4240 - Equilibrium, Welfare \& Information
 Make Up Exam, Fall Term 2019

Problem 1

i) Define a Walrasian equlibrium and state the second welfare theorem of economics.

Solution: A Walrasian equilibrium is an allocation of resources and an associated price vector p^{*} such that quantity demanded equals the quantity supplied.
The second theorem of welfare economics states that for any Pareto efficient allocation of resources, there exists a set of initial endowments and a related price vector such that this allocation is a Walrasian equilibrium.

Problem 2 [each of i-v carries equal weight]

Two agents, denoted a and b, live in a 2-commodity exchange economy and have the following utility functions:

$$
\begin{aligned}
U\left(x_{a}, y_{a}\right) & =x_{a} y_{a} \\
U\left(x_{b}, y_{b}\right) & =\alpha x_{b}-\beta x_{b}^{2}+y_{b}
\end{aligned}
$$

Initial endowments are $w_{a}=\left(1, \frac{1}{2}\right)$ and $w_{b}=\left(1, \frac{3}{2}\right)$. All agents are price takers. Please normalize the price for good y to unity.
i) Assume $\alpha, \beta>0$. Derive the Walrasian aggregate demand for good x as a function of price p_{x} and individual wealth levels $m_{i}, i \in\{a, b\}$.

Solution:

Let $m_{i}=p_{x} \bar{x}_{i}+\bar{y}_{i}$ denote the budget of person $\in\{a, b\}\left(p_{y}=1\right)$. Substituting the budget constraint in to eliminate y_{a}, individual a maximizes

$$
U\left(x_{a}, y_{a}\right)=x_{a}\left(m_{a}-p_{x} x_{a}\right)
$$

w.r.t. x_{a} and similarly individual b maximizes

$$
U\left(x_{b}, y_{b}\right)=\alpha x_{b}-\beta x_{b}^{2}+m_{b}-p_{x} x_{b}
$$

w.r.t. x_{b}. We find the demand functions

$$
x_{a}\left(p_{x}, m_{a}\right)=\frac{m_{a}}{2 p_{x}} \quad \text { and } \quad x_{b}\left(p_{x}\right)=\frac{\alpha-p_{x}}{2 \beta}
$$

giving us the aggregate demand

$$
x\left(p_{x}, m_{a}\right)=\frac{m_{a}}{2 p_{x}}+\frac{\alpha-p_{x}}{2 \beta}
$$

which is independent of m_{b}.
ii) What is the aggregate demand for good x as a function of only the price p_{x} ?

Solution: Using the initial endowments we find $m_{a}=1 p_{x}+\frac{1}{2}$ and

$$
\begin{aligned}
x\left(p_{x}\right) & =\frac{1}{2}+\frac{1}{4 p_{x}}+\frac{\alpha-p_{x}}{2 \beta} \\
& =\frac{2 \beta p_{x}+\beta+2 \alpha p_{x}-2 p_{x}^{2}}{4 \beta p_{x}}
\end{aligned}
$$

iii) Assume that $\alpha=6$ and $\beta=2$. What are the equilibrium allocation of good x and the equilibrium price?

Solution: Equating supply and demand delivers

$$
\begin{array}{cc}
& 2=\frac{2 \beta p_{x}+\beta+2 \alpha p_{x}-2 p_{x}^{2}}{4 \beta p_{x}} \\
\Leftrightarrow & 8 \beta p_{x}=2 \beta p_{x}+\beta+2 \alpha p_{x}-2 p_{x}^{2} \\
\Leftrightarrow & p_{x}^{2}+(4 \beta-\beta-\alpha) p_{x}-\frac{1}{2} \beta=0
\end{array}
$$

and using $\alpha=6$ and $\beta=2$ we have

$$
\Rightarrow \begin{array}{cc}
& p_{x}^{2}+(8-2-6) p_{x}-1=0 \\
\Rightarrow & p_{x}^{*}=1
\end{array}
$$

The equilibrium allocations of good x are accordingly

$$
\begin{aligned}
& x_{a}^{*}=\frac{p_{x}+\frac{1}{2}}{2 p_{x}}=\frac{3}{4} \\
& x_{b}^{*}=\frac{6-1}{4}=\frac{5}{4}=2-x_{a}^{*} .
\end{aligned}
$$

Note that the equilibrium price for the second good is $p_{y}^{*}=1$ by normalization.
iv) Assume that $\alpha=2$ and $\beta=0$. What is individual a 's Walrasian demand for good x ?

