Exam in: ECON 4160: Econometrics: Modelling and Systems Estimation-"Fasit"

Day of exam: 3 December 2021
Time of day: 09:00-14:00
This is a 5 hour home exam.

Guidelines:

In the grading, question A gets 50%, B 50%.

Question A (50 \%)

Consider the dynamic simultaneous equations model (SEM):

$$
\begin{align*}
r w_{t}-a_{2} u_{t} & =a_{0}+a_{1} r w_{t-1}+a_{3} z_{w, t}+e_{w t}, \tag{1}\\
-b_{1} r w_{t}+u_{t} & =b_{0}+b_{2} r w_{t-1}+b_{3} u_{t-1}+b_{4} z_{u t}+e_{u t} . \tag{2}
\end{align*}
$$

Definitions of the variables:
$r w_{t}: \log$ of the real wage.
u_{t} : Log of the unemployment rate.
$z_{w t}$: Strictly exogenous variable that affects wage formation
$z_{u t}$: Strictly exogenous variable that affects unemployment.
$e_{w t}$ and $e_{u, t}$ are two Gaussian white-noise disturbances:

$$
\binom{e_{w t}}{e_{u t}} \sim N\left(\binom{0}{0},\left(\begin{array}{cc}
\omega_{1}^{2} & \omega_{12} \\
\omega_{12} & \omega_{2}^{2}
\end{array}\right)\right) \text { for all } t .
$$

1. Show that the matrix with autoregressive coefficients of the reduced form of the SEM (1)-(2) is:

$$
\mathbf{\Phi}=\left(\begin{array}{ll}
\frac{a_{1}+a_{2} b_{2}}{1-a_{2} b_{1}} & \frac{a_{2} b_{3}}{1-a_{2} b_{1}} \\
\frac{b_{1} a_{2} b_{1}}{1-z_{2}} & \frac{b_{3}}{1-a_{2} b_{1}}
\end{array}\right) \cdot \begin{aligned}
& \text { Trykkeil. Skulle være a_1. } \\
& \text { Det ble gitt } 30 \text { min ekstra pga } \\
& \text { mulig tidstap }
\end{aligned} \text { (3) }
$$

For reference, the expression of the reduced form is:

$$
\begin{equation*}
\binom{r w_{t}}{u_{t}}=\boldsymbol{\Phi}\binom{r w_{t-1}}{u_{t-1}}+\binom{\frac{1}{1-a_{2} b_{1}}\left[\left(a_{0}+a_{3} z_{w t}+e_{w t}\right)+a_{2}\left(b_{0}+b_{4} z_{u t}+e_{u t}\right)\right]}{\frac{1}{1-a_{2} b_{1}}\left[b_{1}\left(a_{0}+a_{3} z_{w t}+e_{w t}\right)+\left(b_{0}+b_{4} z_{u t}+e_{u t}\right)\right]} . \tag{4}
\end{equation*}
$$

Answer: Inverse of matrix with contemporaneous coefficients:

$$
\left(\begin{array}{cc}
1 & -a_{2} \\
-b_{1} & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\frac{1}{1-a_{2} b_{1}} & \frac{a_{2}}{1-a_{2} b_{1}} \\
\frac{b_{1}}{1-a_{2} b_{1}} & \frac{1}{1-a_{2} b_{1}}
\end{array}\right)
$$

Therefore, the matrix with autoregressive coefficients is:

$$
\Phi=\left(\begin{array}{cc}
\frac{1}{1-a_{2} b_{1}} & \frac{a_{2}}{1-a_{2} b_{1}} \\
\frac{b_{1}}{1-a_{2} b_{1}} & \frac{1}{1-a_{2} b_{1}}
\end{array}\right)\left(\begin{array}{cc}
a_{1} & 0 \\
b_{2} & b_{3}
\end{array}\right)=\left(\begin{array}{cc}
\frac{a_{1}+a_{2} b_{2}}{1-a_{2} b_{1}} & \frac{a_{2} b_{3}}{1-a_{2} b_{1}} \\
\frac{a_{1} b_{1}+b_{2}}{1-a_{2} b_{1}} & \frac{b_{3}}{1-a_{2} b_{1}}
\end{array}\right)
$$

