Exam in: ECON 4160: Econometrics: Modelling and Systems Estimation—Postponed exam

Day of exam: 12 January 2022

Time of day: 09:00–14:00

This is a 5 hour home exam.

Guidelines:

In the grading, question A gets 60 % and B 40 %.

Question A (60 %)

Consider the deterministic dynamic model with two endogenous variables, Q_t and P_t :

$$Q_t = a_{q0} + a_{qp}P_t + a_{qq}Q_{t-1}$$
(1)

$$P_t = b_{p0} + b_{pq}Q_t + b_{pp}P_{t-1} \tag{2}$$

1. Show that the stationary solution, if it exists, is defined by the equation system:

$$\begin{pmatrix} (1-a_{qq}) & -a_{qp} \\ -b_{pq} & (1-b_{pp}) \end{pmatrix} \begin{pmatrix} Q^* \\ P^* \end{pmatrix} = \begin{pmatrix} a_{q0} \\ b_{p0} \end{pmatrix}$$
(3)

where Q^* and P^* denote the stationary solution.

2. Show that the stationary solution can be expressed as:

$$\begin{pmatrix} Q^* \\ P^* \end{pmatrix} = \begin{pmatrix} \frac{(1-b_{pp})}{c} & \frac{a_{qp}}{c} \\ \frac{b_{pq}}{c} & \frac{(1-a_{qq})}{c} \end{pmatrix} \begin{pmatrix} a_{q0} \\ b_{p0} \end{pmatrix}$$
(4)

where c is given as:

$$c = (1 - a_{qq} - b_{pp} - a_{qp}b_{pq} + a_{qq}b_{pp}).$$

3. Show that the reduced form of (1)-(2) can be written as:

$$\begin{pmatrix} Q_t \\ P_t \end{pmatrix} = \Phi \begin{pmatrix} Q_{t-1} \\ P_{t-1} \end{pmatrix} + \begin{pmatrix} -\frac{1}{a_{qp}b_{pq}-1} & -\frac{1}{a_{qp}b_{pq}-1}a_{qp} \\ -\frac{1}{a_{qp}b_{pq}-1}b_{pq} & -\frac{1}{a_{qp}b_{pq}-1} \end{pmatrix} \begin{pmatrix} a_{q0} \\ b_{p0} \end{pmatrix}, \quad (5)$$

where the matrix $\boldsymbol{\Phi}$ is given as:

$$\boldsymbol{\Phi} = \begin{pmatrix} \varphi_{11} & \varphi_{12} \\ \varphi_{21} & \varphi_{22} \end{pmatrix} = \begin{pmatrix} -\frac{1}{a_{qp}b_{pq}-1}a_{qq} & -\frac{1}{a_{qp}b_{pq}-1}a_{qp}b_{pp} \\ -\frac{1}{a_{qp}b_{pq}-1}b_{pq}a_{qq} & -\frac{1}{a_{qp}b_{pq}-1}b_{pp} \end{pmatrix}.$$
 (6)

For reference, denote the vector with constants in (5) by $\mathbf{\Upsilon}$, i.e.:

$$\mathbf{\Upsilon} = \begin{pmatrix} -\frac{1}{a_{qp}b_{pq}-1} & -\frac{1}{a_{qp}b_{pq}-1}a_{qp} \\ -\frac{1}{a_{qp}b_{pq}-1}b_{pq} & -\frac{1}{a_{qp}b_{pq}-1} \end{pmatrix} \begin{pmatrix} a_{q0} \\ b_{p0} \end{pmatrix}$$
(7)

- 4. What is the condition on the eigenvalues of Φ (characteristic roots) that secures global asymptotic stability of the model given by (1) and (2)?
- 5. Consider the stochastic dynamic model:

$$Q_t = a_{q0} + a_{qp}P_t + a_{qq}Q_{t-1} + e_{qt},$$
(8)

$$P_t = b_{p0} + b_{pq}Q_t + b_{pp}P_{t-1} + e_{pt}, (9)$$

where e_{qt} and e_{pt} are two gaussian white-noise disturbances:

$$\begin{pmatrix} e_{qt} \\ e_{pt} \end{pmatrix} \sim N\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \omega_1^2 & \omega_{12} \\ \omega_{12} & \omega_2^2 \end{pmatrix}\right) \text{ for all } t.$$
(10)

What is the condition for weak stationarity of the time series variables defined by this model?

- 6. Assume weak stationarity. What is the expression for the expectation of the time series Q_t ?
- 7. The reduced form of (8)-(9) can be written as the VAR

$$\boldsymbol{y}_t = \boldsymbol{\Phi} \boldsymbol{y}_{t-1} + \boldsymbol{\Upsilon} + \boldsymbol{\varepsilon}_t \tag{11}$$

where \boldsymbol{y}_t is the 2x1 vector with Q_t and P_t as elements, and $\boldsymbol{\varepsilon}_t$ is a 2x1 vector with the gaussian white noise time series $\boldsymbol{\varepsilon}_{qt}$ and $\boldsymbol{\varepsilon}_{pt}$ as elements:

$$\boldsymbol{\varepsilon}_{t} = \begin{pmatrix} \varepsilon_{qt} \\ \varepsilon_{pt} \end{pmatrix} \sim N\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{1}^{2} & \sigma_{12} \\ \sigma_{12} & \sigma_{2}^{2} \end{pmatrix}\right) \text{ for all } t.$$
(12)

- (a) Explain why, in general, $\sigma_{12} \neq 0$.
- (b) Assume that $\omega_{12} = 0$ in (10). Give an algebraic expression for σ_{12} for this special case.
- 8. Discuss the identification of (8) and (9) under the assumption that all the coefficients of the model equations are different from zero.

