UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Postponed exam: ECON4160 – Econometrics – Modeling and Systems Estimation

Date of exam: Friday, January 17, 2020

Time for exam: 09:00 a.m. – 13:00 noon (4 hours)

The problem set covers 7 pages (incl. cover sheet)

Resources allowed:

• All written and printed resources – as well as two alternative calculators - are allowed (except if you have been granted use of a dictionary from the Faculty of Social Sciences)

The grades given: A-F, with A as the best and E as the weakest passing grade. F is fail.

Postponed exam in: ECON 4160: Econometrics: Modelling and Systems Estimation

Day of exam: 17 January 2020

Time of day: 09:00-13:00

This is a 4 hour school exam.

Guidelines:

In the grading, question A gets 20 %, B 30 % and C 50 %.

Question A (20 %)

Consider the following stochastic difference equation:

$$Y_t = 1.3Y_{t-1} - 0.4Y_{t-2} + 0.2 + \epsilon_t, \ t = 1, 2, ..., T$$
(1)

where ϵ_t is a white-noise time series.

- 1. It can be shown that the associated characteristic roots are 0.8 and 0.5. What do they tell us about the stationarity (or non-stationarity) of Y_t ?
- 2. The partial derivative of Y_t with respect to ϵ_t is 1. Calculate the first and second dynamic multipliers (impulse responses).
- 3. Assume that we use equation (1) to forecast Y_{T+h} , h = 1, 2, ..., H. Calculate the optimal (minimum MSFE) forecasts of Y_{T+1} , Y_{T+2} and Y_{T+3} conditional on $Y_T = 1$ and $Y_{T-1} = 0.5$.
- 4. What is the long-run forecast of Y_{T+H} , i.e., when $H \approx \infty$?

Question B (30 %)

Table 1 shows unit-root tests for three different interest rates:

- *RBO*: The yield on 5-year Norwegian treasury bills.
- *RLBOLIGH*: The interest rate on house loans (mortgage rate) in Norway.
- *RSH*: The Norwegian money market interest rate.

All three variables are measured in percent.

- 1. Make use of the information in Table 1 to decide the order of integration of each of the three time series variables.
- 2. Table 2 shows estimation results for a conditional ADL model of *RLBOLIGH* given *RBO* and *RSH*. There are also two dummy variables in the model: *BASELIII* is a dummy that captures the introduction of new banking regulations: It is zero until 2011(3) and 1 after. CRISIS09Q1 is an impulse dummy which is one in 2009(1) and zero elsewhere.
 - (a) Does Table 2 represent reliable evidence for the view that BASELIII banking regulation has increased the interest rate on housing loans?
 - (b) Show that the estimated long-run equation becomes:

RLBOLIGH = 0.25RBO + 0.74RSH + 1.06BASELIII + 1.05 (2)

(Rounding errors are not important here, as long as you show the right method.)

- (c) Assume that both *RBO* and *RSH* are increased permanently by 1 percentage point (e.g., from 2 percent to 3 percent).
 - i. What is the estimated impact response of *RLBOLIGH* to the change?
 - ii. What is the estimated long-run response to the change?

Question C (50 %)

Assume that the three time series variables: w_t : nominal wage level, p_t : price level, u_t : unemployment rate are measured in natural logarithms and that they are generated by the VAR:

$$\begin{pmatrix} w_t \\ p_t \\ u_t \end{pmatrix} = \begin{pmatrix} (1 - \phi_{wp}) & \phi_{wp} & 0 \\ \phi_{pw} & (1 - \phi_{pw}) & 0 \\ \phi_{uw} & -\phi_{uw} & (1 - \phi_{uu}) \end{pmatrix} \begin{pmatrix} w_{t-1} \\ p_{t-1} \\ u_{t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{wt} \\ \varepsilon_{pt} \\ \varepsilon_{ut} \end{pmatrix}$$
(3)

where the vector with VAR error terms ($\varepsilon_{wt} \ \varepsilon_{pt} \ \varepsilon_{ut}$)' is Gaussian white-noise with expectation zero and covariance matrix Σ . We do *not* assume that Σ is a diagonal matrix.

