ECON 4160: Econometrics: Modelling and Systems Estimation

Guidelines:
In the grading, question A gets 33 %, B 33 % and C 33 %.

Question A (33 %)

1.

Consider the cobweb model with @, (quantity) and P, (price) as endogenous variables.
Show that the autoregressive coeflicient in the final form equation for P; is the ratio
between the slope coefficients of supply (¢) and demand (a):

c
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where we have used ¢ to denote the autoregressive coeflicient in the final form equa-
tion for P;.

Consider more specifically the stochastic version of the cobweb model, with white-
noise random disturbances in the two equations. What is the condition for weak
stationary of the time series P, and (); which are generated by the respective final
form equations?

Consider the particular special case where the final form equation for P, is:
Pt:—O.2Pt,1+1.2+8Pt,t20,1,....,T, (2)

where €p; is white-noise. Assume, abstracting from estimation, that you are given
the task of forecasting P; for the period t =T 4+ 1,17 4 2,...,T + H where H denotes
the forecast horizon.

(a) Draw (rough) sketches of the forecast function E(Ppyp | Zr), for h=1,2,..., H
for two different initial conditions: Pr = 0.5 and Pp = 1.5.
HINT: Since the absolute value of the autocorrelation coefficient is relatively
small, setting H to for example 5 may be enough to get a clear picture.

(b) What does the two forecasts have in common, and why?

Assume that in period t =T + 1, ie., in the first period after you have produced your
forecast, there is a structural break in the economy (ie., in the DGP) so that the final
form equation becomes:

P,=-02P_1+4+24+¢eps,t=T+1,...., T+ H, (3)

with no change in the distribution of €p;.

Explain how the break in the DGP will affect the forecast errors of the dynamic
forecasts E(Pryyp | Zr), h = 1,2, ..., H, for the case where the initialization price was
Pr=0.5.

Imagine that in period T + 1, you are asked to update your forecast. Assume that
you can observe Pri 1 = 2, but that you do not yet know the coefficient values in the
new final form equation (3). Can you suggest ways of robustifying the forecasts for
t=T+2,...,T 4+ H which are conditional on Pri, = 27



Question B (33 %)

Consider, as a generalization of the cobweb model, the partial equilibrium model of Q) and
P, with X1 and Xo; as strictly exogenous explanatory variables:

Qi + a120P; = a0 + a1, 1P—1 + a121Qi—1 + y11 X1t + v12 X2t + €01 (4)
a21,0Q¢ + Py = a0 + a21,1P—1 + a22,1Q¢—1 + 721 X1t + 122 X0t + €py. (5)

To complete the econometric model specification, it is assumed that the error-terms eg; and
€p¢ are jointly normally distributed, conditional on Q;—1, P.—1, X1; and Xo;. The variances
of the error-terms are denoted wé and wj%, and the covariance is denoted wpg.

1. Give an example of a set of parameter restrictions that would define a recursive model,
as a special case of the SEM we have specified.

2. Assume that the simultaneous equations (4)-(5) can be solved (ie., we do not con-

sider a recursive model). The reduced form is a VAR. Denote the variances and the
covariance of the VAR error-terms by aé, 0'%3, and opg. The VAR has an equiva-
lent statistical representation which consists of a conditional model equation and a
marginal model equation. Describe the structure of those two model equations for
the case where we are interested in the conditional model of Q; given F;.
NOTE: With the exception of the coefficient of F;, call it 51, you are not expected to
give algebraic expressions for the parameters of the conditional and marginal model
equations. It is enough to explain verbally which variables are on the right hand side
of each of the two model equations.

3. P, is an endogenous explanatory variable in the conditional model equation. Does
this imply that the OLS estimator of ; is inconsistent? Explain you answer.

4. We now return to the SEM we specified at the start of this question and discuss
identification. In this question it assumed that the variances and the covariance of the
SEM error-terms are unrestricted. Discuss identification in the following situations:

(a) v12 = 722 = 0; and all other coefficients non-zero.
(b) 12 = 0; and all other coefficients non-zero.
(¢) ai21 =711 = 722 = 0; and all other coefficients non-zero.

5. It is custom to say about the 2SLS estimator that it makes use of “optimal instru-
mental variables”. Can you give an explanation of the meaning of that statement?

Question C (33 %)

We have a quarterly temperature time series, TEMP;.! In line with standard notation, the
quarterly difference is denoted DTEMPy, ie., DTEMP; = TEMP; — TEMP;_1.

1. Explain how the information in Table 1 can be used to conclude, based on the use of
formal statistical tests, that TEMP; ~ I(1).

