
Exam in: ECON 4160: Econometrics: Modelling and Systems Estima-
tion. Version with annotations for evaluators.

Day of exam: 1 December 2022

Time of day: 09:00—14:00

This is a 5 hour home exam.

Guidelines:
In the grading, question A gets 33 %, B 33 % and C 33 %.

Question A (33 %)

1. Consider the cobweb model with Qt (quantity) and Pt (price) as endogenous variables.
Show that the autoregressive coefficient in the final form equation for Pt is the ratio
between the slope coefficients of supply (c) and demand (a):

φ1 =
c

a
, (1)

where we have used φ1 to denote the autoregressive coefficient in the final form equa-
tion for Pt.
A: The cob-web model has been a red-thread in the course. For this question is does
not matter whether the deterministic or stochastic version of the model is used. The
deterministic version that we have used in teaching and in the book has been:

Qt = aPt + bt, a < 0 , demand
Qt = cPt−1 + d, b > 0, supply

The term and concept of final form equation has also been central in the course and
in the curriculum.

The final form of equation for Pt in the cobweb-model: Re-normalize the demand-
equation

Pt =
1

a
Qt −

1

a
bt

and substitute Qt by the right hand side of the supply equation to obtain the final
form equation of Pt as:

Pt =
c

a
Pt−1 +

d

a
− bt
a

= φ1Pt−1 +
d− bt
a

where φ1 represents the notation we have used for the first autoregressive coefficient.

2. Consider more specifically the stochastic version of the cobweb model, with white-
noise random disturbances in the two equations. What is the condition for weak
stationary of the time series Pt and Qt which are generated by the respective final
equations?
A: The final form equation for Pt is a first order stochastic difference equation. The
condition for stationarity:

| φ1 |6= 1

If we restrict the data generation to the casual solution, the condition is:

−1 < φ1 < 1
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Given that the casual solution has been used 99 % of the time, −1 < φ1 < 1 is
a good enough answer. Since the homogenous parts of the final form equations of
the two endogenous variables are identical (general result),the same condition implies
stationarity of Qt. Intuitively: The two endogenous variables of the model cannot
have their separate stability/stationarity properties.

3. Consider the particular special case where the final form equation for Pt is:

Pt = −0.2Pt−1 + 1.2 + εPt, t = 0, 1, ...., T, (2)

where εPt is white-noise. Assume, abstracting from estimation, that you are given
the task of forecasting Pt for the period t = T + 1, T + 2, ..., T +H where H denotes
the forecast horizon.

(a) Draw (rough) sketches of the forecast function E(YT+h | IT ) , h = 1, 2, ...,H for
two different initial conditions: PT = 0.5 and PT = 1.5.
HINT: Since the absolute value of the autocorrelation coefficient is relatively
small, setting H to for example 5 may be enough to get a clear picture.
A: A rough picture (simulated, since I cannot easily do a real drawn sketch in
the way the student will do) could be:

PT  =0.5  PT  = 1.5 

1959 1960 1961 1962 1963 1964 1965 1966

E(Pt) = P* = 1

PT  =0.5  PT  = 1.5 

(b) What does the two forecasts have in common, and why?
A: The two forecasts have in common that they have the same (asymptotic)
“endpoint”, which is identical to the unconditional expectation. This is due to the
stationarity of the series which implies that forecasts are equilibrium correcting
(“glide-path” analogy). The oscillations are also common, and are due to the
negative autoregressive coefficient.

4. Assume that in period t = T + 1, ie, in the first period after you have produced your
forecast, there is a structural break in the economy (ie., in the DGP) so that the final
form equation becomes:

Pt = −0.2Pt−1 + 2.4 + εPt, t = T + 1, ...., T +H, (3)

with no change in the distribution of εPt.
Explain how this break in the DGP will affect the forecast errors of the dynamic
forecasts E(PT+h | IT ), h = 1, 2, ...,H, for the case where the initialization price was
PT = 0.5.
A: The forecast errors (defined as PT+h − E(PT+h | IT )) have positive biases. After
the break E(Pt) = 2 while the forecast still “believe that it is 1.

5. Imagine that in period T + 1, you are asked to update your forecast. Assume that
you can observe PT+1 = 2, but that you do not yet know the coefficient values in the
new final form equation (3). Can you suggest ways of robustifying the forecasts for
t = T + 2, ..., T +H which are conditional on PT+1 = 2?
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A: Intercept correction is one possibility; In practice can add the observed forecast
error for period T +1 to the forecasting function used for the updated forecast. Since
the structural break is in the long-run mean of Pt, that will reduce the forecast-error
compared to do correction.