- 1. It can be shown that the eigenvalues of the autoregressive matrix can be expressed as: 1, $(1 - \phi_{wp} - \phi_{pw})$ and $(1 - \phi_{uu})$. Assume that $0 < \phi_{wp} + \phi_{pw} < 1$ and $0 < \phi_{uu} < 1$.
 - (a) What does this imply for the order of integration of the three time series variables?
 - (b) What does this imply for number of long-run relationships between the variables?
- 2. Assume that we are interested in the relationship between the real wage, $(w p)_t = w_t p_t$, and the rate of unemployment, u_t .

Show that (3) implies the following VAR for $(w - p)_t$ and u_t :

$$\begin{pmatrix} (w-p)_t \\ u_t \end{pmatrix} = \begin{pmatrix} (1-\phi_{wp}-\phi_{pw}) & \phi_{wu} \\ \phi_{uw} & (1-\phi_{uu}) \end{pmatrix} \begin{pmatrix} (w-p)_{t-1} \\ u_{t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{wpt} \\ \varepsilon_{ut} \end{pmatrix}$$
(4)

where the coefficient of u_{t-1} in the first row (ϕ_{wu}) is implied to be: $\phi_{wu} = 0$ and the error-term ε_{wpt} is implied to be: $\varepsilon_{wpt} = \varepsilon_{wt} - \varepsilon_{pt}$.

- 3. What are the orders of integration of $(w p)_t$ and u_t ?
- 4. A data set for $(w-p)_t$ and u_t has been generated in accordance with the specification above. Table 3 shows estimation results for an **unrestricted** VAR of $(w-p)_t$ and u_t .

Assume that the true data generating process was unknown to you and that you used Table 3 to test:

$$H_0: \phi_{wu} = 0$$
 against $H_1: \phi_{wu} \neq 0$

Explain how you would conclude. (Hint: You can take for granted that none of the standard mis-specification tests are significant).

5. Consider another test situation:

$$H_0: \phi_{uw} = 0$$
 against $H_1: \phi_{uw} \neq 0$

How would you conclude?

6. In the data generation, Σ was specified as:

$$\boldsymbol{\Sigma} = \left(\begin{array}{ccc} 1 & 0.5 & -0.3 \\ 0.5 & 1 & 0 \\ -0.3 & 0 & 1 \end{array} \right).$$

Show that

$$Cov(\varepsilon_{wpt}, \varepsilon_{ut}) = -0.3$$

- 7. Table 4 shows estimation results for a model of the VAR.
 - (a) Explain why the reported log-likelihood is the same for this empirical model as for the VAR in Table 3
 - (b) Show how the estimated coefficient of u_t in the first equation in Table 4 can be obtained by use of the information in Table 3.

Tables

```
Unit-root tests
The sample is: 1994(1) - 2019(3) (106 observations and 3 variables)
RBO: ADF tests (T=103, Constant+Trend; 5%=-3.45 1%=-4.05)
                beta Y_1 sigma t-DY_lag t-prob
D-lag
      t-adf
 2
       -3.301
                  0.83113 0.3681
                                     -1.549 0.1245
      -4.140**
 1
                 0.80183 0.3707
                                      3.768 0.0003
       -3.106
                 0.84678 0.3944
 0
RLBOLIGH: ADF tests (T=103, Constant+Trend; 5%=-3.45 1%=-4.05)
              oeta Y_1
0.85894
0.8559
D-lag t-adf beta Y_1 sigma t-DY_lag t-prob
                           0.4380
0.4359
                                    -0.2293 0.8191
4.906 0.0000
 2
       -3.288
      -3.555*
 1
                           0.4836
       -2.296
 0
RSH: ADF tests (T=103, Constant+Trend; 5%=-3.45 1%=-4.05)
              beta Y_1 sigma
                                   t-DY_lag t-prob
D-lag t-adf
       -3.234
                 0.88293
                           0.4640
                                    -0.5394 0.5908
 2
 1
      -3.662*
                 0.87615 0.4623
                                     6.400 0.0000
 0
      -2.043
                 0.91994 0.5470
```

Table 1: Dickey Fuller tests of unit-root in RBO, RLBOLIGH and RSH (levels). Quarterly data.

