UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Exam: ECON4160 - Econometrics - Modeling and systems estimation
Date of exam: Monday, December 5, 2011 Grades are given: December 22, 2011
Time for exam: 2:30 p.m. - 5:30 p.m.
The problem set covers 7 pages (incl. cover sheet)
Resources allowed:

- All written and printed resources, as well as calculator, is allowed.

The grades given: A-F, with A as the best and E as the weakest passing grade. F is fail.

ECON 4160: ECONOMETRICS MODELLING AND SYSTEMS ESTIMATION

PROBLEM SET, EXAM AUTUMN 2011

PROBLEM 1 (weight: 30%)

We have a set of three observable variables, (y, x, z), and are interested in a relationship between y and x, specified as

$$
\begin{equation*}
y=a+b x+u \tag{1}
\end{equation*}
$$

Assume that the error u is positively correlated with y and negatively correlated with x, because of the random disturbance in the underlying equation and the occurrence of a random measurement error in x. (Proof not required.) Therefore, z, which occurs as an exogenous variable in the model to which equation (1) belongs, is proposed as an instrument variable (IV). You are asked to give your advice about the estimation of b from the results below.
The correlation matrix of the three observable variables, obtained from a sample of 50 observations, is

	y	x	z
y \|	1.0000		
x 1	0.9971	1.0000	
z \|	-0.2538	-0.2385	1.0000

1A. Regressing y on x and regressing x on y by using OLS, give, respectively,

No. of obs.	$=$	50
R-squared	$=$	0.9941
Root MSE	$=1.0114$	

y	Coef.	Std. Err.	t	$P>\|t\|$
x	. 8376545	. 0093021	90.05	0.000
_cons	-4.342772	. 8561157	-5.07	0.000

No. of obs.	$=$	50
R-squared	$=$	0.9941
Root MSE	$=$	1.2039

x	Coef.	Std. Err.	t	$P>\|t\|$
y	1.186785	. 0131792	90.05	0.000
_cons	5.687901	. 9597318	5.93	0.000

Derive the two OLS estimates of b, show that the former asymptotically underestimates b (plim $<b$) and that the latter asymptotically overestimates b (plim $>b$) under the assumptions above, and give a brief comment on the result.

1B. Using z as IV for x in equation (1), we get

```
Instrumental variables (2SLS) regression
No. of obs. = 50
Root MSE \(=1.3132\)
```

y \|	Coef.	Std.Err.	Pseudo t value
x \|	.8936922	.0506306	17.65
_cons \|	-9.427694	4.598034	-2.05

Instrumented: x . Instruments: z

Using z as IV for y in the inverse of equation (1), we get

```
Instrumental variables (2SLS) regression
No. of obs. = 50
Root MSE = 1.4694
\begin{tabular}{|c|c|c|c|}
\hline x & Coef. & Std.Err. & Pseudo t-value \\
\hline y & 1.118954 & . 0633924 & 17.65 \\
\hline _cons & 10.54915 & 4.547894 & 2.32 \\
\hline
\end{tabular}
```

OLS regressions of y on z and of x on z give respectively,

No. of obs.	$=$	50
R-squared	$=$	0.0644
Root MSE	$=$	12.753

y	Coef .	Std. Err.	t	$P>\|t\|$
z	-. 1150175	. 0632814	-1.82	0.075
_cons	70.82474	1.862129	38.03	0.000

```
No. of obs. = 50
R-squared = 0.0569
Root MSE = 15.24
```

x	Coef.	Std. Err.	t	$P>\|t\|$
z	-. 1286992	. 0756241	-1.70	0.095
_cons	89.79874	2.225328	40.35	0.000

Derive the two implied IV estimates of b, and comment on the result. What would you say about the quality of the IV z relative to equation (1)? If you were to choose the 'best' estimate of b among the four estimates obtained under 1A and 1B, which would you choose? Explain your choice.

PROBLEM 2 (weight: 30%)

Consider an econometric two-equation model with equations of the form:

$$
\begin{align*}
& y_{i}=\alpha+\beta x_{i} \quad+u_{i}, \tag{1}\\
& x_{i}=\gamma+\delta y_{i}+\eta z_{i}+v_{i}, \tag{2}
\end{align*}
$$

where $i(i=1, \ldots, n)$ indexes observation number, $\left(y_{i}, x_{i}, z_{i}\right)$ are observable variables, $(\alpha, \beta, \gamma, \delta, \eta)$ are constants, $\left(u_{i}, v_{i}\right)$ are disturbances with zero expectations, variances $\sigma_{u u}$, $\sigma_{v v}$ and covariance $\sigma_{u v}$, and $\operatorname{cov}\left(z_{i}, u_{i}\right)=\operatorname{cov}\left(z_{i}, v_{i}\right)=0$. We want to estimate β.

