This is a 5 hour home exam.

Guidelines:

The problem set covers 4 pages (incl. tables and figures). In the grading, question A gets 40 %, B 40 % and C 20 %.

Question A (40 %)

1. Consider the stochastic difference equation:

$$Y_t = 1 + 0.5Y_{t-1} + \epsilon_{yt}, \ t = 1, 2, ..., T$$
(1)

where ϵ_{yt} is white noise. What is the characteristic root associated with this equation?

- 2. Explain why the time series generated by (1) is stationary.
- 3. What is the expectation of Y_t ?
- 4. Calculate the variance of Y_t under the assumption that $Var(\epsilon_{yt}) = 1$.
- 5. Let ζ_j denote the autocorrelation function (ACF) of Y_t . What are the values of ζ_1 , ζ_2 and ζ_{10} ?
- 6. Consider another equation:

$$X_t = 1 - 0.5X_{t-1} + \epsilon_{xt}, \ t = 1, 2, ..., T$$
⁽²⁾

where ϵ_{xt} is white noise. Sketch a graph of the ACF of X_t given by (2) together with a graph of the ACF of Y_t given by (1). How will you characterize Y_t and X_t as negatively or positively autocorrelated?

- 7. Imagine that the model in question A1 is used to forecast Y_{T+1} , Y_{T+2} ,..., Y_{T+H} . For simplicity we abstract from parameter estimation uncertainty (i.e., we assume that the model is correctly specified within-sample). Under the assumption of a quadratic cost function and assuming $Y_T = 4$, what are the optimal point forecasts of Y_{T+1} , Y_{T+2} and Y_{T+10} ?
- 8. Calculate 95% forecast confidence intervals for the forecasts of Y_{T+1} and Y_{T+2} , when it is assumed that $\varepsilon_{T+h} \sim IIN(0,1)$, h = 1, 2.
- 9. Imagine that when we get to evaluate the two first forecasts, we observe that Y_{T+1} and Y_{T+2} (the actuals) are well outside the forecast confidence intervals. How would you suggest that the forecasts of $Y_{T+3},...Y_{T+10}$ can be revised in the light of the outcomes (actuals) for period T + 1 and T + 2?

Question B (40 %)

1. Assume that a time series Y_t is generated by:

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \epsilon_{yt}, \quad t = 1, 2, \dots, T$$
(3)

where $\epsilon_{yt} \sim IIN(0, \sigma_y^2)$ for all t. (3) can be re-written as:

$$\Delta Y_t = \phi_0 - \pi Y_{t-1} - \phi_2 \Delta Y_{t-1} + \epsilon_{yt}, \ t = 1, 2, ..., T$$
(4)

where

$$\pi = 1 - \phi_1 - \phi_2. \tag{5}$$

Imagine that you estimate (4) by OLS and that the t-value of $-\hat{\pi}$ is -2.1. Can you reject the null hypothesis of $Y_t \sim I(1)$ at the 5 % level?

You can take as given that the number of observations is large enough to validate the use of asymptotic critical values.

- 2. Table 1 at the back of the exam set shows unit-root tests for TEMP, a quarterly time series of western-hemisphere temperatures measured as deviations from 1950-1980 means. The table also contains results for DTEMP (the difference of TEMP). Explain how you reach a conclusion about TEMP being I(0) or I(1) based on the tests.
- 3. We want to investigate empirically whether there is a relationship between TEMP and another time series variable, CO2, which measures CO_2 in the atmosphere. You can take as given that CO2 is an I(1) variable.

Imagine that a friend, who studies at a business school, suggests that you can regress TEMP on CO2 and a constant term, and compare the t-value of the regression coefficient to a 5 % critical value from the t-distribution.

How would you explain to him that his method would put you in acute danger of falling into the spurious regression trap?

- 4. Explain why a correct test of the null hypothesis of no relationship between TEMP and CO2 can be based on the model estimated in Table 2. What is the result of the test?
- 5. Table 3 shows estimation results after the lags of *TEMP* and *CO2* have been replaced by the variable TEMP-1.4*CO2_1. Show how the coefficient 1.4 has been calculated, and explain how it should be interpreted.
- 6. Figure 1 shows a selection of graphs that can be used to evaluate the degree of parameter constancy of the model of DTEMP in Table 3.

It can be shown that there are significant structural breaks in the marginal equation of DCO2, namely in 1991(3), 2010(1), 2015(4), 2016(2), 2016(3), 2016(4) and 2018(4). When the set of indicator variables (i.e., dummies) for these seven quarters are added to the conditional equation of DTEMP, the residual sum of squares becomes: RSS = 30697.8882 (the log-likelihood becomes log - likelihood = -717.918).

What can be concluded about the relative invariance of the model estimated in Table 3?

HINT: In the F(7, 161) distribution, the 5 % critical value is 2.06. In the $\chi^2(7)$ it is 14.

Question C (20 %)

- 1. Explain what is meant by simultaneity bias of OLS when used to estimate the coefficients of an identified structural equation in a SEM.
- 2. Explain why estimation by IV or 2SLS gives consistent estimation of the coefficients of the equation.

