UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Postponed exam: ECON4160 – Econometrics – Modeling and systems estimation

Date of exam: Wednesday, January 8, 2014

Time for exam: 09:00 a.m. - 12:00 noon

The problem set covers 7 pages (incl. cover sheet)

Resources allowed:

• All written and printed resources, as well as calculator, is allowed

The grades given: A-F, with A as the best and E as the weakest passing grade. F is fail.

Postponed exam in: ECON 4160: Econometrics: Modelling and Systems Estimation

Day of exam: 8 January 2014,

Time of day: 9:00—12:00

This is a 3 hour school exam.

Guidelines:

In the grading, question A will count 20 %, and B and C will count 40 % each.

Question A (20 %)

Let **y** be a vector $(n \times 1)$ with *n* observations of some variable *y*, and let **X** be a $n \times k$ matrix with observations of *k* explanatory variables. Consider the linear relationship

(1)
$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

where $\boldsymbol{\varepsilon}$ is the $n \times 1$ vector with disturbances, and $\boldsymbol{\beta}$ is the $k \times 1$ vector with parameters.

1. Assume that $(\mathbf{X}'\mathbf{X})$ is non-singular. Explain why the OLS estimator of $\boldsymbol{\beta}$ is given by:

(2)
$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

2. Show that

 $oldsymbol{X}^{'} \hat{arepsilon} = oldsymbol{0}$

where $\hat{\boldsymbol{\varepsilon}}$ is the vector of OLS residuals. Use this result to explain why the OLS estimator is identical to the method of moments estimator of $\boldsymbol{\beta}$.

3. Show that

$$\mathbf{y} = \hat{\mathbf{y}} + \hat{\mathbf{arepsilon}}$$

where $\hat{\mathbf{y}}$ contains the OLS predictions for the *y* variable. Give a brief interpretation.

Question B (40 %)

Assume that we know that the time series $\{Y_t; t = 0, \pm 1, \pm 2, ...\}$ has been generated by one of the following three processes:

- (3) $Y_t = \phi_0 + \phi_1 Y_{t-1} + \varepsilon_t, \ -1 < \phi_1 < 1$
- (4) $Y_t = \phi_0 + Y_{t-1} + \delta t + \varepsilon_t$
- (5) $Y_t = \phi_0 + \delta t + \varepsilon_t, \ \delta \neq 0$

In all the three possible DGPs, it is assumed that ε_t is Gaussian white-noise, which we write as $\varepsilon_t \sim IIN(0; \sigma^2)$ for all t.

- 1. In each of the cases (3)-(5), characterize Y_t as weakly stationary (covariance stationary) or non-stationary. Explain what motivates your answer.
- 2. What is meant by a trend-stationary variable? Is Y_t trend-stationary in any of the DGPs (3)-(5)?
- 3. Assume that you have a data sample $\{Y_t; t = 1, 2, ..., T\}$. Describe how you could investigate empirically which of (3)-(5) is the true DGP.

Question C (40 %)

At the end of the question set, in *Display 1*, you find estimation results of a VAR in the two variables *Lmenns* (the natural logarithm of the male suicide rate in Norway) and LU (the natural logarithm of the Norwegian unemployment rate). We assume that both series are covariance stationary when we condition on the year dummies *I:1916*, *I:1921*,*I:1941* and *I:1945*.

- 1. The VAR estimation results in *Display 1* are obtained by OLS. Under which assumptions are the reported *t-prob* reliable for conducting inference on the individual significance of the parameters?
- 2. Under which assumptions do least squares estimation give approximate ML estimators of the VAR parameters?
- 3. Display 2 shows an econometric model of the VAR that has been estimated by FIML. Which assumptions regarding identification have been imposed on the model in Display 2?

- 4. Explain the calculation of the "LR test of over identifying restrictions" in *Display 2*. How do you interpret the result from this test?
- 5. Explain how you would proceed to test the hypothesis of one-way Granger causality, from the rate of unemployment to the male suicide rate.
- 6. Consider next the results in *Display 3*, where each of the equations of this model of the VAR have been estimated by OLS (referred to as 1SLS in the display). What is the interpretation of the different results of the "LR test of over identifying restrictions" in *Display 3* and in *Display 2*?
- 7. In the light of the results in the displays, how would you prefer to calculate the effects of a shock to the suicide rate (*Lmenns*)?

(No complete calculations are expected (because of the complicated dynamics), just an explanation of the method).

Empirical results for question C

Display 1: Estimation results for the unrestricted VAR

SYS(1) Estimating the system by OLS
The dataset is: D:\sw20\ECON5101\Suicide\selvm2rny.in7 The estimation sample is: 1907 - 2004

URF equation for: Lmenns

	Coefficient	Std.Error	t-value	t-prob
Lmenns_1	0.569744	0.07992	7.13	0.0000
Lmenns_2	0.239402	0.08740	2.74	0.0075
Lmenns_3	0.162957	0.08094	2.01	0.0472
LU_1	0.0164866	0.03565	0.462	0.6449
LU_2	-0.0218148	0.05093	-0.428	0.6694
LU_3	-0.0227240	0.03605	-0.630	0.5302
I:1916	-0.352406	0.09660	-3.65	0.0004
I:1921	0.289300	0.09907	2.92	0.0045
I:1941	-0.470867	0.09453	-4.98	0.0000
I:1945	0.562765	0.09405	5.98	0.0000
Constant	0.109393	0.08188	1.34	0.1850

