) and sales of manufactured commodities, but economists do not agree on how they are related. Ideally, for any such good, the difference between production and sales should equal the increase in the inventories. To explore this issue we have collected a data set which contains these two variables and a few others. The data set consists of seasonally adjusted quarterly data from the US, in billions of 2000 dollars, from 1982:1 to 2001:4 ($T=80$ observations) for the following four variables and their one-quarter differences:

```
HRAW = Raw material inventories for the manufacturing sector
HWIP = Work in progress inventories for the manufacturing sector
HFIN = Finished goods inventories for the manufacturing sector
SMAN = Real manufacturing sales
DHRAW = One-quarter difference in HRAW
DHWIP = One-quarter difference in HWIP
DHFIN = One-quarter difference in HFIN
DSMAN = One-quarter difference in SMAN
```

Estimation results, from PcGive, is given at the end of the problem.
(1A):
(a) Consider first the two Ordinary Least Squares (OLS) regressions in EQ(1.1) and $\mathrm{EQ}(1.2)$. Could you explain why they have the same R^{2} ?
(b) The estimate of the coefficient of HFIN in EQ(1.2) is not very far from the inverse of the estimate of the coefficient of SMAN in $\mathrm{EQ}(1.1)$. On the other hand, the gap between the corresponding coefficient estimates in the differenced equations $\mathrm{EQ}(1.3)$ and $\mathrm{EQ}(1.5)$ is much larger. Give a brief explanation of this.
(1B):
It has been suggested, as a way of examining whether SMAN or HFIN should be treated as exogenous, to compute (i) the correlation coefficient between SMAN and the residuals from EQ(1.1) and (ii) the empirical correlation coefficient between HFIN and the residuals from $\mathrm{EQ}(1.2)$ to see how they relate to the zero correlation assumption between disturbances and regressors in a well-specified classical OLS regression equation with stochastic regressors. Comment briefly on this suggestion.

(1C):

By comparing $\mathrm{EQ}(1.1)$ with $\mathrm{EQ}(1.3)$ and $\mathrm{EQ}(1.4)$, we note that when transforming the equation between HFIN and SMAN from levels to differences, the Durbin-Watson statistic (DW) is substantially increased. Explain this, perform the Durbin-Watson tests and state your conclusion. An extract from a table for the Durbin-Watson critical values is given below.

> DW $\mathbf{5 \%}$ Critical Values (dL,dU).
> $T=$ No. of obs.; $K=$ No. of coef. (incl. intercept)

T	K	dL	dU	T	K	dL	dU
73	2	1.59243	1.64788	77	2	1.60361	1.65614
73	3	1.56446	1.67681	77	3	1.57710	1.68348
73	4	1.53599	1.70667	77	4	1.55015	1.71166
74	2	1.59530	1.65001	78	2	1.60626	1.65812
74	3	1.56772	1.67852	78	3	1.58010	1.68509
74	4	1.53966	1.70793	78	4	1.55351	1.712877
75	2	1.59813	1.65209	79	2	1.60887	1.66006
75	3	1.57091	1.68020	79	3	1.58304	1.68667
75	4	1.54323	1.70920	79	4	1.55679	1.71407
76	2	1.60090	1.65413	80	2	1.61143	1.66197
76	3	1.57404	1.68185	80	3	1.58592	1.68823
76	4	1.54673	1.71043	80	4	1.56001	1.71526

(1D):
(a) There is reason to claim that neither SMAN nor HFIN is exogenous, but determined jointly with other variables in a multi-equation model. If this is true, what would you say about the properties of the estimates in $\mathrm{EQ}(1.1)-\mathrm{EQ}(1.6)$? Explain, with this in mind, how you would interpret the printouts in $\mathrm{EQ}(1.7)$ and $\mathrm{EQ}(1.8)$.
(b) Can you from the printout in $\mathrm{EQ}(1.7)-\mathrm{EQ}(1.10)$ draw conclusions about the quality of DHRAW and DHWIP as instruments for DHFIN and DSMAN.
(c) When OLS in $\mathrm{EQ}(1.5)-\mathrm{EQ}(1.6)$ is replaced with IVE in $\mathrm{EQ}(1.7)-\mathrm{EQ}(1.8)$, the estimated coefficients of DHFIN increase. The values of sigma and RSS also increase. Do you find this reasonable?
(d) Would you, when performing IVE estimation, recommend that the equation between DSMAN and DHFIN is specified with the latter as left-hand side variable and the former as right-hand side variable, rather than the opposite, as in $\mathrm{EQ}(1.8)$? State briefly the reasons for your answers.