Solution:

NOTE: The question was meant to be about agent b and to read: "What is individual b 's Walrasian demand for good x ?". Given the typo, the correct statement of either demand function was accepted ${ }^{11}$
Demand of agent a : Indvidual a 's demand is

$$
x_{a}\left(p_{x}, m_{a}\right)=\frac{m_{a}}{2 p_{x}}=\frac{p_{x}+\frac{1}{2}}{2 p_{x}}
$$

where I inserted the individual's endowment to obtain his or her wealth.
Demand of agent b : Then the utility function of individual b is linear:

$$
U\left(x_{b}, y_{b}\right)=2 x_{b}+y_{b}=2 x_{b}+m_{b}-p_{x} x_{b}
$$

The agent is indifferent between consuming x and y if and only if the price is $p_{x}=2$, which can be seen e.g. from the derivative of the above utility

$$
2-p_{x}=0 \Leftrightarrow p_{x}=2 .
$$

However, the individual cannot control the price. If $p_{x}>2$ the individual would consume only y, and if $p_{x}<2$ the individual would consume only x. Hence, the demand function of individual a is

$$
x_{b}\left(p_{x}, m_{b}\right) \begin{cases}=\frac{m_{b}}{p_{x}} & \text { if } p_{x}<2 \\ \in\left[0, \frac{m_{b}}{2}\right] & \text { if } p_{x}=2 \\ =0 & \text { if } p_{x}>2\end{cases}
$$

Verbal descriptions of the case $p_{x}=2$ are fine. Relating it to expenditure on good y is of course also welcome.
v) Assume that $\alpha=2$ and $\beta=0$. What are the equilibrium allocation of good x and the equilibrium price?

Solution: Indvidual a 's demand is

$$
x_{a}\left(p_{x}, m_{a}\right)=\frac{m_{a}}{2 p_{x}}=\frac{p_{x}+\frac{1}{2}}{2 p_{x}}
$$

where I inserted the individual's endowment to obtain his or her wealth. Doing the same for individual b 's demand function yields

$$
x_{b}\left(p_{x}\right) \begin{cases}=\frac{p_{x}+\frac{3}{2}}{p_{x}} & \text { if } p_{x}<2 \\ \in\left[0, \frac{p_{x}+\frac{3}{2}}{2}\right] & \text { if } p_{x}=2 \\ =0 & \text { if } p_{x}>2\end{cases}
$$

The total supply of good x is $\bar{x}=2$. For a price $p_{x} \neq 2$ aggregate demand is

$$
x\left(p_{x}\right)= \begin{cases}\frac{p_{x}+\frac{1}{2}+2 p_{x}+3}{2 p_{x}}=\frac{3 p_{x}+\frac{1}{2}+3}{2 p_{x}} & \text { if } p_{x}<2 \\ \frac{p_{x}+\frac{1}{2}}{2 p_{x}} & \text { if } p_{x}>2\end{cases}
$$

which cannot meet the supply: the case $p_{x}<2$ would only yield an equilibrium for $p_{x}=\frac{7}{2}>2$, a contradiction, and the case $p_{x}<2$ would only yield an equilibrium for $p_{x}=\frac{1}{6}<2$, also a contradiction.
Thus, the equilbrium must be in the interior and $p_{x}^{*}=2$. Then the equilbrium allocation is determined by individual a 's demand as

$$
x_{a}\left(p_{x}^{*}\right)=\frac{2+\frac{1}{2}}{4}=\frac{5}{8}
$$

leaving the amount

$$
x_{b}^{*}=2-\frac{5}{8}=\frac{11}{8}
$$

for individual a who is indifferent between spending his or her budget on good x or y.

