Postponed exam in: ECON 4160: Econometrics: Modelling and Systems Estimation

Day of exam: 11 January 2023
Time of day: 09:00-14:00
This is a 5 hour home exam.

Guidelines:

In the grading, question A gets 50% and B 50 .

Question A (50 \%)

1. Consider the linear deterministic difference equation

$$
\begin{equation*}
y_{t}=1.0+1.2 y_{t-1}-0.3 y_{t-2} \tag{1}
\end{equation*}
$$

What is the condition for global asymptotical stability of this equation?
A: The definition of globally asymptotically stability of the equation is that any solution of the homogenous equation:

$$
y_{t}^{h}-1.2 y_{t-1}^{h}+0.3 y_{t-2}^{h}=0
$$

approaches zero as $t \rightarrow \infty$. The condition for (global asymptotical) stability is that the two roots of the associated characteristic equation

$$
\lambda^{2}-1.2 \lambda+0.3=0
$$

have modulus less that one.
2. Assume that $y_{-1}=0$ and $y_{0}=1$. Solve the equation for $t=1, t=2$ and $t=3$.

A:

$$
\begin{aligned}
& y_{1}=1.0+1.2 y_{0}-0.3 y_{-1}=1.0+1.2=2.2 \\
& y_{2}=1.0+1.2 y_{1}-0.3 y_{0}=1.0+1.2 * 2.2-0.3 * 1=3.34 \\
& y_{3}=1.0+1.2 y_{2}-0.3 y_{1}=1.0+1.2 * 3.34-0.3 * 2.2=4.348
\end{aligned}
$$

3. Show that the condition is satisfied for equation (1).

A: We have from mathematics, that the formula for the two characteristic roots is:

$$
\lambda_{1,2}=\frac{1.2 \pm \sqrt{1.2^{2}-4 * 0.3}}{2}
$$

which gives :

$$
\begin{aligned}
& \lambda_{1}=\frac{1.2+\sqrt{1.2^{2}-4 * 0.3}}{2}=0.84495 \\
& \lambda_{2}=\frac{1.2-\sqrt{1.2^{2}-4 * 0.3}}{2}=0.35505
\end{aligned}
$$

As the two roots are real, positive, and less than one, the condition is satisfied.
4. What is the number, denoted by y^{*}, that the soltution approaches as $t \rightarrow \infty$?

A:The stationary solution value y^{*} does indeed exist, as the condition for (global asymptotical) stability is satisfied. It is found as:

$$
\begin{aligned}
y^{*} & =1.0+1.2 y^{*}-0.3 y^{*} \\
y^{*} & =\frac{1}{1-1.2+0.3}=10
\end{aligned}
$$

5. Consider the linear stochastic difference equation;

$$
\begin{equation*}
Y_{t}=1.0+1.2 Y_{t-1}-0.3 Y_{t-2}+\epsilon_{t} \tag{2}
\end{equation*}
$$

where the time series $\epsilon_{t}, t=0, \pm 1, \pm 2, \pm 3, \ldots$, is white-noise. Is the time series Y_{t} generated by (2) weakly (or covariance) stationary? Explain briefly.
$\mathbf{A}:(2)$ is a second order AR-process. The condition that it generates a stationary time series is that none of the characteristic roots of the associated homogenous equation has modulus equal to 1 . When we consider the causal solution, the condition is that both roots have modulus less than one (the same condition as for global asymptotical stability of the (solution of) the difference equation).
6. Assuming stationarity, show that $E\left(Y_{t}\right)=y^{*}$.

