
Exam in: ECON 4160: Econometrics: Modelling and Systems Estima-
tion

Day of exam: 23 November 2020

Time of day: 09:00—14:00

This is a 5 hour home exam.

Guidelines:
In the grading, question A gets 40 %, B 40 % and C 20 %.

Answers notes are within «... ». Some of the questions are of the “explain in
you own words ”, the answers notes should then be interpreted as expressions
of the main points of understanding under evaluation, not the exact wording.

Question A (40 %)

1. Consider the stochastic difference equation:

Yt = 1 + 0.5Yt−1 + εyt, t = 1, 2, ..., T (1)

where εyt is white noise. What is the characteristic root associated with this equation?

« Characteristic equation:
λ− 0.5 = 0.

and characteristic root: λ = 0.5. »

2. Explain why the time series generated by (1) is stationary.

« The requirement for stationarity is that the characteristic root is less than one in
magnitude. Here it is 0.5, therefore the time series generated by (1) is stationary. »

3. What is the expectation of Yt?.

«
E(Yt) =

1

(1− 0.5)
= 2

»

4. Calculate the variance of Yt under the assumption that V ar(εyt) = 1.

«
V ar(Yt) =

1

(1− 0.52)
= 1.33

»

5. Let ζj denote the autocorrelation function (ACF) of Yt. What are the values of ζ1,
ζ2 and ζ10?

«

ζ1 = 0.5

ζ2 = 0.25

ζ10 = 0.0007656

»
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6. Consider another equation:

Xt = 1− 0.5Xt−1 + εxt, t = 1, 2, ..., T (2)

where εxt is white noise. Sketch a graph of the ACF of Xt given by (9) together
with a graph of the ACF of Yt given by (1). How will you characterize Yt and Xt as
negatively or positively autocorrelated?

« Yt: Monotonous (non-linear) decline from 0.5. Positive autocorrelation (Some may
use bars, others a line gaph)) Xt: Oscillates between negative and positive values
(starting in -0.5), that decline in magnitude. Negative autocorrelation. »

7. Imagine that the model in question A1 is used to forecast YT+1, YT+2,...,YT+H . For
simplicity we abstract from parameter estimation uncertainty (i.e., we assume that
the model is correctly specified within-sample). Under the assumption of a quadratic
cost function and assuming YT = 4, what are the optimal point forecasts of YT+1,
YT+2 and YT+10?

« The optimal forecast is the conditional forecast of YT+h given YT because it mini-
mizes the Mean Squared Forecast Error (MSFE). Hence, letting Y f

T+h denote a fore-
cast:

Y f
T+1 = 1 + 0.5 ∗ 4 = 3

Y f
T+2 = 1 + 0.5 ∗ Y f

T+1 = 1 + 0.5 ∗ (1 + 0.5 ∗ 4) = 2.5

Y f
T+10 = E(Yt) + 0.510(YT − E(Yt)) = 2 + 0.510(4− 2) ≈ 2

Some may relevantly mention the glide-path interpretation (clearest in the last ex-
pression). »

8. Calculate 95% forecast confidence intervals for the forecasts of YT+1 and YT+2, when
it is assumed that εT+h ∼ IIN(0, 1), h = 1, 2.

« Forecast errors:

eT+1 = YT+1 − Y f
T+1 = εT+1

eT+2 = YT+2 − Y f
T+2 = εT+2 + 0.5εT+1

The conditional expectations (on T ) are zero, the variances are:

V ar(eT+1 | T ) = V ar(εT+1) = 1

V ar(eT+2 | T ) = 1 + 0.52 = 1.25

since Cov(eT+1, eT+2 | T ) = 0 from the assumptions. The second variance can also
be found from formula (12.14), as:

V ar(eT+2 | T ) = 1× 1− 0.54

1− 0.52

Hence, the approximate forecast confidence interval are:

T + 1 : = 3± 2× 1 : [1, 5]

T + 1 : = 2.5± 2×
√

1.25 : [0.26, 4.74]

»
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9. Imagine that when we get to evaluate the two first forecasts, we observe that YT+1 and
YT+2 (the actuals) are well outside the forecast confidence intervals. How would you
suggest that the forecasts of YT+3,...YT+10 can be revised in the light of the outcomes
(actuals) for period T + 1 and T + 2?

«

The most common reason for such failures are that the DGP has changed after the
forecast was made, a post-forecast structural break or regime shift. When we learn
that we have consistently under-predicted, the likely interpretation is that the con-
stant term in the new regime is larger than it was before the break (smaller if the
forecast over-predicted)

Hence, one suggestion is to update the forecast of YT+3,...YT+10 based on what we
have learned about the structural break.