Hence the RF is:

$$
\begin{aligned}
& \binom{r w_{t}}{u_{t}}=\left(\begin{array}{cc}
\frac{1}{1-a_{2} b_{1}} & \frac{a_{2}}{1-a_{2} b_{1}} \\
\frac{b_{1}}{1-a_{2} b_{1}} & \frac{1}{1-a_{2} b_{1}}
\end{array}\right) *\left(\begin{array}{cc}
a_{1} & 0 \\
b_{2} & b_{3}
\end{array}\right)\binom{\left.r w_{t-1}\right)}{u_{t-1}}+\left(\begin{array}{cc}
\frac{1}{1-a_{2} b_{1}} & \frac{a_{2}}{1-a_{2} b_{1}} \\
\frac{b_{1}}{1-a_{2} b_{1}} & \frac{1}{1-a_{2} b_{1}}
\end{array}\right)\left(\begin{array}{c}
a_{0}+a_{3} z_{w t}+e_{w} \\
b_{0}+b_{4} z_{u t}+e_{u t}
\end{array}\right. \\
& \left.\binom{\left.r w_{t}\right)}{u_{t}}=\Phi\binom{\left.r w_{t-1}\right)}{u_{t-1}}+\left(\begin{array}{c}
\frac{1}{1-a_{2} b_{1}}\left[\left(a_{0}+a_{3} z_{w, t}+e_{w t}\right)+a_{2}\left(b_{0}+b_{4} z_{u t}+e_{u t}\right)\right] \\
1-a_{2} b_{1}
\end{array} b_{1}\left(a_{0}+a_{3} z_{w t}+e_{w, t}\right)+\left(b_{0}+b_{4} z_{u t}+e_{u t}\right)\right]\right)
\end{aligned}
$$

2. Assume that $z_{u t}$ and $z_{w t}$ are $\mathrm{I}(0)$ variables and that the eigenvalues of $\boldsymbol{\Phi}$ are both less than one in magnitude. Explain what this implies for the stationarity of $r w_{t}$ and u_{t}. Answer: If one of the eigenvalues of $\boldsymbol{\Phi} \pm 1$ the both $r w_{t}$ and u_{t} is $\mathrm{I}(1)$ in general. (Can think of special cases where only one of them is I(1), by imposing $\varphi_{21}=0$ and orthogonal VAR disturbances, but then the system is practice partitioned, into one $I(1)$ series and one $I(0)$ series $)$.
3. Assume stationarity. Derive the expressions for the expectations of $r w_{t}$ and u_{t}.

Answer: Stationary solution:

$$
\begin{gathered}
\binom{E\left(r w_{t}\right)}{E\left(u_{t}\right)}=\Phi\binom{E\left(r w_{t}\right)}{E\left(u_{t}\right)}+\binom{\frac{1}{1-a_{2} b_{1}}\left[\left(a_{0}+a_{3} E\left(z_{w t}\right)\right)+a_{2}\left(b_{0}+b_{4} E\left(z_{u t}\right)\right)\right]}{\frac{1}{1-a_{2} b_{1}}\left[\left(b_{0}+b_{4} E\left(z_{u t}\right)\right)+b_{1}\left(a_{0}+a_{3} E\left(z_{w t}\right)\right)\right]} \\
\binom{E\left(r w_{t}\right)}{E\left(u_{t}\right)}=(I-\Phi)^{-1}\binom{\frac{1}{1-a_{2} b_{1}}\left[\left(a_{0}+a_{3} E\left(z_{w t}\right)\right)+a_{2}\left(b_{0}+b_{4} E\left(z_{u t}\right)\right)\right]}{\frac{1}{1-a_{2} b_{1}}\left[\left(b_{0}+b_{4} E\left(z_{u t}\right)\right)+b_{1}\left(a_{0}+a_{3} E\left(z_{w t}\right)\right)\right]}
\end{gathered}
$$

