UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Exam: ECON4160 – Econometrics: Modelling and Systems Estimation

Date of exam: Monday, November 26, 2018

Grades are given: December 17, 2018

Time for exam: 09.00 a.m. - 12.00 noon

The problem set covers 7 pages

Resources allowed:

• Open book exam. All written and printed resources, in addition to one out of two different calculators is allowed.

The grades given: A-F, with A as the best and E as the weakest passing grade. F is fail.

Exam in: ECON 4160: Econometrics: Modelling and Systems Estimation

Day of exam: 26 November 2018

Time of day: 09:00-12:00

This is a 3 hour school exam.

Guidelines: In the grading, question A gets 33 %, B 33 % and C 33 %.

Question A (1/3)

- 1. Use the information in Table 1 to decide the order of integration of the two equity price indices LPA (Norway) and LPAW (world), both measured in natural logarithms.
- 2. In this question you can take for granted that $LPAW_t$ is a strongly exogenous variable in the conditional model for $DLPA_t$ shown in Table 2.
 - (a) Based on the mis-specification tests reported, is there any indication that statistical inference based on the *t-values* will be unreliable?
 - (b) Assume that the test situation is:

 H_0 : No relationship between $DLPA_t$ and $DLPAW_t$

against

 H_1 : There is a relationship between $DLPA_t$ and $DLPAW_t$.

Based on the information in the table, what is your conclusion?

(c) A business school student says that the column labelled *t-prob* (which contains *p-values*) supports that there is a long-run relationship between LPA_t and $LPAW_t$, because the *p-values* of both LPA_{t-1} and $LPAW_{t-1}$ show that the coefficients are significantly different from zero when a 10 % significance level is used.

Explain why this test method can lead to a spurious relationship.

- (d) Explain why the ECM-test is a valid test of the H_0 of absence of cointegration between LPA_t and $LPAW_t$, and why that test will not reject H_0 at the 10 % level of significance (see Table 2 for critical calues).
- (e) Assume that the outcome of the test of the H_0 of absence of cointegration between LPA_t and $LPAW_t$ was different: that the H_0 had been rejected by the ECM-test. In this case, what would the estimated long-run elasticity of PA_t with respect to PAW_t be?

Question B (1/3)

Assume that the time series variable Y_t is generated by the linear difference equation:

(1)
$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \varepsilon_t,$$

where ε_t is a Gaussian white noise variable with variance σ^2 , hence $\varepsilon_t \sim N(0, \sigma^2)$ for all t.

- 1. Under which condition on ϕ_1 can the stable solution for Y_t be written in terms of a past value Y_{t-1-j} (initial condition), and the white noise terms: $\varepsilon_t, \varepsilon_{t-1}, ..., \varepsilon_{t-j}$?
- 2. Under the stability condition in QB1, derive the solution for Y_t when j = 2.
- 3. Under the stability condition in QB1, what is the expression for the solution for Y_t when $j \to \infty$?
- 4. Assume that we are interested in estimating the parameters ϕ_0 and ϕ_1 .
 - Explain why Y_{t-1} is a pre-determined variable in (1).
 - Denote the OLS estimator by $\hat{\phi}_1$. Explain why $\hat{\phi}_1$ is a biased estimator in any finite sample, but that $plim(\hat{\phi}_1 \phi_1) = 0$ under the stability condition.

5. Assume that we are interested in forecasting Y_{T+h} , using (1). For simplicity, we assume that ϕ_0 , ϕ_1 , σ^2 and Y_T are known numbers. Since we do not know the future white noise variables, the forecast is made by replacing $\varepsilon_{T+1}, \varepsilon_{T+2}, ..., \varepsilon_{T+h}$ by zeros (expected values). Denote the sequence of (point) forecasts by Y_{T+h}^f , h = 1, 2, ..., H.

Show that:

(2)
$$Y_{T+h|T}^f \to \frac{\phi_0}{1-\phi_1} \text{ as } h \to \infty$$

under the stability condition.

6. Assume that right after you published your forecast, there is a structural break so that (1) changes to:

$$Y_{t+h} = (\phi_0 + d) + \phi_1 Y_{t+h-1} + \varepsilon_{t+h}$$
, for $t = T$ and $h = 1, 2, ..., H$

- (a) Assume that d > 0. How will the forecast-error $(Y_{T+1} Y_{T+1|T}^f)$ be affected by this structural break?
- (b) Will (2) still hold in this case?