Some possible details: Conditional on PT+1 = 2 the economy evolves according to
the new DGP:

PT+2 = −0.2 ∗ 2 + 2.4 + εPT+2 = 2 + εPT+2

while the ‘ ‘raw” forecast from the model is:

P fT+2 = −0.2 ∗ 2 + 1.2 = 0.8

so on average (εPT+2 ≈ 0) will have a forecast-error of:

PT+2 − P fT+2 = 2− 0.8 = 1.2

The forecast error you observed for T + 1 was:

eT+1 = 2− (−0.2 ∗ 0.5 + 1.2) = 0.9

The intercept-corrected forecast T + 2 is then:

P̃ fT+2 = −0.2 ∗ 2 + 1.2 + eT+1

= −0.2 ∗ 2 + 1.2 + 0.9 = 1.7

and the forecast-error of the so called robustified forecast (set (εPT+2 ≈ 0) ) will be

PT+2 − P̃ fT+2 = 2 + εPT+2 − 1.7 = 0.3

which is already much better than the “raw” error 1.2.

Another kind of robustification is to increase the forecast confidence region, to allow
for the “more uncertainty” that a forecasted may induce form observing the first
large forecast error. This may be the only option in the case where we do not know
yet that T + 1 error case caused by a permanent break. (Other forms of robust
forecast, like "over-differencing” as an kind of implied intercept-correction are relevant,
if mentioned, but it was not time to demonstrate them in class).

Question B (33 %)

Consider, as a generalization of the cobweb model, the partial equilibrium model of Qt and
Pt with X1t and X2t as strictly exogenous explanatory variables:

Qt + a12,0Pt = a10 + a11,1Pt−1 + a12,1Qt−1 + γ11X1t + γ12X2t + εQt, (4)
a21,0Qt + Pt = a20 + a21,1Pt−1 + a22,1Qt−1 + γ21X1t + γ22X2t + εPt, (5)

To complete the econometric model specification, it is assumed that the error-terms εQt and
εPt are jointly normally distributed, conditional on Qt−1, Pt−1, X1t and X2t. The variances
of the error-terms are denoted ω2

Q and ω2
P , and the covariance is denoted ωPQ.

1. Give an example of a set of parameter restrictions that would define a recursive model,
as a special case of the SEM we have specified.
A: For example a21,0 = 0 and ωPQ = 0.
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2. Assume that the simultaneous equations (4)-(5) can be solved (ie., we do not con-
sider a recursive model). The reduced form model is a VAR. Denote the variances
and the covariance of the VAR error-terms by σ2Q, σ

2
P , and σPQ. The VAR has an

equivalent statistical representation which consists of a conditional model equation
and a marginal model equation. Describe the structure of those two model equations
for the case where we are interested in the conditional model of Qt given Pt.
NOTE: With the exception of the coefficient of Pt, call it β1, you are not expected to
give algebraic expressions for the parameters of the conditional and marginal model
equations. It is enough to explain verbally which variables are on the right hand side
of each of the two model equations.
A: On the RHS of the conditional model for Qt we have Pt with coefficient β1 =
σPQ

σ2
P
,and Pt−1, Qt−1, X1t, X2t, constant and error-term. On the RHS of the marginal

equation we have Pt−1, Qt−1, X1t, X2t constant and error-term-

3. Pt is an endogenous explanatory variable in the conditional model equation. Does
this imply that the OLS estimator of β1 is inconsistent? Explain you answer.
A: No, by valid conditioning Pt is uncorrelated with the error-term in the conditional
model equation.

4. We now return to the SEM we specified at the start of this question and discuss
identification. In this question it assumed that the variances and the covariance of the
SEM error-terms are unrestricted. Discuss identification in the following situations:

(a) γ12 = γ22 = 0; all other coefficients non-zero. A: (4) and (5) not identified (order
and rank apply)

(b) γ12 = 0; all other coefficients non-zero. A: (4) identified, (5) is not identified,

(c) a12,1 = γ11 = γ22 = 0; all other coefficients non-zero. A: (4) over-identified, (5)
is identified,

5. It is custom to say about the 2SLS estimator that it makes use of “optimal instru-
mental variables”. Can you give an explanation of the meaning of that statement?
A: The statement is relevant for over-id model equations. The optimality of the
instruments stems from the first stage, where the reduced form coefficients of the
instrumental variables are estimated by minimization of the sum of squared residuals,
so the weights attached to each individual IV is optimal in that meaning.

Question C (33 %)

We have a quarterly temperature time series, TEMPt.1 In line with standard notation, the
quarterly difference is denoted DTEMPt, ie., DTEMPt = TEMP1 − TEMPt−1.

1. Explain how the information in Table 1 can be used to conclude, based on the use of
formal statistical tests, that TEMPt ∼ I(1) .
A: Important to use a ADF statistic that is based on a not-misspecified Dicky-Fuller
regression, as far as it is possible to see from the output. So, rejecting the null
hypothesis for TEMPt using the ADF for D-lag 0 is a wrong answer. The use of the
row with D-lag 4 is a good answer, and leads to not rejecting. The table for DTEMPt
is simpler since all ADF-statistics reject. But formally, the rows for D-lag 3 and D-lag
4 give correct ADF-test to use.