YT+3 = 1 + add + 0.5Yt−1 + εyt, t = 1, 2, ..., T

where “add” represents an add-factor. It can be based on the observed forecast error
for period for T + 2, or a weighted average of T + 2 and T + 2 forecast errors. This is
topic is covered by Ch 12.7 and it was mentioned the lecture about forecasting. But
not specifically for the exact AR(1) model we have here. »

Question B (40 %)

1. Assume that a time series Yt is generated by:

Yt = φ0 + φ1Yt−1 + φ2Yt−2 + εyt, t = 1, 2, ..., T (3)

where εyt ∼ IIN(0, σ2y) for all t. (3) can be re-written as:

∆Yt = φ0 − πYt−1 − φ2∆Yt−1 + εyt, t = 1, 2, ..., T (4)

where

π = 1− φ1 − φ2. (5)

Imagine that you estimate (4) by OLS and that the t-value of −π̂ is −2.1. Can you
reject the null hypothesis of Yt ∼ I(1) at the 5 % level?

You can take as given that the number of observations is large enough to validate the
use of asymptotic critical values.

« It is assumed that the estimated equation correspond to the DGP. The test situation
is H0 : −π = 0 against H1 : −π < 0 (stationary with a stable causal solution).
Since a process with a root larger than one in magnitude is stationary as well (but
does not have a stable causal solution), some students may specify the alternative as
H1 : −π 6= 0. Since we have not always been precise about the 1- or 2-sidedness of
the alternative, this is OK.

The easiest procedure is to use Table 3 in the Ericsson and MacKinnon paper, since
there is an intercept in the estimated equation. The correct asymptotic critical values
under H0 are given in the k = 1 part of the table. H0 : −π = 0 is not rejected at any
of the three significance levels. »

2. Table 1 at the back of the exam set shows unit-root tests for TEMP , a quarterly
time series of western-hemisphere temperatures measured as deviations from 1950-
1980 means. The table also contains results for DTEMP (the difference of TEMP ).
Explain how you reach a conclusion about TEMP being I(0) or I(1) based on the
tests.
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« For testing TEMP ∼ I(1) against TEMP ∼ I(0) , the t-adf in the row labelled “D-
lag 3” is the correct to use since the fourth t-DY_lag is seen to be insignificant. Since
t − adf = −0.8975 the hypothesis TEMP ∼ I(1) is not rejected at any customary
levels of significance. It is not a big error to use the t-adf in the row “D-lag 4”, since
it is just a matter of losing some efficiency (the level of the test is not compromised
by this choice).

For testing DTEMP ∼ I(1) against DTEMP ∼ I(0) the t-adf in the row “D-lag 2”
is correct to use. It rejects the null, hence we conclude that TEMP ∼ I(1) since the
first difference is I(0).

»

3. We want to investigate empirically whether there is a relationship between TEMP
and another time series variable, CO2, which measures CO2 in the atmosphere. You
can take as given that CO2 is an I(1) variable.

Imagine that a friend, who studies at a business school, suggests that you can regress
TEMP on CO2 and a constant term, and compare the t-value of the regression
coefficient to a 5 % critical value from the t-distribution.

How would you explain to him that his method would put you in acute danger of
falling into the spurious regression trap?

« His method rests crucially on the assumption that t-value has a t-distribution under
the null hypothesis of no relationship. However, when both regressor and regressand
are I(1) variables this does not hold. Instead the t-value has a different distribution
called Dickey-Fuller distribution under null of no relationship. Using the t-distribution
(or the normal), leads to massive false over-rejection of the null hypothesis of no rela-
tionship. Type-I error probability is much closer to 100 % than a nominal significance
level of 5 %, for example. And it gets worse with larger samples. This is the spurious
regression trap. Using conventional robust standard errors to correct the t-value be-
fore it is compared with a the 5 % critical value of the t-distribution does not solve
the problem. »

4. Explain why a correct test of the null hypothesis of no relationship between TEMP
and CO2 can be based on the model estimated in Table 2. What is the result of the
test?

« A correct testing procedure is to regress DTEMP on its lags and on current and
laggedDCO2. The lag lengths should be long enough to ”map up” the autocorrelation
in the data (with the aim to make the model not mis-specified). Finally include the
lagged level of TEMP and CO2. Table 2 is an example.

The test of the null hypothesis of no relationship between the two (levels) variables
is made by comparing the t-value of the lagged TEMP to the relevant critical value
form the so called ECM-test in Ericsson and MacKinnon’s paper (it has a Dickey-
Fuller type distribution). The t-value of −5.89 is smaller than all three critical values
in Table 1, section with k = 2, in the paper. Hence the null of no relationship is
rejected statistically, and the alternative of cointegration between TEMP and CO2
is accepted.

If properly explained, a good answer can also mention (or use) the EG-test of no
cointegration.