A:

$$
E\left(Y_{t}\right)=1.0+1.2 E\left(Y_{t-1}\right)-0.3 E\left(Y_{t-2}\right)
$$

and using that, by definition, the unconditional expectation of a stationary time series does not depend on time (as such):

$$
\begin{aligned}
& E\left(Y_{t}\right)=1.0+1.2 E\left(Y_{t}\right)+0.3 E\left(Y_{t}\right) \\
& E\left(Y_{t}\right)=\frac{1}{1-1.2+0.3}=10 \equiv y^{*}
\end{aligned}
$$

7. Calculate the responses of Y_{t}, Y_{t+1}, Y_{t+2} and Y_{t+3} with respect to a small change (so called shock) in ϵ_{t}.
A: By direct reasoning, and making use of the fact that equation (2) holds in all time periods:

$$
Y_{t+j}=1.0+1.2 Y_{t+j-1}-0.3 Y_{t+j-2}+\epsilon_{t+j}, j=0,1,2,3 \ldots \ldots
$$

we get:

$$
\begin{aligned}
j & =0 \Rightarrow \delta_{0}=\frac{\partial Y_{t}}{\partial \epsilon_{t}}=1 \\
j & =1 \Rightarrow \delta_{1}=\frac{\partial Y_{t+1}}{\partial \epsilon_{t}}=1.2 \frac{\partial Y_{t}}{\partial \epsilon_{t}}=1.2 \\
j & =2 \Rightarrow \delta_{2}=\frac{\partial Y_{t+2}}{\partial \epsilon_{t}}=1.2 \frac{\partial Y_{t+1}}{\partial \epsilon_{t}}-0.3 \frac{\partial Y_{t}}{\partial \epsilon_{t}}=1.14 \\
j & =3 \Rightarrow \delta_{3}=\frac{\partial Y_{t+3}}{\partial \epsilon_{t}}=1.2 \frac{\partial Y_{t+2}}{\partial \epsilon_{t}}-0.3 \frac{\partial Y_{t+1}}{\partial \epsilon_{t}}=1.032
\end{aligned}
$$

Another method uses lag-operator notation to express (2) as:

$$
Y_{t}\left(1 L^{0}-1.2 L+0.3 L^{2}\right)=1.0+\epsilon_{t}
$$

and note that the solution can be expressed as

$$
Y_{t}=\left(\delta_{0} L^{0}+\delta_{1} L+\delta_{2} L^{2}+\ldots\right)\left(1.0+\epsilon_{t}\right)
$$

where $\left(\delta_{0} L^{0}+\delta_{1} L+\delta_{2} L^{2}+\ldots.\right)$ denotes the inverse of the polynomial $\left(1-1.2 L+0.3 L^{2}\right)$. Therefore:

$$
\left(1-1.2 L+0.3 L^{2}\right) \cdot\left(\delta_{0} L^{0}+\delta_{1} L+\delta_{2} L^{2}+\ldots\right)=1
$$

by definition of the inverse. But, conveniently, we can write $1 \equiv 1 L^{0}+0 L+0 L^{2}+\ldots \ldots$, hence:

$$
\left(1-1.2 L+0.3 L^{2}\right) \cdot\left(\delta_{0} L^{0}+\delta_{1} L+\delta_{2} L^{2}+\ldots\right)=1 L^{0}+0 L+0 L^{2}+\ldots \ldots
$$

from which the dynamic responses can be obtained (similar to the method on page 139

$$
\begin{array}{ccccc}
L^{0}: & 1 \cdot \delta_{0}=1 & \Longrightarrow & \delta_{0}=1 \\
\text { in DEEMM }) & \Longrightarrow & \delta_{1}=1.2 \\
L^{1}: & \left(-1.2 \delta_{0}+\delta_{1}\right) L=0 & \Longrightarrow & \delta_{2}=1.2 * 1.2-0.3=1.14 \\
L^{2}: & \left(-1.2 \delta_{0} \delta_{1}+0.3 \delta_{0}+\delta_{2}\right) L^{2}=0 & \Longrightarrow & \delta_{3}=1.2 * 1.14-0.3 * 1.12=1.032
\end{array}
$$

