UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Postponed exam: ECON4160 - Econometrics - Modeling and systems estimation
Date of exam: Friday, August 8, 2008
Time for exam: 09:00 a.m. - 12:00 noon
The problem set covers 6 pages (incl. cover sheet)
Resources allowed:

- All written and printed resources, as well as calculator, is allowed

The grades given: A-F, with A as the best and E as the weakest passing grade. F is fail.

ECON 4160: ECONOMETRICS MODELLING AND SYSTEMS ESTIMATION

 SPRING 2008, POSTPONED EXAM

 SPRING 2008, POSTPONED EXAM}

PROBLEM 1

We are interested in estimating a relationship between household per capita expenditures - in the following to be denoted as an expenditure function - and household per capita income from micro data. We have 2486 observations from South-African households in 1993-1998 for the following four variables:

```
pcexp = Per capita expenditure
pcinc = Per capita income
agehp = Age of household head
eduhp = 1 if household head has attained secondary school,
    = 0 otherwise
```

The estimation results and other printouts referred to below are obtained from PcGive and are given at the end of the problem set.
(A): We consider (pcexp, pcinc) as jointly endogenous variables and (agehp, eduhp) as exogenous. Specify the underlying econometric model and explain briefly why the coefficient estimates in equations EQ(1) and EQ(2) are inconsistent.
(B): In equations $E Q(3)-E Q(7)$ five versions of the expenditure function which in different ways exploit the two exogenous variables as instruments. (i) Explain briefly what this means, and the meaning of the terms 'IVE' and 'Additional instruments' in the printouts. (ii) Explain briefly, without proofs, why the estimates are all consistent.
(C): The coefficient estimates of pcinc in equations EQ(4), EQ(5) and EQ(7) are fairly equal, but they differ substantially from those in equations EQ(3) and EQ(6). Could you explain this by examining the summary statistics at the start of the printouts and the results in equation $E Q(10)$?
(D): Could agehp have served as an instrument for pcinc instead of using eduhp in equation EQ(5), and could eduhp have served as an instrument for pcinc instead of using agehp in equation EQ(6)? State briefly the reason for your answer.
(E): Let (z28, z46, z64, z82) be four derived variables calculated by PcGive by:

```
Algebra code for variable transformations:
    z28 = 0.2*agehp + 0.8*eduhp;
    z46 = 0.4*agehp + 0.6*eduhp;
    z64 = 0.6*agehp + 0.4*eduhp;
    z82 = 0.8*agehp + 0.2*eduhp;
```

Explain why ($z 28, z 46, z 64, z 82$) are all valid instruments for pcinc. Why do the estimates in EQ(8) coincide with those in EQ(7)? Would the results have been different if only one of the four transformed variables, say $z 82$, had been used as instrument?
[Hint: Note that, for instance, ($z 28, z 82$) are one-to-one (non-singular) transformations of (agehp, eduhp).]

PROBLEM 2

Equations EQ (11) and $\mathrm{EQ}(12)$ in the printouts correspond to equations $\mathrm{EQ}(1)$ and EQ(7) except that pcexp is specified as regressor (right-hand side variable) and pcinc as regressand (left-hand side variable).
(A): Explain (i) why equations EQ(1) and EQ(11) have the same R^{2} (R-square) and (ii) why the inverse of the OLS coefficient estimate of pcexp in equation EQ(11) is larger than the OLS coefficient estimate in equation EQ(1).
(B): Explain briefly why the inverse of the coefficient estimate of pcexp in equation $E Q(12)$ differs from the coefficient estimate in equation $E Q(7)$.
(C): The estimated standard error of the disturance (sigma) for equation EQ(12) exceeds that for equation $\operatorname{EQ}(11)$. Similarly, the estimated standard error of the disturance (sigma) for equation $\operatorname{EQ}(7)$ exceeds that for equation $E Q(1)$. Could you explain this?
(D): The income variable pcinc used so far is a measure of gross income before deduction of taxes. As a measure of disposable income it is thus affected by measurement error. Assume that the relationship between disposable (after-tax) income, pcdisp, and gross income can be formalized as

$$
\text { pcdisp }=(1-t) * \operatorname{pcinc}+u
$$

where t is the mean income tax rate and u is an error. Let β^{*} be the coefficient of gross income pcinc in the equations estimated so far, and let β be the coefficient of disposable income pcdisp, which can be interpreted as the marginal propensity to consume. Assume that t is known, but that pcdisp is unobservable (latent). Explain how you would proceed to estimate β consistently from observations on (pcexp,pcinc) in the following two cases: (i) $\operatorname{cov}(u, \mathrm{pcinc})=0$; (ii) $\operatorname{cov}(u, \mathrm{pcdisp})=0$ and $\operatorname{var}(u) / \operatorname{var}(\mathrm{pcdisp})$ is known. Make the additional assumptions you need to answer the equestion.

