ECON 4160: ECONOMETRICS -
 MODELLING AND SYSTEMS ESTIMATION
 PROBLEM SET, EXAM SPRING 2008

Sensorveiledning/Assessment Guidance in italics

PROBLEM 1 (weight: 60%)

We are interested in analyzing, from micro data, the relationship between female labour supply, measured as the actual number of hours worked per year, and the length of education and work experience, measured in years. To explore this a cross-section data set from 753 females in the US observed in 1975 for the following six variables has been compiled:

```
Y1 = Number of hours worked in the year 1975
Y2 = Education, in years
X1 = Work experience, in years
Z1 = Father's education, in years
Z2 = Mother's education, in years
Z3 = Husband's education, in years
```

We assume that ($\mathrm{Y} 1, \mathrm{Y} 2$) are endogenous variables, that X 1 is exogenous, and that $(\mathrm{Z} 1, \mathrm{Z2}, \mathrm{Z} 3)$ have been proposed as candidates for being instruments for Y 2 in the equation

$$
\begin{equation*}
\mathrm{Y} 1=\alpha+\beta \mathrm{Y} 2+\gamma \mathrm{X} 1+\mathrm{U}, \tag{*}
\end{equation*}
$$

where U is a disturbance.
The estimation results and other printouts referred to below are obtained from PcGive and are given at the end of the problem.
(A): Give a stochastic specification of the model, and give reasons why treating ($\mathrm{Y} 1, \mathrm{Y} 2$) as jointly endogenous variables may be reasonable. In EQ(1)-EQ(2) two versions of (*) are estimated, the first with γ set to zero a priori, the second with both coefficients free. Explain briefly why the two equations give different estimates of β and why both sets of OLS estimates are inconsistent.

Specify exogeneity. Other catchwords: Omitted regressor bias. Simultaneity bias.
(B): Assume that ($\mathrm{X} 1, \mathrm{Z1}, \mathrm{z2}, \mathrm{Z3}$) are exogenous variables in the model to which (*) belongs and that the number of other equations and of other endogenous variables, say $N_{*}(\geq 1)$, is unknown. Show, by using the order condition, that $(*)$ is identified regardless of the value of N_{*}.

No. of excluded variables $=N_{*}+3$. This certainly exceeds No. of equations minus one $=$ $N_{*}+2-1=N_{*}+1$ for any $N_{*}(\geq 1)$.
(C): Consider the estimates in printouts EQ(3) and EQ(6). Explain briefly the terms 'IVE' and 'Additional instruments' and explain why the estimates are both consistent under the given assumptions. Why do they differ when computed from the 753 observations?

Full IV set =Included Exogenous variable(s) plus 'Additional instruments'. Different consistent estimates usually lead to different estimates when estimation sample is finite.
(D): Could X1 alone have served as an instrument for Y2 in (*)? State briefly the reason for your answer.

No. X1 serves as IV for itself. Using X1 also as IV for Y2 will lead to two identical normal equations, which will violate the rank condition for the full IV matrix vis-a-vis the equation's RHS variable matrix.
(E): Let (Q1, Q2, Q3, Q4) be four derived variables defined and calculated by PcGive by

Algebra code for variable transformations:

$$
\begin{aligned}
\mathrm{Q} 1 & =\mathrm{X} 1+\mathrm{Z} 1 ; \\
\mathrm{Q} 2 & =\mathrm{X} 1+2 * \mathrm{Z} 1 ; \\
\mathrm{Q} 3 & =\mathrm{X} 1+\mathrm{Z} 2 ; \\
\mathrm{Q} 4 & =\mathrm{X} 1+2 * \mathrm{Z} 2 ;
\end{aligned}
$$

Explain why (Q1, Q2, Q3, Q4) are all valid instruments for $(*)$ and why the estimates in EQ (4) - EQ (5) coincide with those in EQ(3) and why the estimates in EQ(7)-EQ (8) coincide with those in EQ(6).
[Hint: Note that (i) both (X1, Q1) and (X1, Q2) are one-to-one (non-singular) transformations of ($\mathrm{X} 1, \mathrm{Z1}$) and (ii) (X1, Q3) and (X1, Q4) are one-to-one (non-singular) transformations of ($\mathrm{X} 1, \mathrm{Z} 2$).]

Maybe this is a somewhat difficult (and unexpected) question, but it should be rather easy to prove by using matrix algebra: The equation is exactly identified, so $I V=A Z[A$ quadratic and nonsingular] will give the same IV estimator as $I V=Z$ for any A. Also candidates unfamiliar with matrix algebra should have a change by noting that in all four cases X1 acts as IV for itself (perfect correlation) and "the rest of the IV set is disposed of as IV for Y2" Also candidates knowing that OLS is invariant to non-singular variable transformations while exploiting the relationship between IV and 2SLS could take advantage of this knowledge.
(\mathbf{F}): Explain briefly the estimation method used for equations $E Q(9)-E Q(10)$, in particular how it differs from the methods used for equations EQ(3) and EQ(6). Which conclusions do you draw from printouts EQ(11)-EQ(12) and the correlation matrix below about the quality of the instruments? What would you conclude about the effect on the female labour supply of (a) a one year increase in education, (b) a one year increase in work experience?