Question B (40 %)

Assume that the Data Generating Process (DGP) is given by (11) and (12) in Question A and that the DGP is stationary. Consider the conditional model equation of Q_t :

$$Q_t = \phi_0 + \phi_1 Q_{t-1} + \beta_0 P_t + \beta_1 P_{t-1} + \epsilon_t$$
(13)

Assume that you have time series observations of Q_t and P_t , t = 1, 2, ..., T.

- 1. Explain why ϵ_t and ε_{pt} are uncorrelated.
- 2. Explain why the OLS estimator $\hat{\beta}_0$ has probability limit:

plim
$$(\hat{\beta}_0) = \frac{\sigma_{12}}{\sigma_{22}}.$$
 (14)

- 3. Assume instead that the DGP given by (11) and (12) is non stationary, and that Q_t and P_t are two cointegrated I(1) variables.
 - (a) Explain how you can estimate the coefficients of the cointegration relationship by the estimation of a conditional model.
 - (b) Explain the condition under which P_t is weakly exogenous with respect to the estimation of the coefficients of the cointegration relationship, and when it is not weakly exogenous.
- 4. Assume that the specification of the DGP is unknown, but that it can be assumed that the time series Q_t and P_t are either I(1) or I(0). We do not know if there is a long-run relationship between them.
 - (a) Use the results in Table 1 to decide whether the time series variables are I(1) or I(0). Explain your reasoning.
 - (b) Table 2 shows estimation results that can be used to test the null hypothesis of no long run relationship between Q_t and P_t . Give your conclusion and explain your reasoning.

(In the table, DQ and DP denote the first differences of the two time series.)

Tables with estimation results and facimile of table with critical values for ECM-tests

Unit-ro The sa	oot tests ample is: 4 -	201 (201	observatio	ons and 2 v	variables)
Q: ADF	tests (T=198	, Constant	+Trend; 5%	%=-3.43 1%	=-4.01)
D-lag	t-adf	beta Y_1	sigma	t-DY_lag	t-prob
2	-3.110	0.92740	0.08692	0.4023	0.6879
1	-3.090	0.92853	0.08673	1.634	0.1039
0	-2.911	0.93284	0.08710		
P: ADF	tests (T=198	, Constant	+Trend; 5%	%=-3.43 1%	=-4.01)
Dlag	t-adf	beta Y_1	sigma	t-DY_lag	t-prob
2	-3.494*	0.90517	0.1023	1.116	0.2660
1	-3.376	0.90909	0.1024	0.1970	0.8440
0	-3.388	0.90979	0.1021		

Table 1: Dickey-Fuller tests of unit-root in Q_t and P_t .

Table 2: Regression of DQ_t on DQ_{t-1} , DP_t , DP_{t-1} , Q_{t-1} , P_{t-1} and Constant.

EQ(1) Modelling DO The estimat:	Q by OLS ion sample is	s: 3 - 201		
(Coefficient	Std.Error	t-value	t-prob
DQ_1	0.117010	0.07153	1.64	0.1035
Constant	-0.0250875	0.02816	-0.891	0.3741
DP	0.0758406	0.06093	1.24	0.2147
DP_1	-0.0184715	0.06120	-0.302	0.7631
Q_1	-0.0308654	0.01774	-1.74	0.0834
P_1	0.0305891	0.02175	1.41	0.1613
12				
sigma	0.0884937	RSS		1.51140855
R^2	0.0333	F(5,193) =	= 1.	.33 [0.253]
Adj.R^2	0.00825591	log-likeli	203.217	
no. of observation	no. of par	6		
mean(DQ)	-0.00276963	se(DQ)		0.0888613
AR 1-2 test:	F(2, 191) =	0.52789 [0	9.5907]	
ARCH 1-1 test:	F(1, 197) =	0.027473 [0	9.8685]	
Normality test:	$Chi^{2}(2) =$	0.043112 [6	9.9787]	
Hetero test:	F(10, 188) =	0.67027 [6	9.7511]	
Hetero-X test:	F(20, 178) =	0.78892 [6	9.7247]	

	THER R. EMICSSON and Sumes O. Matchinnon							
Fable consta	Response su nt term.	rface estimates	for critical value	ues of the EC.	M test of con	itegration Ke	(k): with a	
k	Size (%)	θ_{∞}	(s.e.)	θ_1	θ_2	θ_3	â	
1	1	-3.4307	(0.0006)	-6.52	-4.7	-10	0.00790	
	5	-2.8617	(0.0003)	-2.81	-3.2	37	0.00431	
	10	-2.5668	(0.0003)	-1.56	2.1	-29	0.00332	
2	1	-3.7948	(0.0006)	-7.87	-3.6	-28	0.00847	
	5	-3.2145	(0.0003)	-3.21	-2.0	17	0.00438	
	10	-2.9083	(0.0002)	-1.55	1.9	-25	0.00338	
3	1	-4.0947	(0.0005)	-8.59	-2.0	-65	0.00857	
	5	-3.5057	(0.0003)	-3.27	1.1	-34	0.00462	
	10	-3 1924	(0.0002)	-1.23	21	-39	0.00364	

Table 3: Facsimile from article by Ericsson and MacKinnon.