8. Equation (2) is a special case of the 2 nd order difference equation

$$
\begin{equation*}
Y_{t}=\phi_{0}+\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+\epsilon_{t} \tag{3}
\end{equation*}
$$

where $\epsilon_{t}, t=0, \pm 1, \pm 2, \pm 3, \ldots$, is an exogenous stationary time series (not necessarily white-noise). Explain why (3) can be interpreted as a final form equation which is derived from a VAR with first-order dynamics.
A: By definition a final form equation for Y_{t} is an equation that only has lagged values of Y_{t} and exogenous variables on the right hand side. (3) is therefore interpretable as a final form equation for Y_{t} when Y_{t} is generated by a VAR with two endogenous variables, namely Y_{t} and (for example), X_{t}, and with first-order dynamics.

Question B (50 \%)

Consider the SEM (4)-(6).

$$
\begin{align*}
w_{t}-a_{12,0} q_{t}-a_{13,0} p_{t} & =a_{10}+a_{11,1} w_{t-1}+a_{12,1} q_{t-1}+a_{13,1} p_{t-1}+\gamma_{11} z_{t}+\gamma_{12} u_{t}+\epsilon_{w t} \tag{4}\\
-a_{21,0} w_{t}+q_{t} & =a_{20}+a_{21,1} w_{t-1}+a_{22,1} q_{t-1}+\gamma_{21} z_{t}+\gamma_{22} u_{t}+\epsilon_{q t} \tag{5}\\
p_{t} & =0.6 q_{t}+0.4 z_{t} \tag{6}
\end{align*}
$$

To aid interpretation we can define w_{t} as wage compensation per hour and let q_{t} and p_{t} denote two different domestic price indices: q_{t} is a producer price index (for value added for example). p_{t} denotes a consumer price index (cost of living index). w_{t}, q_{t} and p_{t} are the endogenous variables of the model. Finally, let z_{t} denote a price index on foreign goods, and let u_{t} denote a measure of the rate of unemployment (in the domestic economy). Assume that both z_{t} and u_{t} are pre-determined variables.

The two error-terms are Gaussian multivariate white-noise:

$$
\begin{equation*}
\binom{\epsilon_{w t}}{\epsilon_{q t}} \sim \operatorname{IIN}(0, \Sigma) \tag{7}
\end{equation*}
$$

where the elements of the covariance matrix $\boldsymbol{\Sigma}$ are $\sigma_{w}^{2}, \sigma_{q}^{2}$ and $\sigma_{w q}$.

1. Discuss the identification of the model equations in the following cases:
(a) There are no linear restrictions on the coefficients of the model (remember that a zero-restriction on an individual coefficients is a special case of a linear restriction).
A:Using the order condition, the requirement for exact identification of (4) is that the are $3-1=2$ independent restrictions. This restriction is not satisfied, and therefore (4) is not identified. In equation (5) p_{t} and p_{t-1} are exclude, so the order condition for exact identification is satisfied for equation (5). For the rank condition to be satisfied the array of coefficients of p_{t} and p_{t-1} from (4) and (6)

$$
\left(\begin{array}{cc}
a_{13,0} & a_{13,1} \\
1 & 0
\end{array}\right)
$$

has to have rank=2, which is indeed the case here. Hence (5) is identified.
(b) There are restrictions on the coefficients of the model, namely $a_{12,0}=0$ and $a_{13,0}+a_{13,1}=0$ and $\gamma_{11}=0$ and $\gamma_{22}=0$.
A: The first three restrictions apply to (4), which is therefore over-identified on the order-condition. The fourth is a restriction on (5), which makes that equation over-identified. Not shown, but the rank condition is clearly identified.