2A. Examine whether β can be estimated, and if so, explain how you would estimate it in the following cases:

Case 1: $(\alpha, \beta, \gamma, \delta, \eta)$ are unknown; $\sigma_{u v} \neq 0$ and unknown.
Case 2: $\eta=0,(\alpha, \beta, \gamma, \delta)$ are unknown; $\sigma_{u v} \neq 0$ and unknown.
Case 3: $\delta=0,(\alpha, \beta, \gamma, \eta)$ are unknown; $\sigma_{u v}=0$.
2B. Assume that x_{i} is unobservable, $\left(y_{i}, z_{i}\right)$ still observable; otherwise the situation is assumed to be as in Case 1. Could you then estimate β and if so, how? Give the reason for your answer.

2C. Assume that z_{i} can be split into $K(\geq 2)$ observable components, such that $z_{i}=$ $z_{1 i}+z_{2 i}+\cdots+z_{K i}$ where $\operatorname{cov}\left(z_{k i}, u_{i}\right)=\operatorname{cov}\left(z_{k i}, v_{i}\right)=0(k=1, \ldots, K)$. We reformulate the model as:

$$
\begin{array}{ll}
y_{i}=\alpha+\beta x_{i} & +u_{i}, \\
x_{i}=\gamma+\delta y_{i}+\eta\left(z_{1 i}+z_{2 i}+\cdots+z_{K i}\right)+v_{i} . \tag{4}
\end{array}
$$

Explain how you would then estimate β.
2D. It has been suggested, instead of using (4), to assume that the K components of z_{i} have different effect on x_{i}, and to use the model

$$
\begin{array}{ll}
y_{i}=\alpha+\beta x_{i} & +u_{i}, \\
x_{i}=\gamma+\delta y_{i}+\eta_{1} z_{1 i}+\eta_{2} z_{2 i}+\cdots+\eta_{K} z_{K i}+v_{i} \tag{6}
\end{array}
$$

where $\left(\eta_{1}, \ldots, \eta_{K}\right)$ are unknown coefficients. Would you recommend the same estimation procedure for β in equation (5) as you proposed for equation (3) in question $\mathbf{2 C}$, or would you use another one? Explain briefly. Hint: Consider the models' reduced forms.

PROBLEM 3 (weight: 40%)
For this problem we have a data set of $n=27326$ individual observations from a large health survey in Germany, in the years 1984-1994. We will use the data to examine factors believed to be related to peoples' health satisfaction, a qualitative variable represented in this data set by a binary variable. The variables we use are:

```
SATHIGH = 1 if the individual declares to be satisfied with own health, = 0 othervise.
AGE = Age in years.
COH = Birth year.
WORK = 1 if employed, = 0 if not employed.
FEMALE = 1 if female, = 0 if male.
MARRIED = 1 if married, = 0 if unmarried.
CHI = 1 if there are children in the household, = 0 otherwise.
EDU = No. of years of education.
```

Some summary statistics are reported below:

Variable	Mean	Std. Dev.	Min	Max
SATHIGH	0.6095294	0.4878648	0	1
SAT	6.785662	2.293725	0	10
AGE	43.52569	11.33025	25	64
COH	1944.297	11.88667	1920	1969
WORK	0.6770475	0.4676133	0	1
FEMALE	0.4787748	0.4995584	0	1
MARRIED	0.7586182	0.4279291	0	1
CHI	0.40273	0.4904563	0	1
EDU	11.32063	2.324885	7	18

The vector $\boldsymbol{x}=[$ AGE $, \mathrm{COH}, \mathrm{WORK}, \mathrm{FEMALE}, \mathrm{MARRIED}, \mathrm{CHI}, \mathrm{EDU}]$ contains the variables to be treated as exogenous in the following. Five printouts from a discrete choice analysis are given at the end of the problem set.

3A. Estimation result from an OLS regression of SATHIGH on \boldsymbol{x} is given in Printout 1. Explain what you conclude about the effects on the reported health status of (i) having one year higher age and (ii) being born one year later.

3B. Logit and Probit models are used more frequently than linear regression models in analyzing individuals' discrete choice. Logit and Probit estimation results for the binary health response are given in Printout 2 and Printout 3, respectively. Explain briefly what you conclude from the Logit results about the effect on the health status of: (i) having a one year longer education period, (ii) of being a female compared with a male with the same characteristics, and (iii) of being employed rather than unemployed.