4. Assume that $E\left(u_{t}\right)=1.39$, and hence that the equilibrium rate of unemployment, U^{*}, is $U^{*}=e^{1.39} \approx 4.0$ percent. If the unemployment rate today is 6 percent, what does the model predict about the future development of the rate of unemployment: A development towards lower unemployment rate, a relative constant rate of 6 percent, or a higher rate?
Answer: Because of stationarity, the models predicts that there will be a development towards 4.0% unemployment, because $U^{*}=4.0$ is the stationary equilibrium. (With reference to the solution of the homogenous solution, the development can be monotonous, both eigenvalues are positive real numbers. Negative roots/eigenvalues (or imaginary roots) can imply non-monotonous development).
5. Denote the error-terms of the reduced form (aka VAR disturbances) by $\varepsilon_{w t}$ and $\varepsilon_{u t}$. Show that $\operatorname{Cov}\left(\varepsilon_{w t}, \varepsilon_{u t}\right) \neq 0$ in general.
Answer:

$$
\begin{gathered}
\varepsilon_{w t}=\frac{1}{1-a_{2} b_{1}}\left[e_{w t}+a_{2} e_{u t}\right] \\
\varepsilon_{u t}=\frac{1}{1-a_{2} b_{1}}\left[e_{u, t}+b_{1} e_{w t}\right] \\
E\left(\varepsilon_{w t} \varepsilon_{u t}\right)=\left(\frac{1}{1-a_{2} b_{1}}\right)^{2} E\left[\left(e_{w t}+a_{2} e_{u t}\right) *\left(e_{u t}+b_{1} e_{w t}\right)\right] \\
=\left(\frac{1}{1-a_{2} b_{1}}\right)^{2} E\left[b_{1} e_{w t}^{2}+e_{w t} e_{u t}+a_{2} e_{u t}^{2}+a_{2} b_{1} e_{w t} e_{u t}\right] \\
= \\
\left(\frac{1}{1-a_{2} b_{1}}\right)^{2}\left[b_{1} \operatorname{Var}\left(e_{w t}\right)+\left(1+a_{2} b_{1}\right) \operatorname{Cov}\left(e_{w t}, e_{u t}\right)+b_{1} \operatorname{Var}\left(e_{u t}\right)\right]
\end{gathered}
$$

Hence, if both $a_{2} \neq 0$ and $b_{1} \neq 0 \operatorname{Cov}\left(\varepsilon_{w t} \varepsilon_{u t}\right) \neq 0$, even in the case where the two SEM-disturbances are uncorrelated.
It is possible that some answers mention recursive model here as a case of uncorrelated RF residuals, i.e., $\omega_{1} 2=0$ and $a_{2} \neq 0$ or $b_{1} \neq 0$, which deserves a positive note.
6. Assume $a_{3} \neq 0$ and $b_{4} \neq 0$. Explain why (1) and (2) are identified.

Answer: (1) and (2)are two simultaneous equations, $n=2$. With reference to DEEMM and the lectures, (1)is exactly identified on the order condition if excludes $2-1=1$ of the variables of the model. It excludes $2: u_{t-1}$ and $z_{u t}$, and is therefore over-identified on the (necessary) order condition. It is also identified on the rank condition, $b_{4} \neq 0$ secures that. If $b_{3} \neq 0$, it is over-identified on the rank-condition. A symmetric argument applies to (2): It is exactly identified as it excludes one variable, $z_{u t}$, which has non-zero coefficient $a_{3} \neq 0$ in (1).
7. Explain why the OLS estimators of the coefficients of the model are inconsistent.

