Exam in: ECON 4160: Econometrics: Modelling and Systems Estimation

Day of exam: 11 January 2024 (postponed exam)

Time of day: 09:00-14:00

This is a 5 hour home exam.

Guidelines:

In the grading, question A gets 50 %, B 50 %.

Question A (50 %)

Assume that the time series Y_t is generated by the difference equation:

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \epsilon_t, t = 1, 2, \dots, T,$$
(1)

where ϵ_t denotes an error-term which is gaussian white-noise and linearly uncorrelated with Y_{t-1} and Y_{t-2} . In this question you can take as given that Y_t is a weakly stationary time series.

1. Explain in words why the OLS estimators of the parameters of (1) are consistent under the assumptions given.

Table 1 contains estimation results for model (1), including a battery of standard residual mis-specification tests and results of dynamic analysis of the estimated equation. The data set is artificial (computer generated) and the model equation corresponds to the DGP.

- 2. Explain briefly why the results of the mis-specification test are as one would expect, given the information above.
- 3. Where in the output do you find the relevant information about the stationarity of Y_t ?
- 4. Show that the equation:

$$\Delta Y_t = \phi_0 + \phi_1^{\dagger} \Delta Y_{t-1} + \gamma Y_{t-1} + \epsilon_t, t = 1, 2, \dots, T.$$
(2)

is a re-parameterization of (1) and explain why table 2 is an example of the reparameterization.

5. Explain why the following equation:

$$\Delta Y_t = \phi_1 \Delta Y_{t-1} + \phi_2 \Delta Y_{t-2} + \Delta \epsilon_t, t = 1, 2, \dots, T, :$$
(3)

is not a re-parameterization of (1), and explain why table 3 does not provide reliable estimates of the parameters ϕ_1 and ϕ_2 .

- 6. Returning to model (1) and the estimated model equation in table 1.
 - (a) What are the optimal forecasts of Y_{101} , Y_{102} and Y_{103} , conditional on $Y_{100} = -0.5$ and $Y_{99} = 1.5$?
 - (b) Assume that the forecast horizon is increased towards infinity. Is it then true that the optimal forecast will approach E(Y) = 0.105 asymptotically and in a cyclical manner? Explain your answer.

Question B (50 %)

The empirical relationship between aggregate private consumption expenditure and disposable income for households is important to include in an explanatory macroeconomic model for Norway. In the following quarterly time series for these two variables are used.

CP is used to denote consumption while INC denotes income. Both variables are deflated by the Norwegian consumer price index, hence they are measured in real terms (millon 2021kroner to be precise).

Existing research has shown that the explanation of aggregate consumption is improved if a measure of households' wealth is included. We denote it by W. Also this variable is measured in millon 2021-kroner.

In the following, the natural logarithms of the variables are denoted LCP, LINC and LW. You may take as granted that all three variables are I(1)-series.

1. Table 4 contains results for the Johansen-method to cointegration analysis. The results were based on the estimation of a VAR with the three endogenous variables: LCP, LINC and LW. The VAR was specified with fifth order dynamics, and it was not mis-specified.

Explain why the output supports that the number of cointegration vectors (r) can be set to r = 1.

- 2. Table 5 shows the estimated cointegration parameters (beta in the output), and the associated vector with adjustment coefficients (alpha in the output).
 - (a) Do you find the beta vector to be economically meaningful?
 - (b) A potential comment to the estimated alpha-coefficients is that they indicate that the Johansen-method was a better test of cointegration than the ECM-test in this case. Do you agree?
- 3. Conditional on cointegration, an Unrestricted Reduced Form (URF) system can be formulated. The system has DLCP, DLINC and DLW (the "D" denotes difference as usual) as endogenous variables, and contains four lags of each of them as explanatory variables. In addition, each row of the URF includes an intercept and the first lag of the variable:

$$ECM = LCP - 0.64LINC - 0.18LW.$$

Explain why it is correct to say that the URF only includes time series that are I(0).