3C. The Logit estimates are substantially higher (in absolute value) than the corresponding Probit estimates, although the underlying problem is the same. Can you explain this?

3D. Marginal effects - i.e., first derivatives of the response probability with respect to the relevant explanatory variables at the sample mean - computed from the Logit estimates are given in Printout 4. Explain briefly why the order of magnitude of these effects differs systematically from the estimates in Printout 2 and Printout 3, while they are similar in size to the corresponding estimates in Printout 1.

3E. Actually, the data set reports health satisfaction also in the following, more detailed way: The respondents have been asked to indicate the strength of their satisfaction, in the form of assigning an integer variable SAT, taking the 11 possible values 0 (=very low declared degree of health satisfaction) , $1,2, \ldots, 9,10$ ($=$ very high declared degree of health satisfaction). The binary health indicator used in questions $\mathbf{3 A}$ through $\mathbf{3 D}$ is related to SAT in the following way:

$$
\text { SATHIGH }=0 \text { if } \text { SAT }=0,1,2,3,4,5,6 ; \quad \text { SATHIGH }=1 \text { if } \operatorname{SAT}=7,8,9,10
$$

Printout 5 reports the result of a linear regression similar to that in Printout 1, with SAT as the endogenous variable. Give your comments to the differences between these two sets of results.

Printout 1: Linear regression. Regressand $=$ SATHIGH. No. of obs. $=27326$

SATHIGH	Coef.	Std.Err	t-value	P value
AGE	-0.0122657	0.0009582	-12.80	0.000
COH	-0.0041011	0.0009046	-4.53	0.000
WORK	0.0527522	0.006837	7.72	0.000
FEMALE	-0.0196338	0.0062449	-3.14	0.002
MARRIED	0.0122645	0.0073479	1.67	0.095
CHI	0.0266059	0.0067267	3.96	0.000
EDU	0.0208232	0.0012718	16.37	0.000
_cons	8.835158	1.79799	4.91	0.000

Printout 2: Logit regression. No. of obs. $=27326$

SATHIGH	Coef.	Std.Err	Pseudo t-value	P value
AGE	-0.0542254	0.0043363	-12.51	0.000
COH	-0.0186544	0.0040745	-4.58	0.000
WORK	0.2170284	0.030394	7.14	0.000
FEMALE	-0.0864393	0.0281429	-3.07	0.002
MARRIED	0.0515039	0.03307	1.56	0.119
CHI	0.1038393	0.0305083	3.40	0.001
EDU	0.0986473	0.0061489	16.04	0.000
_cons	37.80347	8.098391	4.67	0.000

Printout 3: Probit regression. No. of obs. $=27326$

SATHIGH	Coef.	Std.Err	Pseudo t-value	P value
AGE	-0.0336117	0.00265	-12.68	0.000
COH	-0.0116667	0.0024939	-4.68	0.000
WORK	0.1336249	0.0186961	7.15	0.000
FEMALE	-0.0551729	0.0172021	-3.21	0.001
MARRIED	0.0319183	0.0202209	1.58	0.114
CHI	0.0652121	0.0186252	3.50	0.000
EDU	0.0592194	0.0036404	16.27	0.000
_cons	23.65542	4.956662	4.77	0.000

Printout 4: Marginal effects obtained from the Logit estimates**

Variable \|	Est.of dP/dx	Std.Err.
AGE 1	-0.0128145	0.00102
COH I	-0.0044084	0.00096
WORK*	0.0516893	0.00729
FEMALE*	-0.0204334	0.00665
MARRIED*\|	0.0122083	0.00786
CHI* 1	0.0244762	0.00717
EDU I	0.0233123	0.00145

(*) $\mathrm{dP} / \mathrm{dx}$ for a dummy variable refers to a change from 0 to 1. (**) Estimated P(SATHIGH) at sample mean $=0.61696426$.

Printout 5: Linear regression. Regressand $=$ SAT. No. of obs. $=27326$

SAT	Coef.	Std.Err .	t-value	P value
AGE	-0.0769768	0.0044847	-17.16	0.000
COH	-0.0357537	0.0042338	-8.44	0.000
WORK	0.3737091	0.0319988	11.68	0.000
FEMALE	-0.0013297	0.0292277	-0.05	0.964
MARRIED	0.1023993	0.0343902	2.98	0.003
CHI	0.1205228	0.0314826	3.83	0.000
EDU	0.0891128	0.0059523	14.97	0.000
_cons	78.26454	8.415081	9.30	0.000