Answer: Due to simultaneity, (1) is not a conditional model equation and therefore u_{t} is correlated with the SEM error term $e_{w} e$. This creates the simultaneity of the OLS estimator.
8. Explain why there is no simultaneity bias if 2 SLS is used to estimate the two equations. Answer: With 2SLS, the first stage is to estimate the reduce form equations by OLS. Without loss of generality we can consider (1). In the second stage of 2SLS (1) is estimated by OLS using \hat{u}_{t} from the first stage in the place of u_{t}. \hat{u}_{t} is uncorrelated with $e_{w} t$ in $((1))$ because is has been obtained by setting the RF error-term to zero. Hence there is no bias in the 2SLS estimator. It can be mentioned in a favourably way that 2SLS is equivalent to the GIV estimator, meaning that is the IV estimator the uses the optimal linear combination of the available (valid) instruments. (The weights are the coefficients estimated at the first stage).
9. The conditional equation (5) and the marginal equation (6) represent a model of the VAR defined by the reduced form (4).

$$
\begin{align*}
& r w_{t}=\phi_{0}+\phi_{1} r w_{t} \pm \beta_{0} u_{t}+\beta_{1} u_{t-1}+\beta_{3} z_{w t}+\beta_{4} z_{u t}+\epsilon_{t} \tag{5}\\
& u_{t}=\varphi_{20}+\varphi_{21} r w_{t-1}+\phi_{22} u_{t-1}+\gamma_{23} z_{w t}+\gamma_{24} z_{u t}+\varepsilon_{u t} \tag{6}\\
& \text { Trykkfeil, skulle væ }
\end{align*}
$$

(a) What is the expression of β_{0} ? Answer:

Trykkfeil, skulle vært rw_t-1 selvsagt. Det ble opplyst om denne også. Men ble ikke gitt tillegg i tid siden ikke påvirker svarene av til

$$
\begin{equation*}
\hat{\beta}_{0}=\frac{\operatorname{Cov}\left(\varepsilon_{w t}, \varepsilon_{u t}\right)}{\operatorname{Var}\left(\varepsilon_{u t}\right.} \tag{a}
\end{equation*}
$$

(b) What are the properties of the OLS estimator of β_{0} ?

Answer: With reference to the gaussian error terms of the SEM that was specified at the start of QA, the OLS estimator is consistent. In finite samples there is a bias, because $r w_{t-1}$ is pre-determined rather than strictly exogenous.
(c) Explain why $\operatorname{Cov}\left(\epsilon_{t}, \varepsilon_{u t}\right)=0$.

Answer: (5) conditions on u_{t}, which means that the error-term ϵ_{t} is uncorrelated with the disturbance $\varepsilon_{u t}$ in the marginal equation for u_{t}.
(d) Explain what would be a test of strong exogeneity of u_{t} in this model? tested.

Answer: Given that u_{t} is weakly exogenous, a t-test of $H_{0} \varphi_{21}=0$ (absence of joint Granger causality).

Question B (50 \%)

We have annual data series of the nominal wage level in Mainland Norway manufacturing, $W 1_{t}$, measured as wage compensation in kroner per hour worked. Another time series, $S C O P E 1_{t}$, measures value added per hour worked in Mainland Norway manufacturing. The \log of the two time series are denoted $L W 1_{t}$, and $L S C O P E 1_{t}$.

1. Use the results in Table 1 to test the null hypothesis of a unit-root in $L W 1_{t}$. Test the same hypothesis for $L S C O P E 1_{t}$.
Answer: LW1: The ADF test with D-lag 1 is the correct one to use for testing the H_{0} of $\mathrm{I}(1)$. It does not reject. (The ADF with D-lag 2 is also valid. It is only a little over-parameterized). LSCOPE1: All the ADF are valid tests, none of them rejects. In the following you can take as granted that the first difference of $L W 1_{t}$ and $L S C O P E_{t}$, denoted by $D L W 1_{t}$, and $D L S C O P E 1_{t}$, are $I(0)$.
2. Table 2 shows results for the regression of $D L W 1_{t}$ on $D L W 1_{t-1}, L W 1_{t-1} L S C O P E 1_{t-1}$, $D L S C O P E_{t}, D L S C O P E_{t-1}$ and Constant. Explain how you can use the ECM-test to test the null hypothesis of no cointegration between $L W 1_{t}$ and $L S C O P E 1_{t}$. Use
a significance level of 5%.
Answer: The relevant critical values to use are from Table in the article by Ericsson and MacKinnon paper. The H_{0} of no cointegration is rejecrted at the 5% level as the critical value is -3.21 .
3. Conditional on the rejection of no cointegration, show that the estimated long-run relationship between $L W 1_{t}$ and $L S C O P E 1_{t}$ is:

$$
\begin{equation*}
L W 1_{t}=0.926 L S C O P E 1_{t}-0.033 \tag{7}
\end{equation*}
$$

Answer: Let $\hat{\beta_{1}}$ denote the estimated slope coefficient of the cointegration relationship. It becomes:

$$
\begin{gathered}
\hat{\beta_{1}}=\frac{0.197702}{0.213457}=0.93619 \\
\hat{\beta}_{0}=\frac{-0.00702748}{0.213457}=-0.0032922
\end{gathered}
$$

4. It can be shown that the estimated standard error of 0.926 is 0.04 . Use this information to construct a test of the hypothesis that the long-run elasticity of $L S C O P E_{t}$ is equal to 1 .
Answer: $H_{0}: \beta_{1}=1 \Leftrightarrow H_{0}: \beta_{1}-1=0$, t-value:

$$
\frac{\hat{\beta}_{1}-1}{\sqrt{\operatorname{Var}\left(\hat{\beta}_{1}\right)}}=\frac{0.93619-1}{0.04}=-1.59
$$

which is not significant at the usual significance level of 5%.
5. Table 3 shows results for the conditional ECM of $D L W 1_{t}$ when the long-run coefficient of +1 has been imposed in the form of the variable

$$
\begin{equation*}
L W 1 e c_{t}=L W 1_{t}-L S C O P E 1_{t} \tag{8}
\end{equation*}
$$

The results for the marginal model equation for $\operatorname{DLSCOPE}$ is shown in Table 3, as EQ(3). Explain why the results support weak exogeneity of LSCOPE1 with respect to the parameters of the cointegration relationship between $L W 1_{t}$ and $L S C O P E 1_{1}$. Answer: The relevant test statistic is the t-value (1.68) of LW1ec_1 in EQ(3). A the 5% level, the hypothesis of WE of LSCOPE1 with respect to the cointegration parameters cannot be rejected.
6. Table 4 shows the result for a restricted version of the wage equation in Table 3. Show that the exclusion restrictions on $D L S C O P E 1$ and $D L S C O P E 1 _1$ cannot be rejected at the 5% level, neither individually nor jointly. (Hint: The 5% critical value of the $\chi^{2}(2)$ distribution is 6 . In the $F(2,42)$ distribution, the 5% critical value is 3.2).
Answer: Using LR test:

$$
\begin{gathered}
\chi^{2}(2)=-2 *(122.493-124.462)=3.298 \\
F(2,42)=\frac{(0.0149927774-0.0137877334)}{0.0137877334} *\left(\frac{47-5}{2}\right)=1.8354
\end{gathered}
$$