Question C (1/3)

Consider the macro model:

(3) $C_t = c_0 + c_1 GDP_t + c_2 C_{t-1} + \epsilon_{Ct},$

(4)
$$J_t = d_0 + d_1 GDP_t + d_2 GDP_{t-1} + d_3 J_{t-1} + \epsilon_{Jt},$$

(5) $GDP_t = C_t + J_t + G_t.$

The endogenous variables are: C_t (private consumption), GDP_t (gross domestic product), J_t (private investment). G_t (public expenditure) is determined outside the system, it is an exogenous variable.

Assume that the coefficients of the model are different from zero. Assume that the two error-terms are Gaussian white noise variables. We assume that the covariance matrix of the error terms (ie Ω) is invertible, but it is not necessarily a diagonal matrix.

1. What are the conditions for stationarity of the time series variable GDP_t is this model? (No derivations are required in the answer)

- 2. Explain why the OLS estimator of c_1 is an inconsistent estimator.
- 3. Are (3) and (4) identified on the order condition?
- 4. Explain why 2SLS is a more efficient method of estimation than IV for an over-identified structural equation.
- 5. Imagine that you have been able to estimate the SEM (3)-(5) by FIML. Will the estimates be identical to the 2SLS estimates? If not why?
- 6. Assume that you are interested in testing the hypothesis H_0 : $d_2 = -d_1$ (the restriction implying that J_t depends on ΔGDP_t). Explain in words how you can test this hypothesis by the use of FIML or 2SLS estimation.

Tables

	\SW20\ECON4160\H2018\Exam\MODobligexam.in7 73(2) - 2018(2) (185 observations and 4 variable	es)
D-lag t-adf 3 -1.093 2 -0.9773 1 -1.083	E181, Constant; 5%=-2.88 1%=-3.47) beta Y_1 sigma t-DY_lag t-prob 0.99148 0.1065 2.481 0.0140 0.99228 0.1080 -1.636 0.1037 0.99142 0.1085 4.241 0.0000 0.99259 0.1135	
D-lag t-adf 3 -0.6086 2 -0.5399 1 -0.6487	<pre>T=181, Constant; 5%=-2.88 1%=-3.47) beta Y_1 sigma t-DY_lag t-prob 0.99715 0.05602 1.564 0.1197 0.99746 0.05625 -2.180 0.0306 0.99692 0.05684 5.691 0.0000 0.99806 0.06162</pre>	
D-lag t-adf 3 -6.544** 2 -6.222** 1 -8.997**	<pre>T=181, Constant; 5%=-2.88 1%=-3.47) beta Y_1 sigma t-DY_lag t-prob 0.25367 0.1056 2.025 0.0444 0.35127 0.1065 -2.436 0.0158 0.20990 0.1080 1.705 0.0900 0.29873 0.1086</pre>	
D-lag t-adf 3 -6.093** 2 -6.466** 1 -8.687**	T=181, Constant; 5%=-2.88 1%=-3.47) beta Y_1 sigma t-DY_lag t-prob 0.34188 0.05601 0.6527 0.5148 0.37264 0.05592 -1.542 0.1249 0.29101 0.05613 2.216 0.0280 0.39075 0.05674	

Table 1: Test results for LPA_t , the natural logarithm of the Oslo Stock Exchange Index, and LPAW, the log of a world equity price index.

EQ(1) Modelling DLPA by OLS The dataset is: C:\SW20\ECON4160\H2018\Exam\MODobligexam.in7 The estimation sample is: 1985(1) - 2018(2)							
	Coefficient	Std.Error	t-value	t-prob			
DLPA_1	0.118291	0.04598	2.57	0.0113			
LPA_1 LPAW_1	-0.0355075			0.0713			
LPAW_1	0.0432321	0.02383	1.81	0.0721			
DLPAW	0.899811	0.09305	9.67	0.0000			
DLSPOILUSD	0.153493	0.03232	4.75	0.0000			
DVOLUSA	-0.00389039	0.001015	-3.83	0.0002			
DPADUM	0.975029	0.1063	9.17	0.0000			
Constant	0.00718436	0.007280	0.987	0.3256			
sigma	0.0491035	RSS	6	0.303805505			
R^2		F(7,126) =		5 [0.000]**			
Adj.R^2	0.788327			217.839			
no. of observati		-		8			
AR 1-5 test:			0.2338]				
ARCH 1-4 test:							
Normality test:		-					
Hetero-X test:	F(34,99) =	1.3095 [0.1536]				
Critical values of ECM-test: -3.21 (5 %), -2.91 (10 %)							

Table 2: Estimation results for a model of DLPA which is the first difference of LPA_t . DLPAW is the first difference of LPAW. The other variables are the change in the log of the oil price (DLSPOILUSD), a measure of volatily (DVOLUSA) and a dummy (DPADUM).