
Exam in: ECON 4160: Econometrics: Modelling and Systems Estimation

Day of exam: 19 December 2014

Time of day: 09:00—12:00

This is a 3 hour school exam.

Guidelines:
In the grading, question A will count 1/4, and question B will count 3/4 .

Question A (1/4)

Let y be a vector (n× 1) with n observations of a variable Yi, and let X be
a n × k matrix with observations of k explanatory variables. Consider the
linear relationship

(1) y = Xβ+ ε

where ε is a n × 1 vector with disturbances, and β is the k × 1 vector with
parameters.

1. Assume that the sample moments (X ′X)−1 and X ′y are given by:

(X ′X)−1 =

[
1 −10
10 1

]
and

X ′y =

[
1
10

]
(a) What are the OLS estimates of the parameters in this example?

Answ:

[
1 −10
10 1

]
×
[

1
10

]
=

[
−99
20

]
. β̂1 = −99, β̂2 = 20

(b) Explain why these estimates are identical to the estimates you
would have obtained if you had used method of moments as the
estimation principle instead.

Answ: The MM principle entails the normal equations (X ′X)β̂
= X ′y
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2. Assume that you get data for a new variable, Z, where the n observa-
tions are collected in the n×1 vector z. Assume that all the k elements
in the vector (X ′X)−1X ′z are practically zero.

(a) How will the OLS estimate of β be affected if you decide to include
Z as a new regressor in equation (1)?

Answ: The estimates will be practically unaffected, since (X ′X)−1X ′z
= γ̂ ≈ 0 where γ̂ is the OLS regression coefficient vector between
z and X.

(b) An economic theorist suggests that it would be a good idea to
use Z as an instrumental variable “in the regression (1)” in or-
der to avoid suspected simultaneity bias. How would you (as an
econometrician) respond to his suggestion?

Answ: Not a good idea since Zi is a poor instrument for the vari-
ables in X. (Extra point if add, flippantly, that if he by “in the
regression” means that his parameter of interest are the parame-
ters of the conditional expectation, then there is no simultaneity
bias in the first place)

Question B (3/4)

In this question, we study the relationship between Norwegian exports of
traditional goods and an export market indicator. The data set is quarterly,
and the variables are seasonally unadjusted.

The export variable is denoted ATRADt , and the market indicator is
denoted MIIt. Both are measured in real terms, i.e., they are volumes. We
will use the log-transformed time series, which we denote LATRADt and
LMIIt and the differenced series DLATRADt = LATRADt−LATRADt−1
and DLIIt = LIIt−LIIt−1 . For reference, Figure 1 shows the time plots of
the two level variables and their differences.

1. Table 1 shows Augmented Dickey Fuller test statistics. Explain how
you can use the results to test the unit-root hypothesis for LATRADt

and LIIt, and give your conclusions.

Answ: Correct use of the results in Table 1 (perhaps supported by the
time plots in Figure 1) is that I(1) cannot be rejected for either of the
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variables. One possible pitfall is to conclude, that t-adf without lags
reject I(1) for LATRAD with no augmentation. But since the table
clearly shows that there are significant lags at the first and third lags,
that test statistic has the wrong size for finite samples.

2. We define the vector yt as yt = ( ATRADt LMIIt )′. The vector
with differenced variables is ∆yt = ( DATRADt DLMIIt )′. We
analyse the differenced data and formulate a bivariate first order VAR
as

(2) ∆yt = A∆yt−1 +CGt + εt

where A and C are matrices with parameters, and Gt is a matrix
with deterministic variables: An intercept, three (centered) seasonals
and one or more indicator variables (impulse dummies) for structural
breaks. The vector εt with VAR disturbances is assumed to follow a
bivariate normal distribution.

Table 2 shows estimation results for (2) when Gt includes three indi-
cator variables, for 1980q2, 2008q4 and 2009q1.

(a) The roots of the estimated companion matrix of this system are
−0.55 and 0.41 (two real roots). What does this indicate about the
dynamic stability of the system, and does it confirm or contradict
your conclusion in Question B.1?

Answ: This is consistent with ∆yt ∼ I(0) implying that yt ∼
I(1) which is what we found in B1.

(b) Since the disturbances in εt are generally correlated, they are not
structural disturbances. A fellow student claims that the struc-
tural disturbances can be achieved by putting zero restrictions on
one of the off-diagonal elements in A (so that the matrix becomes
either upper triangular or lower triangular). Explain why this
not correct.

Answ: This restriction is not implied by Cholesky-decomposition,
which applies to the contemporaneous matrix B in the SEM form
(B∆yt = A∗∆yt−1 +C∗Gt+ε

∗
t ) Even if B is trangular, implying

that B−1 is triangular, A = B−1A∗ is not necessarily triangular.
The student’s proposal is (instead) a restriction on the VAR that
does not ortogonalize the two residuals. The impulse responses of
her suggested (restricted) VAR are not indentified.
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(c) Consider the estimated model in Table 3, and explain why this
is an example of identification of the structural impulse response
functions by the use of the Cholesky-decomposition.

Answ: In this model, we have a triangular B and the distur-
bances are uncorrelated (implemented here by use of 1SLS on
each of the equations). In fact, the DLATRAD-equation in Ta-
ble 3 is the conditional equation, while the DLMII-equation is
the marginal equation. The log-likelihod is identical to Table 2,
consistent with exact identification.