Neither of two are significant at the 5% level.
7. A critique of the model in Table 4 is that it omits two variables that are regarded to be important factors in nominal wage formation: namely the rate of unemployment and the increase in cost of living. In order to accommodate the critique, we include the \log of the unemployment rate, $L U_{t}$, and the inflation rate, $I N F_{t}$.
$\mathrm{EQ}(5)$ in Table 5 shows the OLS estimation results for the augmented wage model equation. $\mathrm{EQ}(6)$ shows the results of Instrumental variables estimation.
(a) Do the results support the empirical relevance of the two "new" explanatory variables, $L U_{t}$ and/or $I N F_{t}$?
Answer: EQ(5), OLS estimation: The t-values show that the relevance of $I N F$ is supported by the test, while the t-value of $L U$ is insignificant. EQ(6) IV estimation. Same conclusions.
(b) Discuss briefly the potential weak exogeneity of $L U_{t}$ and/or $I N F_{t}$ In this context it can be noted that if we add the relevant fitted values of $L U_{t}$ and $I N F_{t}$ to the model in EQ(5), we obtain $R S S=0.008197$. You may use this information to calculate the Durbin-Wu-Hausman (DWH) test.
Answer: There is very little difference between the OLS and IV estimates, which is informal evidence of weak exogeneity. The DWH test gives an formal test by testing the joint significance of the two fitted values from the reduced form model equations of $L U_{t}$ and/or $I N F_{t}$ on Constant, DLW1_1, LW1ec_1, DLSCOPE1_1, INF_1, LU_m $\varnothing \mathrm{qw}|\mathrm{xbnm},++\mathrm{s}| \mathrm{ghjkl}, 1$. We can denote those fitted values by $\hat{L U}{ }_{t}$ and $I \hat{N} F_{t}$. The questions gives as information that when $\hat{L U} U_{t}$ and $I \hat{N} F_{t}$ are added to $\mathrm{EQ}(5)$ we get $R S S=0.008197$. The test of joint insignificance is therefore:

$$
F(2,42)=\frac{(0.0083787449-0.008197)}{0.008197} *\left(\frac{47-5}{2}\right)=0.46561
$$

and we do not reject the hypothesis of Weak exogeneity.
(c) What is the interpretation of the Specification test reported with EQ(6) in Table 5 ?
Answer: In eq(6) we have two explanatory variables that are endogenous (in the implied SEM model). Hence exact identification rests on 2 instrumental variables. In EQ(6) there are 3 IVs and the Specification test is interpretable as a test of the validity of the over-identifying instruments (i.e., uncorrelated with the structural disturbance). Another interpretation is that the over-identifying instrument does not have any explanatory power for DLWC1, beyond the relevance that has as an instrument for $L U_{t}$ and/or $I N F_{t}$, hence the name Specification test.

Tables with estimation results and facimile of table with critical values for ECM-test

Table 1: Dickey-Fuller tests of unit-root in $L W 1_{t}, L W 2_{t}$ and $L S C O P E 1_{t}$.

```
Unit-root tests
The sample is: 1973 - 2018 (49 observations)
LW1: ADF tests (T=46, Constant+Trend; 5%=-3.51 1%=-4.17)
D-lag t-adf beta Y_1 sigma t-DY_lag t-prob
    2 -3.064 0.9422\overline{2}
    1 -3.337 0.94469 0.01769 3.530}00.001
0-4.432** 0.92315 0.01991
LSCOPE1: ADF tests (T=46, Constant+Trend; 5%=-3.51 1%=-4.17)
D-lag t-adf beta Y_1 sigma t-DY_lag t-prob
    2 -2.017 0.93277 0.03659 -0.06286 0.9502
1 -2.040 0.93287 0.03615 
```

Table 2: Regression of $D L W 1_{t}$ on $D L W 1_{t-1}$ and $L W 1_{t-1}, L S C O P E 1_{t-1}, D L S C O P E_{t}$, DLSCOPE E_{t-1} and Constant.