4. The log-likelihood of the estimated URF was 1119.42 (using the 1987(1)-2019(4) sample). Table 6 shows estimation results for a model of the URF. The model, which implies 22 zero restrictions on the coefficients of the URF-system, has log-likelihood: 1101.46837.

Calculate the LR-test of the joint validity of the restrictions, and show that the null hypothesis of joint validity of the restrictions is not rejected at the 5 % significance level.

- 5. Explain why the equation-by-equation estimation by OLS used in table 6, referred to as "1SLS" in the output, can result in inconsistent estimation of (in particular) the coefficient of DLINC in the equation for DLCP, unless the error term in that equation is uncorrelated with the error-term in the equation for DLINC.
- 6. Table 7 contains IV-estimation results for the equation for DLCP.
 - (a) Based on a comparison of results of the OLS and IV estimations of the coefficient of DLINC in the equation for DLCP, is there a serious simultaneous equations bias here?
 - (b) Give an explanation and interpretation of the *Specification test* in table 7.

7. The variable DLINC is said to be weakly exogenous for the parameters of the conditional model equation for DLCP, if those parameters can be efficiently estimated without taking the information of a marginal equation for DLINC into account.

Explain how you could implement a test of weak exogeneity of DLINC, i.e., if we take the equation for DLCP in table 6 as the conditional model equation in question.

Table 1: Estimation results for model equation (1).

Modelling Y by OLS The estimation sample is: 2 - 100					
Y_2	1.13312 -0.885791	Std.Error t-value t-prob 2 0.04717 24.0 0.0000 1 0.04698 -18.9 0.0000 0 0.03378 2.33 0.0217			
sigma R^2 Adj.R^2 no. of observatio	0.863739 0.8609	7 RSS 10.6700882 9 F(2,96) = 304.3 [0.000]** 9 log-likelihood -30.2050 9 no. of parameters 3			
ARCH 1-1 test: Normality test: Hetero test:	F(1,97) = Chi^2(2) = F(4,94) =	 0.48809 [0.6153] 0.51255 [0.4758] 5.7687 [0.0559] 0.89091 [0.4726] 0.70860 [0.6184] 			
Dynamic analysis:					

Table 2: Estimation results for model equation (2). D has been used to denote the difference operator.

Modelling DY by OLS The estimation sample is: 2 - 100					
DY_1 Constant Y_1	Coefficient 0.88579 0.078856 -0.75267	1 4	0.04698	18.9 2.33	0.0000 0.0217
sigma R^2 Adj.R^2 no. of observatio	0.82934 0.82578	4 9	log-likel	ihood	10.6700882 3.3 [0.000]** -30.2050 3
AR 1-2 test: ARCH 1-1 test: Normality test: Hetero test: Hetero-X test:	F(1,97) Chi^2(2) F(4,94)	= =	0.48809 [4 0.51255 [4 5.7687 [4 0.85900 [4 0.70860 [4	0.4758] 0.0559] 0.4916]	

4

Table 3: Estimation results for model equation (3).

Modelling DY by OLS The estimation sample is: 2 - 100					
DY_1 DY_2 Constant		0.06344 0.06412	14.4 -12.3	0.0000 0.0000	
sigma R^2 Adj.R^2 no. of observatio	0.714111 0.708155		119 ihood	17.8749203 9.9 [0.000]** -55.7447 3	
AR 1-2 test: ARCH 1-1 test: Normality test: Hetero test: Hetero-X test:	Chi^2(2) = F(4,94) =	0.81518 [2.4943 [0.3688] 0.2873] 0.9201]		

Table 4: Johansen method: Cointegration rank test results.