PCGIVE PRINTOUTS FOR PROBLEM 1

EQ(1.1) Modelling HFIN by OLS. The estimation sample is: 1982(1) to 2001(4)

	Coefficient	Std.Error	t-value	t-prob Part.R~2	
Constant	13.7841	3.493	3.95	0.000	0.1665
SMAN	0.428138	0.01247	34.3	0.000	0.9379
sigma	4.88443	RSS			
R^2	0.937929	F $(1,78)=$	1179	$[0.000] * *$	
log-likelihood	-239.387	DW		0.171	
no. of observations	80	no. of parameters	2		
mean(HFIN)	132.215	var(HFIN)	374.755		

EQ(1.2) Modelling SMAN by OLS. The estimation sample is: 1982(1) to 2001(4)

	Coefficient	Std.Error	t-value	t-prob Part.R~2	
Constant	-13.0273	8.527	-1.53	0.131	0.0291
HFIN	2.19072	0.06381	34.3	0.000	0.9379
sigma	11.0488	RSS			
R^2	0.937929	F $(1,78)=$	1179	$[0.000] * *$	
log-likelihood	-304.688	DW		0.172	
no. of observations	80	no. of parameters	2		
mean(SMAN)	276.619	var (SMAN)	1917.56		

$* *$

EQ(1.3) Modelling DHFIN by OLS. The estimation sample is: 1982(2) to 2001(4)

	Coefficient	Std.Error	t-value	t-prob Part.R~2	
Constant	0.615119	0.1797	3.42	0.001	0.1321
DSMAN	0.0534312	0.04514	1.18	0.240	0.0179
sigma	1.47532	RSS		167.595971	
R^2	0.0178742	F $(1,77)=$	1.401	$[0.240]$	
log-likelihood	-141.804	DW	1.39		
no. of observations	79	no. of parameters	2		
mean(DHFIN)	0.696646	var (DHFIN)	2.16008		

EQ(1.4) Modelling DHFIN by OLS. The estimation sample is: 1982(2) to 2001(4)

	Coefficient	Std.Error	t-value	t-prob Part.R~2	
DSMAN	0.112638	0.04446	2.53	0.013	0.0760
sigma	1.57341	RSS		193.097317	
log-likelihood	-147.399	DW	1.31		
no. of observations	79	no. of parameters	1		
mean(DHFIN)	0.696646	var(DHFIN)	2.16008		

EQ(1.5) Modelling DSMAN by OLS. The estimation sample is: 1982(2) to 2001(4)

	Coefficient	Std.Error	t-value	t-prob Part. $\mathrm{R}^{\wedge} 2$	
Constant	1.29278	0.4596	2.81	0.006	0.0932
DHFIN	0.334528	0.2826	1.18	0.240	0.0179
sigma	3.69152	RSS		1049.30278	
R^2	0.0178742	F $(1,77)=$	1.401	[0.240]	
log-likelihood	-214.26	DW		1.27	
no. of observations	79	no. of parameters	2		
mean(DSMAN)	1.52582	var(DSMAN)	13.524		
$* *$					

EQ(1.6) Modelling DSMAN by OLS. The estimation sample is: 1982(2) to 2001(4)

	Coefficient	Std.Error	t-value	t-prob Part.R~2	
DHFIN	0.674971	0.2664	2.53	0.013	0.0760
sigma	3.85159	RSS		1157.11119	
log-likelihood	-218.123	DW	1.26		
no. of observations	79	no. of parameters	1		
mean(DSMAN)	1.52582	var (DSMAN)	13.524		

EQ(1.7) Modelling DSMAN by IVE. The estimation sample is: 1982(2) to 2001(4)

EQ(1.8) Modelling DSMAN by IVE. The estimation sample is: 1982(2) to 2001(4)

EQ(1.9) Modelling DHFIN by OLS. The estimation sample is: 1982(2) to 2001(4)