EQ(1) Modelling DLW1 by OLS The estimation sample is: 1972-2018

	Coefficient	Std.Error	t-value	t-prob
DLW1 1	0.509657	0.1156	4.41	0.0001
LW1_1	-0.213457	0.06173	-3.46	0.0013
LSCOPE1_1	0.197702	0.06190	3.19	0.0027
DLSCOPE1	0.0402308	0.07362	0.546	0.5877
DLSCOPE1_1	-0.00817773	0.07797	-0.105	0.9170
Constant	-0.00702748	0.05193	-0.135	0.89

sigma	0.0169509	RSS	0117806301
R^2	0.817897	$F(5,41)=36.83$	[0.000]**
Adj. $\wedge^{\wedge} 2$	0.79569	log-likelihood	128.159
no. of observations	47	no. of parameters	6
mean(DLW1)	0.0639172	se(DLW1)	0.0375014

AR 1-2 test:	$\mathrm{F}(2,39)$	$=0.80804[0.4531]$	
ARCH 1-1 test:	$\mathrm{F}(1,45)$	$=$	$3.5161[0.0673]$
Normality test:	$\mathrm{Chi} \mathrm{A}^{\wedge} 2(2)$	$=$	$2.9995[0.2232]$
Hetero test:	$\mathrm{F}(10,36)$	$=$	$1.4698[0.1910]$
Hetero-X test:	$\mathrm{F}(20,26)$	$=$	$1.8495[0.0704]$

Table 3: Conditional and marginal model equations for $D L W 1_{t}$ and $D L S C O P E 1_{t}$.
EQ(2) Modelling DLW1 by OLS
The estimation sample is: $1972-2018$

	Coefficient	Std.Error	t-value	t-prob
DLW1_1	0.698737	0.09705	7.20	0.0000
LW1ec_1	-0.210106	0.06597	-3.18	0.0027
DLSCOPE1	0.117478	0.07222	1.63	0.1113
DLSCOPE1_1	0.0603874	0.07859	0.768	0.4466
Constant	-0.110441	0.03649	-3.03	0.0042
sigma	0.0181185	RSS	0.0137877334	
R^2 $^{\text {Adj.R^2 }}$	0.786872	F $(4,42)=$	38.77	$[0.000]^{* *}$
no. of observations	0.766574	log-likelihood	124.462	
	47	no. of parameters	5	

EQ(3) Modelling DLSCOPE1 by OLS The estimation sample is: 1972 - 2018

	Coefficient	Std.Error		t-value
	t-prob			
DLSCOPE1_1	0.156195	0.1642	0.951	0.3469
LW1ec_1	0.226758	0.1349	1.68	0.1001
DLW1_1	0.639059	0.1803	3.55	0.0010
Constant	0.136131	0.07420	1.83	0.0735
sigma	0.0382581	RSS	0.0629383203	
R^2 $^{\text {Adj.R^2 }}$	0.382407	F(3,43) =	$8.875[0.000]^{* *}$	
no. of observations	0.339319	log-likelihood	88.78	
	47	no. of parameters	4	

Table 4: Restricted conditional model equation for $D L W 1_{t}$.

| EQ(4) Modelling DLW1 by OLS | |
| :--- | ---: | :--- | ---: | ---: |
| The estimation sample is: | $1972-2018$ |

Table 5: Model equation for $D L W 1_{t}$ augmented by $L U_{t}$ and $I N F_{t}$

Table 6: Facsimile from article by Ericsson and MacKinnon.

Table 3. Response surface estimates for critical values of the ECM test of cointegration $\kappa_{c}(k)$: with a constant term.

k	Size (\%)	θ_{∞}	(s.e.)	θ_{1}	θ_{2}	θ_{3}	$\hat{\sigma}$
1	1	-3.4307	(0.0006)	-6.52	-4.7	-10	0.00790
	5	-2.8617	(0.0003)	-2.81	-3.2	37	0.00431
	10	-2.5668	(0.0003)	-1.56	2.1	-29	0.00332
2	1	-3.7948	(0.0006)	-7.87	-3.6	-28	0.00847
	5	-3.2145	(0.0003)	-3.21	-2.0	17	0.00438
	10	-2.9083	(0.0002)	-1.55	1.9	-25	0.00338
3	1	-4.0947	(0.0005)	-8.59	-2.0	-65	0.00857
	5	-3.5057	(0.0003)	-3.27	1.1	-34	0.00462
	10	-3.1924	(0.0002)	-1.23	2.1	-39	0.00364