I(1) cointegration analysis, 1987(1) - 2019(4) loglik for rank eigenvalue 1016.515 0 1030.161 0.18678 1 1034.736 0.066977 2 0.00037679 1034.761 3 H0:rank<= Trace test [Prob] 36.492 [0.007] ** 0 1 9.2007 [0.354] 0.049746 [0.824] 2

Table 5: Johansen method: Estimated β -vector (conditional on r = 1) and the associated α -vector.

beta LCP LINC LW	1.0000 -0.64116 -0.17566
alpha LCP LINC LW	-0.28049 0.30084 -0.17766
Standard LCP LINC LW	errors of alpha 0.094130 0.11570 0.11183

Table 6: Estimation results for multiple-equation modelling of DLCP, DLINC and DLW.

Estimating the model by 1SLS The estimation sample is: 1987(1) - 2019(4)

Equation for:					
DI THE	Coefficient				
DLINC	0.227151			0.0000	
DLCP_1 DLCP_2	-0.525554	0.09545 0.09007	-5.50	0.0000	
DLCP_2 DLCP_3	-0.400000	0.09007	-2.68	0.0084	
DLCP 4	0 174699	0.08145 0.07033	2.08	0.0143	
DLW 1				0.0014	
DLW_2	0.155149	0.06369 0.06934	2.24	0.0271	
Constant	0.341242	0.1441	2.37	0.0194	
ECM_1	-0.177531	0.07649	-2.32	0.0219	
-					
sigma = 0.012	7559				
Equation for:					
	Coefficient				
DLW_1		0.08937		0.0000	
DLW_2	0.144311	0.08675	1.66	0.0988	
Constant	0.332949		1.93	0.0556	
ECM_1	-0.173465	0.09120	-1.90	0.0595	
cigmo - 0.010	0255				
sigma = 0.019	9255				
Equation for:	DI TNC				
Equación Tor.	Coefficient	Std. Error	t-value	t-prob	
DLINC_1		0.08291		0.0000	
DLINC_2					
DLINC 3	-0.396332	0.08999	-4.50	0.0000	
DLINC_4	0.349818	0.08424	4.15	0.0001	
DLW_2	0.164868	0.08424 0.05811	2.84	0.0053	
Constant	-0.191994	0.1317	-1.46	0.1475	
ECM_1	0.107391	0.06968	1.54	0.1259	
the automorphic function and the					
sigma = 0.014	7306				
		T (0] 0			
	d 1101.46837			1663.368	
no. of observ	ations 132	no. of par	rameters		29
IR test of ov	er-identifying re	estrictions	· Chi^2(2)	2) = 35	5 905 [0 0311]*
LK LEST OF OV	er - identifying it		. CHI 2(2)	-) -)-	
Table 7. 9	CT C actimation	n nogulta	for the		for DI CD
Table 7. 2	SLS estimation	n results	for the	equatic	II IOF DLCF.
Mode	lling DLCP by 1	IVE			
	estimation samp		87(1) -	2019(4)	
The	cocimacion bamp	, ic 15. 15	0/(1)	2010(4)	
	Coofficier	t std En	non t-v	-luo +	nnoh
DI TNC	Coefficier				
DLINC	Y 0.2553		7515		0.0009
DLCP_1	-0.5065		1019		0.0000
DLCP_2	-0.4499		9247		0.0000
DLCP_3	-0.2069	915 0.0	8430	-2.45	0.0155
DLCP_4	0.1724	185 0.0	7053	2.45	0.0159
DLW_1	0.2045	674 0.0	6418	3.19	0.0018
DLW 2	0.1442		7234		0.0483
Constant	0.3739		1567		0.0186
ECM_1	-0.1956		8329		0.0209
LCH_I	-0.1956	0.0	5525	2.54	0.0205
ciamo	0 01001			0	020060166
sigma	0.01292			0.	020060166
Reduced-form	sigma 0.0133	29			

Reduced-form sigma 0.013329 no. endogenous variables 2 no. of instruments no. of observations 132 no. of parameters mean(DLCP) 0.0061532 se(DLCP) 0.0502657 Additional instruments: [0] = DLINC_1 [1] = DLINC_2 [2] = DLINC_4

Specification test: Chi^2(2) = 0.91472 [0.6330]

14 12