2. We also have a quarterly time series of COz in the atmosphere on Mauna Loa (Hawaii)
in the northern Pacific Ocean. Denote the natural logarithm of this variable by LCO2.
Assume that LCO2; ~ I(1). Explain how the information in Table 2 can be used
to conclude, based on the use of formal statistical tests, that TEMP; and LCO2; are
cointegrated.

'Western-hemisphere land-ocean temperature in degrees Celsius as a deviation from the mean temper-
ature in the period 1951-1980.



3. Explain why the implied ECM variable is:

ecmTEMPLCO2; = TEMP; — 4.8LCO2;, (6)

where the cointegration parameter is given with one decimal point.

4. Table 3 shows the estimation results for the model of DT EM P; conditional on
TEM P, and LCO2; being cointegrated, while Table 4 shows the results for a marginal
equation for DLCO2.

(a) Logically speaking, why cannot both TEMP; and LCO2; be weakly exogenous
with respect to the cointegration parameter?

(b) How can you use Table 3 and Table 4 to assess the possible weak exogeneity
of one of the variables TEMP; and LCO2; with respect to the cointegration
parameter, and what is your conclusion?

5. Table 5 shows results obtained by using the Johansen-method for cointegration anal-
ysis. Are these results (by and large) in support of the results obtained earlier in this
question?



Tables with estimation results and facimile of table with critical values for

ECM-test

Table 1: Dickey-Fuller tests of unit-root. TEMP; and DTEMP;.

The sample is: 1959(2) - 2022(3) (254 observations)

TEMP: ADF tests (T=251, Constant; 5%=-2.87 1%=-3.46)

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob
4 -1.207 ©.97879 0.1622 1.912 ©.3126
3 -1.992 ©.97378 0.1623 -2.968 ©.8833
2 -1:511 ©.96352 0.1648 -5.655 ©.e0e0e
1 -2.448 ©.93839 0.1748 -2.981 ©.88e32
] -3.092% ©.92270 0.1775

DTEMP: ADF tests (T=251, Constant; 5%=-2.87 1%=-3.46)

D-lag t-adf beta Y_1 sigma t-DY_lag t-prob
4 -9.1@4%* -1.0123 0.1623 1.197 B.2325
3 -19.@3%* -©.86981 0.1624 -0.8782 ©.3851
2 -14 . 40%* -0.97936 e.1623 3.157 e.eels
1 -17.85%* -9.65434 0.1652 6.021 ©.0008
] -19,71%* -9.21869 ©.1765

Table 2: Estimation results for a model of DTEMP;

EQ( 1) Modelling DTEMP by OLS

The estimation sample is:

Coefficient
DTEMP_1 -9.1318e1
DTEMP_2 -8.142193
DTEMP_3 -0.80838194
DTEMP_4 -9.80779189
Constant -8.63916
TEMP_1 -9.329043
DLCO2 23.7800
DLCO2_1 32.8985
DLCO2_2 -28.7048
DLCO2_3 1.40087
DLCO2_4 -9.45658
Lcoz2_1 1.57595
Seasonal -8.696419
Seasonal_1 -9.932327
Seasonal_2 -9.424001
sigma 9.140492
R"2 ©.422551
Adj.R"2 ©.388725
no. of observations 254
mean (DTEMP) ©.00346457
AR 1-5 test: F(5,234) =

1959(2) - 2022(3)

Std.Error t-value t-prob
9.87731 -1.70 ©.0895
8.87582 -1.96 ©.8592
9.86948 -8.121 ©.9040
8.86356 -8.123 0.9025

1.961 -4.41 ©.00eee
9.86562 -5.81 ©.0000
10.16 2.34 ©.8201
10.01 3.29 @.ee12
10.25 -2.82 ©.0446
10.17 ©.138 ©.8965
10.1® -8.936 ©.3582
9.3367 4.68 ©.0000
9.1955 -3.56 ©.0084
8.2572 -3.63 ©.00084
9.1993 -2.13 ©.0344
RSS 4.71737253
F(14,239) = 12.49 [@.ee8]**
log-likelihood 145.822
no. of parameters 15
se(DTEMP) 0.179694

1.2239 [0.2986]



Table 3: Estimation results for a model of DTEMP,, conditional on cointegration.