	Coefficient	Std.Error	t-value	t-prob Part.R~2	
Constant	0.366541	0.1414	2.59	0.011	0.0812
DHRAW	0.505126	0.09277	5.44	0.000	0.2806
DHWIP	0.196277	0.08548	2.30	0.024	0.0649
sigma	1.17377	RSS			
R^2	.386403	F $(2,76)=$	23.93	$[0.000] * *$	
log-likelihood	-123.224	DW		2.07	
no. of observations	79	no. of parameters	3		
mean(DHFIN)	0.696646	var(DHFIN)	2.16008		

EQ(1.10) Modelling DSMAN by OLS. The estimation sample is: 1982(2) to 2001(4)

	Coefficient	Std.Error	t-value	t-prob Part.R~2	
Constant	1.26427	0.4325	2.92	0.005	0.1011
DHRAW	0.270277	0.2837	0.953	0.344	0.0118
DHWIP	0.526503	0.2614	2.01	0.048	0.0507
sigma	3.58988	RSS		979.429648	
R^2	0.083274	F $(2,76)=$	$3.452[0.037] *$		
log-likelihood	-211.538	DW		1.38	
no. of observations	79	no. of parameters	3		
mean(DSMAN)	1.52582	var (DSMAN)	13.524		

END OF PRINTOUTS FOR PROBLEM 1

PROBLEM 2 (weight: 30%)

Consider an econometric two-equation model with equations of the form:

$$
\begin{equation*}
y=a+b x \quad+u \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
x=c+d y+e z+v \tag{2}
\end{equation*}
$$

where (y, x, z) are variables, (a, b, c, d, e) are constants, (u, v) are disturbances with (unknown) variances $\sigma_{u u}>0, \sigma_{v v}>0$ and covariance $\sigma_{u v}$. We are in particular interested in estimating b consistently.

Specify which variables are exogenous and endogenous, and explain whether b is identified. If b is identified, how you would estimate it in the following six cases. Answer very briefly, in only one or two sentences in each case.
(2A): (y, x, z) are all observable;
(a, b, c, d, e) are unknown;
$\operatorname{cov}(z, u)=\operatorname{cov}(z, v)=0$;
$\sigma_{u v}$ is unknown.
(2B): (y, x, z) are all observable; $e=0,(a, b, c, d)$ are unknown; $\operatorname{cov}(z, u)=\operatorname{cov}(z, v)=0$; $\sigma_{u v}$ is unknown.
(2C): (y, x, z) are all observable; $d=0,(a, b, c, e)$ are unknown; $\operatorname{cov}(z, u)=\operatorname{cov}(z, v)=0$; $\sigma_{u v}=0$.
(2D): (y, z) are observable, x is not observable; $d=0,(a, b, c, e)$ are unknown; $\operatorname{cov}(z, u)=\operatorname{cov}(z, v)=0$; $\sigma_{u v}=0$,
$(2 \mathbf{E}):(y, z)$ are observable, x is not observable; $c=d=0, e=1,(a, b)$ are unknown;
$\operatorname{cov}(z, u)=\operatorname{cov}(z, v)=0$;
$\sigma_{u v}=0$
(2F): (y, z) are observable, x is not observable;
$c=d=0, e=1,(a, b)$ are unknown;
$\operatorname{cov}(x, u)=\operatorname{cov}(x, v)=0 ;$
$\sigma_{u v}=0$

PROBLEM 3 (weight: 30%)
We are interested in examining how females' decisions work or not depends on age, education, work experience and some other socioeconomic variables. The data set - from 1975 for $n=753$ females in the US - contains the following 8 variables:

```
DUMW = Dummy variable = 1 if female worked in 1975, else 0
AGE = Female's age, in years
AGESQ = Female's age squared
EDU = Female's educational attainment, in years
WEXP = Female's previous labor market experience, in years
FAEDU = Father's educational attainment, in years
MOEDU = Mother's educational attainment, in years
CIT = Dummy variable = 1 if female lives in a large city, else 0
```

The vector $\boldsymbol{x}=[$ AGE, AGESQ, EDU, WEXP, FAEDU, MOEDU, CIT] $]$, contains the variables to be treated as exogenous in the analysis below.