(d) Another identification scheme assumes, first, that there should
be no seasonal indicator variables in the structural equation for
DLMII, since LMII is a variable which is a broad average of sea-
sonally adjusted GDP data series (of Norway’s trading partner).
Second, since the three dummies for 1980q2, 2008q4 and 2009q1
represent structural changes in export marked growth, they should
not be included in the structural equation for DLATRADt. Ex-
plain why this identification scheme implies that the degree of
over-identification is 4, as shown in Table 4.

Answ: In this case we do not assume orthogonal disturbances.
Hence, we can use the rank-and-order condition on the SEM-
version of the model. Using order (and assuming rank satisfied)
both structural equations are over-identified, and that the degree
of overidentification is 2 in each equation, 4 in all

(e) Show how the test of over-identifying restrictions in Table 4 can be
calculated, using the information provided in the tables. Explain
why the test of over-identifying restrictions can be interpreted as
an encompassing test.

Answ: This is a Likelihood-Ratio test calcualted as −2∗(702.885884−
703.614779) = 1. 4578. Under the null-hypothesis that the restric-
tions are acceptable, the LR-statistic has an asymptototic Chi-
square distribution with 4 degrees of fredom. Over id. restrictions
can sometimes lead to a significant loss of explanatory power rela-
tive to the VAR. Other times, as here, the loss is not sginficant and
the the structural model then encompasses the statitical model.

(f) What is the estimated impact effect on DLATRAD of a positive
shock to DLMII, when you use the identified model in Table 3,
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and what is the estimate if you instead consider the over-identified
model in Table 4.

Answ: Table 3: 0.38. Table 4: The direct effect of a unit change
in εLMII,t is 0.748048. But εLA,t is correlated with εLMII,t. Can ex-
press this as εLA,t = −βεLMII,t where β is the regression coefficient.
We can estimate it (using the esimated standard errors and cor-
relations coefficient) as r2 σ̂LA

σ̂LMII
= (0.15532) ∗ 0.043474

0.0111
= −0.60832.

Hence ∂LATRAD
∂εLMII,t

= 0.748048 − (0.15532) ∗ 0.043474
0.0111

= 0.13973.

3. Table 5 shows a single equation model of DLATRADt estimated by
OLS, where we for simplicity have omitted DLMIIt−1. Figure 2 con-
tains some relevant recursive graphs for this model. Consider the co-
efficient of DLMIIt as the parameter of interest. Would you say that
there is evidence of super-exogeneity of DLMIIt with respect to the
parameter of interest? Give a brief motivation for your answer (without
formal tests)

Answ: Good answers should start with a relatively clear definition of
weak exogenity and the concept of invariance which together give super
exogenity. The recursive graphs indicate that the regression coefficient
of DLMIIt in the export equation in relatively stable in the period
where we have the structural breaks in the DLMII-equation, in 2008q4
and 2009q1. The Chow-test also suggest recursive stability over this
period. Hence, although informal, the recursive graphs give evidence
that DLMIIt is super-exogenous with respect to these two breaks.

4. Finally, we consider the possibility that LATRADt is cointegrated with
LMIIt and a third I(1) variable LREXt, which is the natural logarithm
of the Norwegian real exchange rate. Use the results in Table 6 to test
formally the null of no cointegration, against the alternative of a single
cointegration relationship. Relevant critical values are −3.62 (1 %),
−3.00 (5 %) and −2.26 (10 %). If you conclude with rejection of the
null hypothesis, what is the estimated cointegration relationship?

Answ: Good answers should explain that under the null of no-cointegration,
the OLS the “t-value” of the coefficient of LATRADt−1 has a non-
standard distribution of the Dicky-Fuller type. Because we have two
conditioning I(1)-variables the critical values are moved to the left
compared to the ordinary DF-distribution.
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The reported t-values support that non-cointegration can be rejected
at the 5 % level.

5. An important theoretical result in time series econometrics says that
the method used in Question B.4 is statistically efficient only if LMIIt
and LREXt are weakly exogenous variables with respect to the coin-
tegration parameters. Try to summarize in a few sentences a method
that would allow you to the hypothesis of no cointegration between
LATRAD, LMII and LREX to be tested without making the as-
sumption of weak exogeneity.

Answ: WE is here the assumption is that neither LMIIt nor LREXt

equilibrium correct with respect to the cointegration vector. The Jo-
hansen method does not assume this type of WE from the outset. In-
stead the method tests the hypotheses that the best linear combination
of LATRADt−1, LMIIt−1 and LREXt−1 has no predictive power for
the vector (∆LATRADt, ∆LMIIt, ∆LREXt). without putting zero-
restctions on the equilibirum correction coefficient. The most common
test-statistic is the Trace-test. Under the null of no-cointegration has
a non-standard distrubution. If no-cointegration is rejected the WE
hypothesis can easily be tested using conventional LR tests. The trace
test also allows multiple (here two) cointegration relationships.
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Graphs and estimation results for question B.
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Figure 1: Time plots of the export and marked indicator data.

Table 1: Tests of the null hypothesis that LATRAD and LMII are inte-
grated of order 1 (I(1)
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Table 2: Estimation results for a VAR of DLATRAD and DLMII
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Table 3: Estimation results for an identified version of the VAR in Table 2
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Table 4: FIML estimation results for an identified version of the VAR in
Table 2
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Table 5: Estimation results for a conditional model of DLATRADt
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Figure 2: Recursve plots of for the model in Table 5.
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Table 6: OLS estimates for an unrestricted equilibirum correction equation
for LATRADt
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