sigma = 0.0921814 RSS = 0.7392741107

URF equation for: LU

	Coefficient	Std.Error	t-value	t-prob
Lmenns_1	0.290383	0.1854	1.57	0.1208
Lmenns_2	-0.186992	0.2027	-0.923	0.3588
Lmenns_3	-0.0247408	0.1877	-0.132	0.8954
LU_1	1.03238	0.08267	12.5	0.0000
LU_2	-0.326933	0.1181	-2.77	0.0069
LU_3	0.232311	0.08361	2.78	0.0067
I:1916	-0.894987	0.2240	-3.99	0.0001
I:1921	1.39092	0.2298	6.05	0.0000
I:1941	-0.717391	0.2192	-3.27	0.0015
I:1945	-0.000432653	0.2181	-0.00198	0.9984
Constant	-0.127183	0.1899	-0.670	0.5048

sigma = 0.213779 RSS = 3.976036374

log-likelihood 118.430493 -T/2log|Omega| 396.542446

5

Display 2: FIML estimation results for a model of the VAR in Display 1

MOD(1) Estimating the model by FIML						
The datase	t 1s: D:\sw20	\ECON5101\S	ulcide\se	elvm2rny.in7		
The estimation	tion sample i	s: 1907 - 2	004			
Equation for: Lm	enns			t and		
	Coefficient	Std.Error	t-value	t-prob		
LU	0.656369	0.2351	2.79	0.0065		
Lmenns_1	0.379138	0.1556	2.44	0.0169		
Lmenns_2	0.362154	0.1625	2.23	0.0284		
Lmenns_3	0.179174	0.1437	1.25	0.2158		
LU_1	-0.661135	0.2444	-2.71	0.0082		
LU_2	0.192772	0.1128	1.71	0.0909		
LU_3	-0.175203	0.07942	-2.21	0.0300		
I:1916	0.235034	0.2750	0.855	0.3951		
I:1921	-0.623674	0.3736	-1.67	0.0986		
I:1945	0.562771	0.09347	6.02	0.0000		
Constant	0.192910	0.1487	1.30	0.1980		
sigma = 0.164533						
Equation for: LU						
	Coefficient	Std.Error	t-value	t-prob		
Lmenns_1	0.290394	0.1842	1.58	0.1185		
Lmenns_2	-0.187017	0.2012	-0.930	0.3551		
Lmenns_3	-0.0247057	0.1858	-0.133	0.8945		
LU_1	1.03238	0.08220	12.6	0.0000		
LU_2	-0.326930	0.1174	-2.78	0.0066		
LU_3	0.232307	0.08312	2.79	0.0064		
I:1916	-0.894986	0.2228	-4.02	0.0001		
I:1921	1.39095	0.2281	6.10	0.0000		
I:1941	-0.717381	0.2179	-3.29	0.0014		
Constant	-0.127241	0.1866	-0.682	0.4970		
sigma = 0.212561						
log-likelihood	118.430491	-T/2log Om	ega	396.542443		
no. of observation	ns 98	no. of par	ameters	21		

LR test of over-identifying restrictions: Chi^2(1) =4.4323e-006 [0.9983]

correlation of structural residuals (standard deviations on diagonal)

	Lmenns	LU
Lmenns	0.16453	-0.83065
LU	-0.83065	0.21256

Display 3: 1SLS estimation results for a model of the VAR in Display 1

The dataset is: D:\sw20\ECON5101\Suicide\selvm2rny.in7 The estimation sample is: 1907 - 2004					
Foundation Com.					
Equation for:	Lmenns	chd Samen	+	+	
	COEfficient	Std.Error	t-value	t-prob	
LU	0.0838/31	0.04863	1./2	0.0881	
Lmenns_1	0.531/49	0.08997	5.91	0.0000	
Lmenns_2	0.248884	0.09/89	2.54	0.0128	
Lmenns_3	0.191907	0.08997	2.13	0.0357	
10_1	-0.0864602	0.06280	-1.38	0.1/22	
LU_2	0.028/205	0.05815	0.494	0.6226	
LU_3	-0.0604446	0.04109	-1.4/	0.1449	
1:1916	-0.286667	0.1164	-2.46	0.0158	
1:1921	0.178165	0.1297	1.37	0.1732	
1:1945	0.572034	0.1048	5.46	0.0000	
Constant	0.110700	0.09151	1.21	0.2297	
sigma = 0.102	175				
Equation for:	LU				
	Coefficient	Std.Error	t-value	t-prob	
Lmenns 1	0.290394	0.1842	1.58	0.1185	
Lmenns 2	-0.187017	0.2012	-0.930	0.3551	
Lmenns 3	-0.0247057	0.1858	-0.133	0.8945	
LU 1 -	1.03238	0.08220	12.6	0.0000	
LU 2	-0.326930	0.1174	-2.78	0.0066	
LU_3	0.232307	0.08312	2.79	0.0064	
I:1916	-0.894986	0.2228	-4.02	0.0001	
I:1921	1.39095	0.2281	6.10	0.0000	
I:1941	-0.717381	0.2179	-3.29	0.0014	
Constant	-0.127241	0.1866	-0.682	0.4970	
sigma = 0.212	561				
log-likelihoo	d 107.735613	-T/2log Om	ega	385.847565	
no. of observ	ations 98	no. of par	ameters	21	
LR test of over-identifying restrictions: Chi^2(1) = 21.390 [0.0000]**					

correlation of structural residuals (standard deviations on diagonal)

	Lmenns	LU
Lmenns	0.10218	0.00000
LU	0.00000	0.21256

MOD(2) Estimating the model by 1SLS