The catchwords here are overidentification and $2 S L S$ as well as the R-square for the reduced for equation for Y2 as an overall IV quality index. The low t-value of Y2 and the high t-value of X1 should be noted.
(G): Good arguments may be given for treating X1 as an endogenous variable, jointly determined with Y1 and Y2. If you accept this, how would you then modify your model and proceed to estimate the coefficients of $(*)$? Explain briefly.

IVs will be needed for both Y2 and X1. The Zs are still candidates. But it may be remarked that in order to tackle this question, the model should probably be extended and more exogenous variables introduced.

PCGIVE PRINTOUTS FOR PROBLEM 1

MEANS, STANDARD DEVIATION AND CORRELATIONS. THE SAMPLE IS: 1 TO 753
Means

Means					
Y1	Y2	X1	Z1	Z2	Z3
740.58	12.287	10.631	8.8088	9.2510	12.491
Standard deviations (using T-1)					
Y1	Y2	X1	Z1	Z2	Z3
871.31	2.2802	8.0691	3.5723	3.3675	3.0208
Correlation matrix:					
Y1	Y2	X1	Z1	Z2	Z3
Y1 1.0000	0.10596	0.40496	0.013671	0.057864	-0.0096504
Y2 0.10596	1.0000	0.066256	0.44246	0.43534	0.61195
X1 0.40496	0.066256	1.0000	-0.078802	-0.082179	-0.036301
Z1 0.013671	0.44246	-0.078802	1.0000	0.57307	0.36670
Z2 0.057864	0.43534	-0.082179	0.57307	1.0000	0.32447
Z3 -0.0096504	0.61195	-0.036301	0.36670	0.32447	1.0000

EQ(1) Modelling Y1 by OLS-CS. The estimation sample is: 1 to 753

	Coefficient	Std.Error	t-value	t-prob Part.R^2
Y2	40.4890	13.87	2.92	0.0040 .0112
Constant	243.094	173.3	1.40	$0.161 \quad 0.0026$
sigma	866.986	RSS		564499772
R^2	0.0112276	$\mathrm{F}(1,751)=$	8.528	[0.004]**
log-likelihood	-6161.52	DW		0.973
no. of observations	s 753	no. of par	meters	2
mean(Y1)	740.576	var(Y1)		758180

EQ(2) Modelling Y1 by OLS-CS. The estimation sample is: 1 to 753

	Coefficient	Std.Error	t-value	t-prob	Part.R^2
Y2	30.3699	12.74	2.38	0.017	0.0075
X1	43.1593	3.599	12.0	0.000	0.1609
Constant	-91.3922	161.3	-0.567	0.571	0.0004
sigma	794.728	RSS		473694833	
R^2	0.170281	$F(2,750)=$	76.96	[0.000]	**
log-likelihood	-6095.49	DW		1.18	
no. of observations	- 753	no. of parameters		758180	
mean(Y1)	740.576	var(Y1)			

EQ(3) Modelling Y1 by IVE-CS. The estimation sample is: 1 to 753

EQ(4) Modelling Y1 by IVE-CS. The estimation sample is: 1 to 753

EQ(5) Modelling Y1 by IVE-CS. The estimation sample is: 1 to 753

Additional instruments:
[0] = Q2

EQ(6) Modelling Y1 by IVE-CS. The estimation sample is: 1 to 753

	Coefficient	Std.Error	t-value	t-prob
Y2 Y	Y 79.0119	29.01	2.72	0.007
X1	42.2486	3.667	11.5	0.000
Constant	-679.367	354.0	-1.92	0.055
sigma	802.418	RSS		482905547
Reduced form sigma	gma 793.73			
no. of observation	ions 753	no. of par	meters	3
no. endogenous var	variables 2	no. of ins	ruments	3
mean(Y1)	740.576	var(Y1)		758180

Additional instruments:
[0] $=\mathrm{Z} 2$

EQ(7) Modelling Y1 by IVE-CS. The estimation sample is: 1 to 753

		Coefficient	Std.Error	t-value	t-prob
Y2	Y	79.0119	29.01	2.72	0.007
X1	42.2486	3.667	11.5	0.000	
Constant		-679.367		354.0	-1.92
			0.055		
sigma	802.418	RSS			
Reduced form sigma	793.73		482905547		
no. of observations	753	no. of parameters			
no. endogenous variables	2	no. of instruments	3		
mean(Y1)	740.576	var(Y1)	3		
				758180	