The SEM corresponding to the case in Question B1(b) can be expressed as:

$$
\begin{align*}
w_{t}-a_{13,0} \Delta p_{t} & =a_{10}+a_{11,1} w_{t-1}+a_{12,1} q_{t-1}+\gamma_{11} z_{t}+\gamma_{12} u_{t}+\epsilon_{w t} \tag{8}\\
-a_{21,0} w_{t}+q_{t} & =a_{20}+a_{21,1} w_{t-1}+a_{22,1} q_{t-1}+\gamma_{21} z_{1 t}+\gamma_{22} z_{t}+\epsilon_{q t} \tag{9}\\
p_{t} & =0.6 q_{t}+0.4 z_{t} \tag{10}
\end{align*}
$$

with (7) holding as before. We have time series data for the variables of the model. Table 1 and Table 2 show estimation results for equation (8) using OLS and IV/2SLS estimation.
2. Explain why the OLS estimation results are affected by simultaneity bias.
3. Explain why the IV/2SLS results are not affected by simultaneity bias.
4. What is the interpretation of the Specification test reported with the IV/2SLS estimation results?
5. Table 3 shows the results of ADF tests for the individual times series (in level form). Explain how you can use the information to test the null hypotheses of I(1)-ness for each of the variables, and give your conclusion.
In order to save space we do not show the ADF tests for the differences of the variables. In the following you can take as a granted that none of the first differences are $I(1)$, and in particular that $D p \sim(0)$.
6. Imagine that you share the data with another student who has been given the task of testing the hypothesis of a relationship between the wage, w, the foreign price index, z, and the unemployment measure, u. The student has produced the model shown in Table 4 and comes to you to get confirmation that Table 4 represents formally correct evidence of the existence a long-run relationship. What would your answer be?
7. Based on the results shown in Table 5 how can you test the null hypothesis of no relationship between w, z, and u, and what is your conclusion?

Tables with estimation results and facsimile of table with critical values for ECM-test

Table 1: Estimation results for (8) using OLS

EQ(1) Modelling w by OLS The dataset is: Postponed_QB_d.in7 The estimation sample is: 2-101			
	Coefficient	Std.Error t-value	t-prob
w_1	0.836864	0.0337324 .8	0.0000
Constant	0.115875	0.27060 .428	0.6694
Dp	0.987819	$0.05421 \quad 18.2$	0.0000
q_1	0.168720	0.040524 .16	0.0001
u	-0.468979	$0.04383-10.7$	0.0000
sigma	0.469422	RSS	20.933921
$\mathrm{R}^{\wedge} 2$	0.99891	$F(4,95)=2.176 e$	+04 [0.000]**
Adj.R^2	0.998864	log-likelihood	-63.7039
no. of observation	100	no. of parameters	5
mean(w)	-22.0388	se(w)	13.9251
AR 1-2 test:	$F(2,93)=$	0.57631 [0.5640]	
ARCH 1-1 test:	$F(1,98)=$	0.69016 [0.4081]	
Normality test:	Chi^2(2)	3.0483 [0.2178]	
Hetero test:	$F(8,91)=$	0.89443 [0.5246]	
Hetero-X test:	$F(14,85)=$	1.1678 [0.3147]	

Table 2: Estimation results for (8) using IV/2SLS

Table 3: Dickey-Fuller tests of unit-root.