A relevant remark could be that the ECM test is inferior to the Trace-test (Johansen
method) if CO2 is not weakly exogenous with respect to the cointegration parameter.
But not required to get full score. »

5. Table 3 shows estimation results after the lags of TEMP and CO2 have been replaced
by the variable TEMP-1.4*CO2_1. Show how the coefficient 1.4 has been calculated,
and explain how it should be interpreted.
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« When cointegration is accepted we find the estimated relationship in the usual way
by assuming that DTEMP = 0 and DCO2 = 0 (more generally constant changes
other than zero, but that gives more cluttered algebra). Hence the estimated static
long-run relationship becomes (abstracting from the seasonals):

TEMPt =
−254.928

−0.561265
Constant+

0.784512

−0.561265
CO2t + ut

where ut ∼ I(0).
0.784512

−0.561265
≈ 1.4

The number 1.4 shall therefore be interpreted as the (ECM) estimate of the true
cointegration parameter. Not a mistake here to interpret it as the estimated long-run
effect on TEMP of a permanent change in CO2 (although, strictly speaking, to test
that requires more evidence about exogeneity of CO2). »

6. Figure 1 shows a selection of graphs that can be used to evaluate the degree of
parameter constancy of the model of DTEMP in Table 3.

noindent It can be shown that there are significant structural breaks in the marginal
equation of DCO2, namely in 1991(3), 2010(1), 2015(4), 2016(2), 2016(3), 2016(4)
and 2018(4). When the set of indicator variables (i.e., dummies) for these seven
quarters are added to the conditional equation of DTEMP , the residual sum of
squares becomes: RSS = 30697.8882 (the log-likelihood becomes log − likelihood =
−717.918).

What can be concluded about the relative invariance of the model estimated in Table
3?
HINT: In the F (7, 161) distribution, the 5 % critical value is 2.06. In the χ2(7) it is
14.

« Figure 1 shows that two or three of the 1-step Chow-test are significant at the 1 %
level, but that can happen also under the null of stability (Type-I error). The plotted
recursive 1-step residuals gives a similar impression, while the graph of the sequence
of multi-period (“ break-point”) Chow-tests “Ndn” shows no significant breaks at all.
Most importantly perhaps, the recursive estimate of the ECM-coefficient is stable
(the sample size is very small at the start). In sum, the graphs in Figure 1 support a
relatively high degree of parameter constancy of the conditional model of DTEMP
in Table 3.

For the parameters of the conditional model to be characterized as invariant with
respect structural breaks in the marginal model, the set of break indicators should
be insignificant when added to the conditional model. Using the F-test of joint sig-
nificance of a sub-set (i.e. based on the difference between RSSU and RSSR), we
get

F (7, 161) =
32001.0957− 30697.8882

30697.8882
× (180− 19)

(7)
= 0.97641

Using the hint, we see that this is nowhere near statistical significance. Hence we do
not reject the hypothesis of invariance of the conditional model. The likelihood rate
test becomes:

χ2(7) = −2× (−721.66− (−717.918)) = 7.48

»

Question C (20 %)

1. Explain what is meant by simultaneity bias of OLS when used to estimate the coeffi-
cients of an identified structural equation in a SEM.
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« Simultaneity bias refers to the case when the model equation in question includes at
least two variables that are endogenous in the SEM. The equation will be normalized
on one them, by the OLS estimator of the coefficient of other endogenous variable be
inconsistent because it is correlated (also asymptotically) with the error-term of the
structural equation. This follows logically from the reduced form of the model. »

2. Explain why estimation by IV or 2SLS gives consistent estimation of the coefficients
of the equation.

« Since the equation is identified, the order condition will imply that there is exactly as
many exogenous or pre-determined variables excluded form the equation in question,
as there are endogenous variables in the equation, minus one (the normalization on one
endogenous). Hence, in principle, there is no problem of “finding a valid instrumental
variable”. It (or they) are defined by the multiple-equation model.

Since the instrumental variables are asymptotically uncorrelated with the error-term
of the structural equation, the IV estimator is consistent. In the case of exact identifi-
cation, there is a single IV-estimator. In the case of over-identification, there is more
than one IV estimator, and one interpretation of 2SLS is that it is an IV estimator
(also called GIVE) with optimal instruments. In practice, that optimalization hap-
pens in the first stage, by the estimation of the reduced form to obtain fitted values
for the endogenous variables that are included in the structural equation.

Implicit in the above is that the SEM is well specified. If there is residual autocorre-
lation and the structural equation is dynamic, IV/2SLS gives inconsistent estimation.
They solve one specific estimation problem. »

Table 1: Dickey-Fuller tests of unit-root in TEMP and DTEMP .
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Table 2: Estimation results for a model of DTEMP conditional on DCO2 (the first differ-
ence of CO2).

Table 3: Estimation results for a model of DTEMP conditional on DCO2, with TEMP_1
and CO2_1 replaced by TEMP − 1.4 ∗ CO2_1.
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Figure 1: Some recursive graphs of the model estimated in Table 3.
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