The sa	ample is: 195	9(4) - 2019(4	4) (247 o	bservation	s and 1 v	ariables)			
TEMP:	ADF tests (T	=241, Consta	nt; 5%=-2	.87 1%=-3.4	46)				
D-lag	g t-adf	beta Y_1	sigma	t-DY_lag	t-prob				
4	-1.012	0.97326	0.1602	0.8884	0.3753				
3	-0.8975	0.97653	0.1601	-2.788	0.0057				
2	-1.340	0.96492	0.1624	-5.428	0.0000				
1	-2.311	0.93721	0.1718	-2.830	0.0051				
0	-2.981*	0.91992	0.1743						
Unit-root tests									
		- (
The sample is: 1959(4) - 2019(4) (246 observations and 1 variables)									
	ADE tosts (T-241 Const	$ant \cdot E\%$	0 07 1% 2	16)				
	ADF LESLS (1-241, CONSC	anc, 5/0=	2.07 1/05	.40)				
D-Tag	τ-ad t	bета Y_1	sigma	τ-DY_lag	τ-prob				
3	-9.806**	-0.85801	16.02	-0.7548	0.4511				
2	-13.94**	-0.95408	16.00	2.970	0.0033				

1

0

-17.35**

-19.20**

Table 1: Dickey-Fuller tests of unit-root in TEMP and DTEMP.

Table 2: Estimation results for a model of DTEMP conditional on DCO2 (the first difference of CO2).

16.26

17.33

-0.64283

-0.21570

5.791 0.0000

Modelling DTEMP by OLS							
The estimat:	ion sample is:	1975(1) -	2019(4)				
	Coefficient	Std.Error	t-value	t-prob			
DTEMP_1	0.0474593	0.09568	0.496	0.6205			
DTEMP_2	0.0250048	0.08436	0.296	0.7673			
DTEMP_3	0.0734019	0.07503	0.978	0.3293			
Constant	-254.928	53.03	-4.81	0.0000			
DCO2	9.14585	3.421	2.67	0.0083			
DC02_1	5.42229	3.536	1.53	0.1271			
DC02_2	-2.47831	3.571	-0.694	0.4886			
DC02_3	8.04115	3.448	2.33	0.0209			
TEMP_1	-0.561265	0.09522	-5.89	0.0000			
C02_1	0.784512	0.1438	5.45	0.0000			
Seasonal	-46.6643	26.17	-1.78	0.0764			
Seasonal_1	-21.3409	36.24	-0.589	0.5567			
Seasonal_2	18.1724	25.68	0.708	0.4802			
sigma	13.8428	RSS		32000.9952			
R^2	0.500221	F(12, 167) =	13.93	[0.000]**			
Adj.R^2	0.464308	log-likelihood		-721.66			
no. of observations		no. of parameters		13			
AR 1-5 test:	F(5,162) =	0.25670 [0.	9359]				
ARCH 1-4 test:	F(4,172) =	2.4967 [0.	0446]*				
Normality test:	$Chi^{2}(2) =$	4.2469 [0.	1196]				
Hetero test:	F(21, 158) =	1.8113 [0.	0215]*				
Hetero-X test:	F(57, 122) =	1.2197 [0.	1813]				

Table 3: Estimation results for a model of DTEMP conditional on DCO2, with $TEMP_1$ and $CO2_1$ replaced by $TEMP - 1.4 * CO2_1$.

Modelling DTEMP by OLS The estimation sample is: 1975(1) - 2019(4)										
	Coefficient	Std.Error	t-value	t-prob						
DTEMP 1	0.0475378	0.09534	0.499	0.6187						
DTEMP_2	0.0251967	0.08369	0.301	0.7637						
DTEMP_3	0.0736135	0.07424	0.992	0.3228						
Constant	-255.339	49.73	-5.13	0.0000						
DCO2	9.12105	3.235	2.82	0.0054						
DC02_1	5.39361	3.297	1.64	0.1037						
DC02_2	-2.50755	3.325	-0.754	0.4518						
DC02_3	8.01630	3.263	2.46	0.0150						
TEMP-1.4*CO2_1	-0.561248	0.09494	-5.91	0.0000						
Seasonal	-46.6725	26.09	-1.79	0.0754						
Seasonal_1	-21.3284	36.12	-0.590	0.5557						
Seasonal_2	18.1921	25.59	0.711	0.4782						
sigma	13.8015	RSS		32001.0957						
R^2	0.500219	F(11,168)	= 15.29	9 [0.000]**						
Adj.R^2 0.467495		log-likel:	-721.66							
no. of observations 180		no. of parameters		12						
AR 1-5 test: ARCH 1-4 test: Normality test: Hetero test: Hetero-X test:	F(5,163) = F(4,172) = Chi ² (2) = F(19,160) = F(47,132) =	0.25726 [0 2.4898 [0 4.2626 [0 2.0083 [0 1.3249 [0	0.9356] 0.0451]* 0.1187] 0.0106]* 0.1093]							

Figure 1: Some recursive graphs of the model estimated in Table 3.