PRINTOUTS FOR PROBLEMS 1 AND 2

DESCRIPTIVE STATISTICS

Means				
$\begin{array}{r} \text { pcinc } \\ 435.68 \end{array}$	$\begin{array}{r} \text { pcexp } \\ 299.70 \end{array}$	agehp 51.710	$\begin{array}{r} \text { eduhp } \\ 0.038616 \end{array}$	
Standard deviations (using T-1)				
pcinc 1296.9	pcexp 390.03	$\begin{array}{r} \text { agehp } \\ 14.445 \end{array}$	$\begin{array}{r} \text { eduhp } \\ 0.19272 \end{array}$	
Correlation matrix:				
	pcinc	pcexp	agehp	eduhp
pcinc	1.0000	0.48743	-0.027758	0.21106
pcexp	0.48743	1.0000	-0.13681	0.34414
agehp	-0.027758	-0.13681	1.0000	-0.089641
eduhp	0.21106	0.34414	-0.089641	1.0000

EQ(1) Modelling pcexp by OLS-CS

	Coefficient	Std.Error	t-value	t-prob Part. ${ }^{\sim}{ }^{2}$
pcinc	0.146593	0.005269	27.8	0.0000 .2376
Constant	235.828	7.207	32.7	$0.000 \quad 0.3012$
sigma	340.628	RSS		288211426
R^2	0.237587	F (1, 2484)	774.1	[0.000] **
log-likelihood	-18021.8	DW		1.18
no. of observations	s 2486	no. of par	ameters	2

EQ(2) Modelling pcexp by OLS-CS

	Coefficient	Std.Error	t-value	t-prob	Part. $\mathrm{R}^{\sim} 2$
pcinc	0.130279	0.005134	25.4	0.000	0.2060
agehp	-2.77999	0.4524	-6.15	0.000	0.0150
eduhp	492.766	34.67	14.2	0.000	0.0752
Constant	367.659	24.52	15.0	0.000	0.0830
sigma	324.408	RSS		261207192	
R^2	0.309022	$F(3,2482)$	370	[0.000]	**
log-likelihood	-17899.5	DW			26
no. of observations	s 2486	no. of par	meters		4

EQ(3) Modelling pcexp by IVE-CS

	Coefficient	Std.Error	t-value	t-prob
pcinc Y	1.48229	0.9840	1.51	0.132
Constant	-346.108	430.2	-0.805	0.421
sigma	1765.73	RSS	$7.74460007 e+009$	
Reduced form sigma	386.44			
no. of observations	s 2486	no. of par	meters	2
no. endogenous vari	iables 2	no. of ins	ruments	2
Additional instrume	ents:			
[0] = agehp				

EQ(4) Modelling pcexp by IVE-CS

[0] = eduhp
EQ(5) Modelling pcexp by IVE-CS

no. endogenous variables 2 no. of instruments 3
Additional instruments:
[0] = eduhp
EQ(6) Modelling pcexp by IVE-CS

EQ(7) Modelling pcexp by IVE-CS

EQ(8) Modelling pcexp by IVE-CS

EQ(9) Modelling pcexp by OLS-CS

	Coefficient	Std.Error	t-value	t-prob	Part.R^2
agehp	-2.88420	0.5075	-5.68	0.000	0.0128
eduhp	677.102	38.04	17.8	0.000	0.1132
Constant	422.689	27.41	15.4	0.000	0.0874
sigma	363.994	RSS		328976	
R^2	0.12975	F $(2,2483)$	$=185.1$	[0.000]	**
log-likelihood	-18186.3	DW			. 07
no. of observations	S 2486	no. of par	ameters		3

EQ(10) Modelling pcinc by OLS-CS

	Coefficient	Std.Error	t-value	t-prob	Part.R^2
agehp	-0.799894	1.768	-0.452	0.651	0.0001
eduhp	1414.93	132.5	10.7	0.000	0.0439
Constant	422.403	95.48	4.42	0.000	0.0078
sigma	1268.11	RSS	$3.99289903 \mathrm{e}+009$		
R^2	0.0446258	F $(2,2483)$	57.99 [0.000]**		
log-likelihood	-21289.1	DW	1.87		
no. of observations	s 2486	no. of pa	meters		3

EQ(11) Modelling pcinc by OLS-CS

	Coefficient	Std.Error	t-value	t-prob	Part.R^2
pcexp	1.62072	0.05825	27.8	0.000	0.2376
Constant	-50.0424	28.65	-1.75	0.081	0.0012
sigma	1132.6	RSS	$3.18643433 \mathrm{e}+009$		
R^2	0.237587	F $(1,2484)$	774.1 [0.000]**		
log-likelihood	-21008.7	DW		2.052	
no. of observations	s 2486	no. of parameters			

EQ(12) Modelling pcinc by IVE-CS