EQ(1) Modelling RLBOLIGH by OLS

	Coefficient	Std.Error	t-value	t-prob Pa	art.R^2
RLBOLIGH_1	0.636233	0.02956	21.5	0.0000	0.8328
RBO	-0.0393621	0.02885	-1.36	0.1758	0.0196
RBO_1	0.128756	0.02912	4.42	0.0000	0.1737
RSH	0.559116	0.02648	21.1	0.0000	0.8274
RSH_1	-0.290578	0.03815	-7.62	0.0000	0.3841
BASELIII	0.385553	0.04873	7.91	0.0000	0.4023
CRISIS09Q1	-0.752125	0.1179	-6.38	0.0000	0.3045
Constant	0.380293	0.05127	7.42	0.0000	0.3717
sigma	0.10117	RSS 0.951892533		33	
R^2	0.997316	F(7,93) =	4320	0.000]*	**
Adj.R^2	0.997085	log-likelihood		93.6563	
no. of observations 102		no. of parameters		8	
<pre>mean(RLBOLIGH)</pre>	5.03518	se(RLBOLIC	GH)	1.8739	93
AR 1-5 test:	F(5,88) =	1.0916 [0	0.3708]		
ARCH 1-4 test:	F(4,94) =	0.24759 [0	0.9105]		
Normality test:	$Chi^{2}(2) =$	0.48073 [6	0.7863]		
Hetero test:	F(14, 86) =	0.86052 [6	0.6030]		
Hetero-X test:	F(31,69) =	1.8576 [0	0.0170]*		

The estimation sample is: 1994(1) - 2019(2)

Table 2: Estimation results for an ADL model of *RLBOLIGH*.

```
Estimating the VAR by OLS
        he estimation sample is: 2 - 101
VAR equation for: (w-p)
                     : (w-p)
Coefficient Std.Error t-value t-prob
0.389369 0.09327 4.17 0.0001
0.0115088 0.04903 0.235 0.8149
(w-p)_1
u_1
sigma = 0.914543 RSS = 81.96606412
VAR equation for: u
                     : u
Coefficient Std.Error t-value t-prob
0.190940 0.1079 1.77 0.0800
0.827843 0.05674 14.6 0.0000
(w-p)_1
u_1
sigma = 1.05846
log-likelihood -273.787634
correlation of VAR residuals (standard deviations on diagonal)
                (w-p)
                                      u
(w-p)
              0.91454
                            -0.30038
u
              -0.30038
                                1.0585
```


Estimating the model by 1SLS The estimation sample is: 2 - 101									
Equation for:	(w-p) Coefficient	Std.Error	t-value	t-prob					
(w-p)_1 u u_1	0.438925 -0.259536 0.226364	0.09083 0.08368 0.08371	4.83 -3.10 2.70	0.0000 0.0025 0.0081					
- sigma = 0.872309									
Equation for:	u Coefficient	Std Error	t-value	t-proh					
(w-p)_1 u_1	0.190940 0.827843	0.1079 0.05674	1.77 14.6	0.0800					
sigma = 1.05846									
log-likelihoo no. of observ	od -273.787634 vations 100	no. of par	rameters		5				
correlation c (w-p) e u e	of model residual (w-p) 0.87231 0.00 0.00000 1.0	s (standard u 000 585	deviatior	ns on dia	gonal)				

Table 4: Estimation results for a model of $(w - p)_t$ and u_t .