Additional instruments:
[0] = Q3

EQ(8) Modelling Y1 by IVE-CS. The estimation sample is: 1 to 753

		Coefficient	Std.Error	t-value	t-prob
Y2	Y	79.0119	29.01	2.72	0.007
X1	42.2486	3.667	11.5	0.000	
Constant		-679.367		354.0	-1.92
			0.055		
sigma					
Reduced form sigma	793.418	RSS		482905547	
no. of observations	753	no. of parameters			
no. endogenous variables	2	no. of instruments	3		
mean(Y1)	740.576	var(Y1)	3		

Additional instruments:
[0] = Q4

EQ(9) Modelling Y1 by IVE-CS. The estimation sample is: 1 to 753

	Coefficient	Std.Error	t-value	t-prob
Y2 Y	$Y \quad 22.6733$	18.74	1.21	0.227
X1	43.3034	3.610	12.0	0.000
Constant	1.64213	231.5	0.00709	0.994
sigma	794.922	RSS		473925434
Reduced form sigma	gma 794.47			
no. of observation	ions 753	no. of parameters		3
no. endogenous var	variables 2	no. of instruments		5
mean(Y1)	740.576	$\operatorname{var}(\mathrm{Y} 1)$		758180

Additional instruments:
[0] $=\mathrm{Z1}$
$[1]=\mathrm{Z} 2$
[2] $=\mathrm{Z} 3$

EQ(10) Modelling Y1 by IVE-CS. The estimation sample is: 1 to 753

	Coefficient	Std.Error	t-value	t-prob
Y2 Y	22.6733	18.74	1.21	0.227
X1	43.3034	3.610	12.0	0.000
Constant	1.64213	231.5	0.00709	0.994
sigma	794.922	RSS		473925434
Reduced form sigma	794.47			
no. of observations	s 753	no. of par	meters	3
no. endogenous vari	iables 2	no. of ins	ruments	5
mean(Y1)	740.576	var(Y1)		758180

Additional instruments:
[0] = Q1
[1] $=$ Q3
[2] $=\mathrm{Z3}$
$* *$
EQ(11) Modelling Y1 by OLS-CS. The estimation sample is: 1 to 753

	Coefficient	Std.Error	t-value	t-prob	Part.R^2
X1	44.5060	3.605	12.3	0.000	0.1692
Z1	-0. 568442	10.18	-0.0558	0.956	0.0000
Z2	26.3366	10.63	2.48	0.013	0.0081
Z3	-7.74773	10.43	-0.743	0.458	0.0007
Constant	125.588	138.8	0.905	0.366	0.0011
sigma	794.472	RSS		472127	
R^2	0.173027	$F(4,748)=$	39.13	[0.000]	**
log-likelihood	-6094.24	DW			17
no. of observations	S 753	no. of par	meters		5
mean(Y1)	740.576	var(Y1)		758	

EQ(12) Modelling Y2 by OLS-CS. The estimation sample is: 1 to 753

	Coefficient	Std.Error	t-value	t-prob Part.R~2	
X1	0.0318243	0.007590	4.19	0.000	0.0230
Z1	0.101756	0.02144	4.75	0.000	0.0292
Z2	0.130410	0.02238	5.83	0.000	0.0434
Z3	0.373721	0.02195	17.0	0.000	0.2793
Constant	5.17748	0.2921	17.7	0.000	0.2957
sigma					
R^2	1.6726	RSS		2092.60733	
log-likelihood	0.464812	F $(4,748)=$	$162.4[0.000] * *$		
no. of observations	-1453.28	DW		2	
mean(Y2)	753	no. of parameters	5		
	12.2869	var(Y2)		5.19262	

PROBLEM 2 (weight: 40%)

(A): Consider the simple macro model

$$
\begin{align*}
C_{t} & =\alpha+\beta Y_{t}+u_{t}, \tag{1}\\
Y_{t} & =C_{t}+I_{t}+G_{t} .
\end{align*}
$$

where $Y_{t}(=\mathrm{GNP})$ and $C_{t}\left(=\right.$ Total Private Consumption) are endogenous, $I_{t}(=$ Total Gross Investment) and G_{t} (= Total Public Expenditure) are exogenous variables, and u_{t} is a disturbance. Complete the model description and explain which of its equations can be identified from time series on $\left(Y_{t}, C_{t}, I_{t}, G_{t}\right)$. The marginal propensity to consume, β, can be estimated consistently by instrumental variables in four different ways, by using as instruments for Y_{t}, respectively, (i) only I_{t}, (ii) only G_{t}, (iii) $I_{t}+G_{t}$, or (iv) both I_{t} and G_{t}. Which of alternatives (i)-(iv) would you prefer if you believe in this simple model? State the reason for your answer.