Unit-r	root tests	poned_QB_d	in7				
The sam	mple is: 4-1	101 (101 ob	bservation	ns and 5 va	riables)		
w: ADF	tests ($\mathrm{T}=98$,	Constant;	5\%=-2.89	1\%=-3.50)			
D-lag	t-adf	beta Y_1	sigma	t-DY_lag	t-prob	AIC	F-prob
2	-0.4456	0.99580	1.267	0.8020	0.4246	0.5132	
1	-0.3367	0.99686	1.265	3.588	0.0005	0.4996	0.4246
0	0.1189	1.0012	1.340			0.6063	0.0018
q: ADF	tests ($\mathrm{T}=98$,	Constant;	5\%=-2.89	1\%=-3.50)			
D-lag	t-adf	beta Y_1	sigma	t-DY_lag	t-prob	AIC	F-prob
2	-0.4638	0.99670	0.7687	0.9848	0.3272	-0.4862	
1	-0.2956	0.99793	0.7685	5.967	0.0000	-0.4964	0.3272
0	0.5927	1.0048	0.8964			-0.1985	0.0000
p: ADF	tests ($T=98$,	Constant;	$5 \%=-2.89$	1\%=-3.50)			
D-lag	t-adf	beta Y_1	sigma	t-DY_lag	t-prob	AIC	F-prob
2	-0.4547	0.99527	0.9760	1.248	0.2150	-0.008677	
1	-0.2772	0.99714	0.9788	3.448	0.0008	-0.01264	0.2150
0	0.2058	1.0022	1.033			0.08487	0.0018
u: ADF	tests ($T=98$,	Constant;	$5 \%=-2.89$	1\%=-3.50)			
D-lag	t-adf	beta Y_1	sigma	t-DY_lag	t-prob	AIC	F-prob
2	-2.550	0.81146	0.9150	-1.371	0.1735	-0.1376	
1	-3.122*	0.77974	0.9193	-0.1256	0.9003	-0.1382	0.1735
0	-3.392*	0.77667	0.9145			-0.1585	0.3911
z: ADF	tests ($T=98$,	Constant;	5\%=-2.89	1\%=-3.50)			
D-lag	t-adf	beta Y_1	sigma	t-DY_lag	t-prob	AIC	F-prob
2	-0.9085	0.98174	1.490	1.035	0.3033	0.8377	
1	-0.7803	0.98445	1.491	1.299	0.1972	0.8286	0.3033
0	-0.6045	0.98803	1.496			0.8258	0.2568

Table 4: Estimation results for a model of w_{t}

EQ(3) Modelling w by OLS The dataset is: Postponed_QB_d.in7 The estimation sample is: 2-101				
	Coefficient	Std.Error	t-value	t-prob
Constant	-30.4086	1.629	-18.7	0.0000
z	1.53420	0.06069	25.3	0.0000
u	-2.34139	0.3313	-7.07	0.0000
sigma	4.47054	RSS		1938.61701
R^2	0.899014	$F(2,97)=$	431.8	[0.000]**
Adj. $\wedge^{\wedge} 2$	0.896932	log-likelih	hood	-290.122
no. of observation	ons 100	no. of par	ameters	3
mean(w)	-22.0388	se(w)		13.9251
AR 1-2 test:	F (2,95)	95.783 [0	[0.0000]**	
ARCH 1-1 test:	F (1, 98)	30.999 [0	[0.0000]**	
Normality test:	Chi^2(2)	6.9785 [0	[0.0305]*	
Hetero test:	F (4,95)	2.6189 [0	[0.0397]*	
Hetero-X test:	F $(5,94)$	2.0759 [0	0.0752]	

Table 5: Estimation results for a model of $D w_{t}$

Table 6: Facsimile from article by Ericsson and MacKinnon.

Table 3. Response surface estimates for critical values of the ECM test of cointegration $\kappa_{c}(k)$: with a constant term.

k	Size (\%)	θ_{∞}	(s.e.)	θ_{1}	θ_{2}	θ_{3}	$\hat{\sigma}$
1	1	-3.4307	(0.0006)	-6.52	-4.7	-10	0.00790
	5	-2.8617	(0.0003)	-2.81	-3.2	37	0.00431
	10	-2.5668	(0.0003)	-1.56	2.1	-29	0.00332
2	1	-3.7948	(0.0006)	-7.87	-3.6	-28	0.00847
	5	-3.2145	(0.0003)	-3.21	-2.0	17	0.00438
	10	-2.9083	(0.0002)	-1.55	1.9	-25	0.00338
3	1	-4.0947	(0.0005)	-8.59	-2.0	-65	0.00857
	5	-3.5057	(0.0003)	-3.27	1.1	-34	0.00462
	10	-3.1924	(0.0002)	-1.23	2.1	-39	0.00364