EQ( 2) Modelling DTEMP by OLS
The estimation sample is: 1959(2) - 2022(3)

Coefficient Std.Error t-value t-prob

DTEMP_1 -8.131776 8.e7714 -1.71 ©.e8389
DTEMP_2 -8.142890 0.07475 -1.9¢ ©.8585
DTEMP_3 -0.08815509 ©.06867 -8.119 ©.9856
DTEMP_4 -8.0e0757659 ©.06286 -8.121 ©.9842
Constant -8.65646 1.833 -4.72 ©.eeee
ecmTEMPLCO2_1 -0.328954 ©.086539 -5.83 ©.0e08
DLCO2 23.7e87 9.736 2.44 0.0156
DLCO2_1 32.8042 9.268 3.54 ©.eee5
DLCO2_2 -20.8142 9.271 -2.25 0.8257
DLCO2_3 1.30eeee 9.328 8.139 ©.8893
DLCO2_4 -9.52581 9.7e3 -8.982 ©.3272
Seasonal -0.696195 8.1949 -3.57 ©.0004
Seasonal_1 -8.932289 8.2566 -3.63 8©.eee3
Seasonal_2 -0.424476 8.198e -2.14 ©.e338
sigma ©.140199 RSS 4.71738508
R"2 ©.422549 F(13,24@) = 13.51 [@.@@@]**
Adj.R"2 ©.391271 log-likelihood 145.822
no. of observations 254 no. of parameters 14
mean (DTEMP) 9.00346457 se(DTEMP) ©.179694
AR 1-5 test: F(5,235) = 1.2157 [©.3024]

Table 4: Estimation results for a marginal model of DLCOZ2;, conditional on cointegration.

EQ(3) Modelling DLCO2 by OLS
The estimation sample is: 1959(2) - 222(3)

Coefficient Std.Error t-value t-prob

DLCO2_1 -0.1069065 ©.06093 -1.75 ©.6e866
DLCO2_2 -9.129611 ©.06077 -2.13 ©.9340
DLCO2_3 9.0494536 ©.e6163 8.862 ©.4231
DLCO2_4 ©.304635 ©.06112 4.98 ©.0000
Constant -9.0162792 ©.01208 -1.35 @.1799
DTEMP_1 8.00151583 ©.0085009 3.83 ©.8027
DTEMP_2 8.00126003 ©.0004879 2.58 ©.01e4
DTEMP_3 ©.00141311 ©.8004451 3.17 e.e017
DTEMP_4 8.00125382 ©.0004080 3.87 ©.0024
ecmTEMPLCO2_1 -0.0008536082 ©.€004312 -1.24 @.2150
Seasonal ©.00590183 0.001232 4.79 ©.0000
Seasonal_1l 8.00716308 ©.001634 4.38 ©.0000
Seasonal_2 -8.00369491 ©.001288 -2.87 ©.0045
sigma 8.00092758 RSS 9.000207357483
R"2 ©.985325 F(12,241) = 1348 [@.e80]**
Adj.R"2 9.984594 1log-likelihood 1419.93
no. of observations 254 no. of parameters 13
mean(DLCO2) 8.008109223 se(DLCO2) ©.00747327
AR 1-5 test: F(5,236) = 1.8565 [0.3787]



Table 5: Results for the Johansen-method for cointegration analysis.

I(1) cointegration analysis, 1959(2) - 2822(3)

eigenvalue loglik for rank

1513.841 e

9.13991 1532.982 1

©.0056153 1533.697 2

H@:rank<= Trace test [ Prob]
0 39.712 [@.000] **

1 1.4303 [0.232]

Asymptotic p-values based on: Unrestricted trend and constant
Unrestricted variables:

Constant

Trend

Number of lags used in the analysis: 5

beta (scaled on diagonal; cointegrating vectors in columns)

TEMP 1.e080 -8.010200
LCO2 -5.896 1.6600
alpha

TEMP -8.54616 -8.30961
Lcoz 0.00023 -9.010983

Standard errors of alpha, conditional om r=1
TEMP 0.088758
LCOo2 0.e00647

Table 6: Facsimile from article by Ericsson and MacKinnon.

304 Neil R. Ericsson and James . MacKinnon

Table 3. Response surface estimates for critical values of the ECM test of cointegration x.(k): with a

constant term.

k Size (%) g (52 & iy fi3 &
1 1 —3.4307 (0.0008) —56.52 —4.7 —-10 0.007%0
5 —2 8617 (0.0003) —281 —32 37 0.00431
10 —2.5668 (0.0003) —1.56 211 —29 0.00332
2 1 —3.7948 (0.0008) —T7.87 —36 —28 0.00847
5 —32145 (0.0003) —-321 20 17 0.00438
10 —2.9083 (0.0002) —1.55 19 —25 0.00338
i 1 —4.0947 (0.0003) —£.59 —20 —65 0.00857
3 —3.5057 (0.0003) —327 1.1 -34 0.00462
10 —3.1924 (0.0002) —-123 21 -39 0.00364

—4 5 55 (0.0008