Equation (1) is (exactly) identified. Identification problems related to (2) should not be discussed! The best answer to the final question is probably (iii), since I_{t} and G_{t} enter the model's reduced form only via their sum. However, (iv) can also be defended if one chooses to neglect the property that that the reduced form equations for I_{t} and G_{t} variables have the same coefficients, but if the candidate chooses so, this should be motivated.
(B): An extended version of the macro model is also of interest:

$$
\begin{align*}
C_{t} & =\alpha_{1}+\beta_{1} Y_{t}+u_{t}, \tag{3}\\
I_{t} & =\alpha_{2}+\beta_{2}\left(Y_{t}-Y_{t-1}\right)+\gamma_{2} G_{t}+v_{t}, \tag{4}\\
Y_{t} & =C_{t}+I_{t}+G_{t}, \tag{5}
\end{align*}
$$

where (4), with $\beta_{2}>0, \gamma_{2}>0$, represents a hypothesis that gross investment responds partly to the increase in GNP and partly to certain components of Total Public Expenditure, and v_{t} is a disturbance. Complete the model description also in this case. Decide which of the model's equations can be identified from time series of $\left(Y_{t}, C_{t}, I_{t}, G_{t}\right)$. How would you now estimate the consumption function?
[Hint: In interpreting (4) and specifying the model stochastically, you may consider it as having the form

$$
I_{t}=\alpha_{2}+\beta_{2} Y_{t}+\beta_{3} Z_{t}+\gamma_{2} G_{t}+v_{t}
$$

with the linear restriction $\beta_{3}=-\beta_{2}$ imposed and with $Z_{t}=Y_{t-1}$ considered as predetermined (with properties which in this context can be treated as coinciding with those of an exogenous variable).]

Eqs. (3) and (4) are both identified, by the order condition. The restriction $\beta_{3}=-\beta_{2}$ should then be counted as a linear restriction, so that (4) has two restrictions. For (3), 2SLS estimation with $\left(G_{t}, Y_{t-1}\right)$ treated as IVs for Y_{t} will do.
(C): The reduced form equation for Y_{t}, obtained by inserting (3) and (4) into the national budget identity (5) and solving for Y_{t} is (derivation not required)

$$
\begin{equation*}
Y_{t}=a+b G_{t}+c Y_{t-1}+\varepsilon_{t}, \tag{6}
\end{equation*}
$$

where

$$
a=\frac{\alpha_{1}+\alpha_{2}}{1-\beta_{1}-\beta_{2}}, \quad b=\frac{1+\gamma_{2}}{1-\beta_{1}-\beta_{2}}, \quad c=-\frac{\beta_{2}}{1-\beta_{1}-\beta_{2}}, \quad \varepsilon_{t}=\frac{u_{t}+v_{t}}{1-\beta_{1}-\beta_{2}} .
$$

Would you consider (6) as describing a lag distribution, and if so which form does it have? Assume that consistent estimates of $\left(\beta_{1}, \beta_{2}, \gamma_{2}\right)$, satisfying $\beta_{2}<\frac{1}{2}\left(1-\beta_{1}\right) \Longrightarrow|c|<1$, are available (you are not required to propose an estimation procedure). Explain how you from this information would estimate b and c consistently and explain briefly how you from the estimates obtained, symbolized by ${ }^{\wedge}$, would proceed to compute the effect of a one unit increase in G in a particular year
(a) on Y in the current year,
(b) on Y in the next year, and
(c) on Y in the long run, i.e., the sum of the effects in the current and all future years.
[Hint: To illustrate your points you may well use numerical values, say

$$
\left.\left(\widehat{\beta}_{1}, \widehat{\beta}_{2}, \widehat{\gamma}_{2}\right)=(0.65,0.1,0.05) \Longrightarrow(\widehat{b}, \widehat{c})=(4.2,-0.4) .\right]
$$

Geometric lag distribution with negative ratio and hence oscillating signs of the coefficients. Use Stutsky's theorem to prove consistency.

$$
\begin{aligned}
& \text { Answer to (a): } b=\frac{1+\gamma_{2}}{1-\beta_{1}-\beta_{2}}=4.2 . \\
& \text { Answer to (b): } b c=\frac{\left(-\beta_{2}\right)\left(1+\gamma_{2}\right)}{\left(1-\beta_{1}-\beta_{2}\right)^{2}}=-1.68 . \\
& \text { Answer to (c): } \sum_{i=0}^{\infty} b c^{i}=\frac{b}{1-c}=\frac{1+\gamma_{2}}{1-\beta_{1}-\beta_{2}} \sum_{i=0}^{\infty}\left(\frac{-\beta_{2}}{1-\beta_{1}-\beta_{2}}\right)^{i}=\frac{1+\gamma_{2}}{1-\beta_{1}}=3.0 .
\end{aligned}
$$