2. We also have a quarterly time series of CO2 in the atmosphere on Mauna Loa (Hawaii)
in the northern Pacific Ocean. Denote the natural logarithm of this variable by LCO2.
Assume that LCO2t ∼ I(1). Explain how the information in Table 2 can be used

1Western-hemisphere land-ocean temperature in degrees Celsius as a deviation from the mean temper-
ature in the period 1951-1980.
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to conclude, based on the use of formal statistical tests, that TEMPt and LCO2t are
cointegrated.
A: This is an (unrestricted) conditional model in ECM-form. The ECM test and the
critical values from the Ericsson and MacKinnan paper can be used. The value of the
tECM test is -5.01 which is significant. It supports the validity of the test, that the
test statistic for residual autocorrelation is insignificant.

3. Explain why the implied ECM variable is:

ecmTEMPLCO2t = TEMPt − 4.8LCO2t, (6)

where the cointegration parameter is given with one decimal point.
A:

1.57595

0.329043
= 4.7895 ≈ 4.8

4. Table 3 shows the estimation results for the model of DTEMPt conditional on
TEMPt and LCO2t being cointegrated, while Table 4 shows the results for a marginal
equation for DLCO2.

(a) Logically speaking, why cannot both TEMPt and LCO2t be weakly exogenous
with respect to the cointegration parameter?
A: Granger’s representation theorem: Cointegration implies equilibrium correc-
tion in at least one of variable in the cointegrated system, hence both variables
cannot be weakly exogenous.

(b) How can you use Table 3 and Table 4 to assess the possible weak exogeneity
of one of the variables DTEMPt and DLCO2t with respect to the cointegration
parameter, and what is your conclusion?
A: Already the significance of the t-value of ecmTEMLCO2t−1 in Table 3 is
evidence that DTEMPt is not weakly exogenous. Furthermore, as the ECM-
variable is insignificant in Table 4, we have evidence that DLCO2t is weakly
exogenous, while DTEMPt is not weakly exogenous. This is a good enough
answer at this level.
However, there is a weakness in that argument as well, since the definition of weak
exogeneity is with respect to the marginal equations of the variable in question.
And we do not have the marginal equation for DTEMPt here! However, an
indirect argument is possible. First, we have the marginal equation for DLCO2t
with an estimated marginal equilibrium correction coefficient, call it τ2. The null
hypothesis of τ2 = 0 cannot be rejected in Table 4. As regression (conditional
modelling) theory tells us, the adjustment coefficient in Table 3 is in principle:

α = τ1 − κτ2

where τ1 is the equilibrium correction coefficient in the marginal equation for
DTEMPt, and κ is the regression coefficient in the model of DTEMPt conditional
on DLCO2t. Now, as τ2 = 0, it follows that the significant ECM term in Table
3 is indeed also evidence of an (underlying) significant equilibrium correction
coefficient in the marginal equation for DTEMPt.

5. Table 5 shows results obtained by using the Johansen-method for cointegration anal-
ysis. Are these results (by and large) in support of the results obtained earlier in this
question?
A: First, a remark that this method does not assume anything about weak exogeneity
with respect to cointegration parameters is a good remark. Then to the test: The
test of cointegration in Table 5 is the Trace test. It rejects no-cointegration, rank
=0, against one relationship, rank =1 (two would imply that the two variables were
I(0), an internal logical inconsistency). Hence, the Trace-test is supportive of how we
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concluded by using the ECM-test. Since we have rank=1 and one single relationship,
the vector of cointegration parameters is identifed (subject to normalization on one
of the variables). The estimated ECM-variable from the Johansen method is:

JohaecmTEMPLCO2t = TEMPt − 5.9LCO2t (7)

so that the Johansen-estimated cointegration coefficient is larger in magnitude than
that of the ECM estimate. The difference is not trivial, but not so large that there
is any contradiction here. We are looking at finite sample results from two different
estimators.

Finally there is direct evidence in Table 5 in support of weak WE of LCO2t, as
the standard error of the estimated alpha of LCO2 is so large that the marginal
equilibrium correction coefficient is not significantly different from zero.
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Tables with estimation results and facimile of table with critical values for
ECM-test

Table 1: Dickey-Fuller tests of unit-root. TEMPt and DTEMPt.

Table 2: Estimation results for a model of DTEMPt
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Table 3: Estimation results for a model of DTEMPt, conditional on cointegration.

Table 4: Estimation results for a marginal model of DLCO2t, conditional on cointegration.
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Table 5: Results for the Johansen-method for cointegration analysis.

Table 6: Facsimile from article by Ericsson and MacKinnon.
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