(3A):

Estimation results from OLS regression of DUMW on \boldsymbol{x} is given in EQ(3.1) in the printout. Explain what you can conclude about the effects of a one year longer education period and a one year longer working experience on the females' propensity to work.
(3B):
(a) Logit and Probit models are used more frequently than linear regression models in analyzing individuals' discrete choice. Logit and Probit estimation results relating to female labour market responses are given in $\mathrm{CS}(3.2)$ and $\mathrm{CS}(3.3)$ in the printouts. Interpret these results, and in particular explain what you conclude about the effect on the females' propensity to work of
(i) a one year increase in the education period,
(ii) a one year increase in the working experience.
(b) Could you explain why the Logit estimates are substantially higher (in absolute value) than the corresponding Probit estimates, even if the underlying problem is the same?
(3C):
About 57% of the females in the sample are working. Take $\bar{P}=0.5$ as a rough estimate of the probability of being employed. Can you - from the Logit results - estimate how the probability that a female will be working is affected by a one year increase in
(i) her education period,
(ii) her period of past working experience,
(iii) her father's education period and
(iv) her mother's education period?

PCGIVE PRINTOUTS FOR PROBLEM 3

EQ(3.1) Modelling DUMW by OLS-CS. The estimation sample is: 1 to 753

	Coefficient	Std.Error	t-value	t-prob Part.R~2	
Constant	-0.903595	0.4827	-1.87	0.062	0.0047
AGE	0.0525896	0.02231	2.36	0.019	0.0074
AGESQ	-0.000745911	0.0002573	-2.90	0.004	0.0112
EDU	0.0289180	0.008401	3.44	0.001	0.0157
WEXP	0.0247053	0.002176	11.4	0.000	0.1475
FAEDU	0.00448683	0.006211	0.722	0.470	0.0007
MOEDU	-0.00161627	0.005842	-0.277	0.782	0.0001
CIT	-0.0187213	0.03509	-0.534	0.594	0.0004
sigma	0.448639	RSS		149.951028	
R^2	0.188259	F(7,745)	24.68	$[0.000] * *$	
log-likelihood	-460.881	DW		0.351	
no. of observations	753	no. of parameters			
mean(DUMW)	0.568393	var (DUMW)		0.245322	

CS(3.2) Modelling DUMW by Logit. The estimation sample is: 1 to 753

	Coefficient	Std.Error	t-value	t-prob
Constant	-7.60072	2.497	-3.04	0.002
AGE	0.287136	0.1163	2.47	0.014
AGESQ	-0.00399504	0.001362	-2.93	0.003
EDU	0.148748	0.04359	3.41	0.001
WEXP	0.125311	0.01290	9.72	0.000
FAEDU	0.0208852	0.03126	0.668	0.504
MOEDU	-0.00911546	0.02897	-0.315	0.753
CIT	-0.0947049	0.1773	-0.534	0.593

log-likelihood	-436.246857	no. of states	2
no. of observations	753	no. of parameters	8
mean(DUMW)	0.568393	var(DUMW)	0.245322

BFGS estimation (eps1=0.0001; eps2=0.005) : Strong convergence

	Count	Frequency Probability	loglik	
State 0	325	0.43161	0.43160	-229.5
State 1	428	0.56839	0.56840	-206.8
Total	753	1.00000	1.00000	-436.2

CS(3.3) Modelling DUMW by Probit. The estimation sample is: 1 to 753

	Coefficient	Std.Error	t-value	t-prob
Constant	-4.55365	1.485	-3.07	0.002
AGE	0.172773	0.06895	2.51	0.012
AGESQ	-0.00240777	0.0008037	-3.00	0.003
EDU	0.0888289	0.02588	3.43	0.001
WEXP	0.0740782	0.007302	10.1	0.000
FAEDU	0.0131296	0.01876	0.700	0.484
MOEDU	-0.00610996	0.01744	-0.350	0.726
CIT	-0.0440375	0.1061	-0.415	0.678

log-likelihood	-436.702481	no. of states	2
no. of observations	753	no. of parameters	8
mean(DUMW)	0.568393	var(DUMW)	0.245322
BFGS estimation (eps1=0.0001;	eps2=0.005) : Strong convergence		

	Count	Frequency	Probability	loglik
State 0	325	0.43161	0.43167	-229.6
State 1	428	0.56839	0.56833	-207.1
Total	753	1.00000	1.00000	-436.7

END OF PRINTOUTS FOR PROBLEM 3

