The market for corporate control: Takeovers

- Takeovers: Hostile vs friendly
- Two motivations for takeovers
 - The *ex-post* rationale: benefits from a new management team.
 - The *ex-ante* rationale: disciplining effect on incumbent management.
- *Tradeoff efficiency vs rent extraction*: Firms want to enjoy benefits from takeovers, but want to limit (or appropriate parts of) raiders' gain.
- <u>Model</u>: Fixed investment. Intermediate date: raider appears. Initial date: corporate charter design; investment.
- If no takeover
 - investors' value: $v = p_H(R R_b)$
 - incumbent's benefit: $w = p_H R_b$
 - \circ total: $v + w = p_H R$
- If takeover: investors' value: \$\u03c6\$; raider's private benefit:
 \$\u03c6\$.
- *Corporate charter*: defining the terms under which the raider can take control for what values \hat{v} and \hat{w} should a transfer occur?
 - Obviously, a narrow view of the corporate charter.
- Raider is not credit rationed.
- Investors' value in case of a takeover, v, is publicly known. Raider's value, ŵ, is raider's private information. Cumulative distribution function H(ŵ), density h(ŵ).

- Suppose first also incumbent manager is not credit constrained.
- The firm commits to a sale price P of the firm to a potential raider such that ^î + ^îw^{*} = P, where ^îw^{*} is a cutoff value for the raider's gain: The raider takes over the firm and pays P if and only if ^îw ≥ ^îw^{*}.
- The probability of takeover: $1 H(\hat{w}^*) = 1 H(P \hat{v})$.
- Entrepreneur's utility equals NPV

 $U_b = (v + w)H(\hat{w}^*) + (\hat{v} + \hat{w}^*)[1 - H(\hat{w}^*)] - I$

- The entrepreneur chooses the *P*, implicitly the \hat{w}^* , that maximizes U_b .
 - Resemblance with monopoly pricing: View [1 H(ŵ*)] as a demand curve. The higher is ŵ*, the higher is the gain if the firm is sold, but then also the lower is the chance that the firm *is* sold.
- Socially inefficient *P* too few takeovers.
- Other forces work the other way.
 - Agency problems in the raiding firm, say with managers exerting real control, may lead to too many raids.
 - Raider costs related to preparing a bid for the firm: Suppose \hat{w} is known to the raider only after he incurs *c*. If *c* is too high, then the target firm may have to lower *P* in order to get the raider to participate.
 - When the incumbent manager is credit rationed, lowering *P* increases the chances for a takeover and therefore increases pledgeable income.

Incentive effects of takeover threats

- Two views
 - Takeovers are good for governance they get incumbent managers to work hard.
 - Takeover threats lead to short-term behavior among managers *myopia*.
- A model of takeover-induced myopia
 - Myopia putting too much weight on the present relative to the future – here in the form of underinvestment in future profitability.
 - Success probability under incumbent management is *p* + *τ*, where *p* ∈ {*p_H*, *p_L*}, depending on manager effort, and *τ* is the result of an investment made by manager before any takeover takes place.
 - \circ Choice of τ is unobservable.
 - Investment cost $\gamma(\tau)$, convex.
 - $\circ R_b$ is the entrepreneur's return if success.
 - \circ *H* is the probability of no takeover.
 - The entrepreneur chooses τ to maximize $\tau R_b H - \gamma(\tau)$
 - \circ Two reasons for underinvestment
 - The entrepreneur needs outside capital and lets investors in, so that R_b < R.
 - There is a chance for a takeover, so that H < 1.
 - Related forms of myopic managerial behavior
 - Entrenchment creating obstacles for the takeover.
 - Posturing obtaining good short-term results in order to appear more efficient than one is.

Takeovers in practice

- Single bidder.
- *Tender offer*: the raider makes the price offer,
 - shareholders individually decide whether or not to accept.
 - Even now, the corporate charter may influence the price, though.
 - *Restricted offer*: restricted to a certain fraction of outstanding shares; or unrestricted
 - *Conditional offer*: conditional on the raider acquiring a certain fraction of the shares; or unconditional.
- Suppose raider needs a fraction κ in order to gain control, $0 < \kappa < 1$.
- Investor value with a takeover: \hat{v} ; without: v.
- A value-enhancing takeover: \$\hit{v} > v\$.
 \overline A value-decreasing takeover: \$\hit{v} < v\$.
- Free-riding shareholders
- Assume $\hat{v} v = 1$.
- No private benefit to raiders: $\hat{w} = 0$.
- Redefine *P* as the premium over *v* offered by the raider, that is, raider offers v + P, $0 \le P \le 1$.
- A *continuum* of shareholders, of *mass* 1.
 Continuum: no shareholder is *pivotal*.

- Let β be the probability, according to shareholders, that the takeover will be successful.
 - Continuum of shareholders implies that β is not affected by any single shareholder's decision to accept or not.
- In equilibrium, $\beta = P \Leftrightarrow \beta \hat{v} + (1 \beta)v = v + P$
 - Shareholders are indifferent between selling and keeping shares
- In equilibrium, raider buys a fraction κ of the shares.
- Raider earns nothing from the value enhancement:

$$\pi = \kappa[\beta(\hat{v} - v) - P] = \kappa[\beta - P] = 0.$$

- Free-riding shareholders take the entire value enhancement that the raider creates.
- Private benefit to raider: $\hat{w} > 0$
 - No change in equilibrium beliefs among shareholders: $\beta = P$.
 - So the raider gets to keep all his private benefit: $\pi = \kappa [\beta - P] + \beta \hat{w} = P \hat{w}.$
 - Therefore, it pays for raider to increase the price, and so P = 1, and therefore $\beta = 1$.
 - With *dispersed ownership*, a raider keeps all his private benefit and gets none of the value enhancement.
 - With a large current shareholder, even some of the private benefit of the raider may end up at this large shareholder.

- *Toehold*: The raider already owns a fraction $\theta < \kappa$ of the firm's shares.
 - The raider's profit is:

$$\pi = (\kappa - \theta)[\beta(\hat{v} - v) - P] + \theta\beta(\hat{v} - v)$$

= θP ,
since $\hat{v} - v = 1$ and $\beta = P$.

- The optimal bid is P = 1, so $\pi = \theta$.
- The raider retains the value enhancement of his initial shares.
- The implication is that block shareholding facilitates takeovers by block shareholders.
- *Dilution* of minority shareholders' value
 - Examples: tunneling; minority buyout.
 - Suppose the raider is able to expropriate a fraction ϕ of minority owners' value increase.
 - Without dilution: $\hat{v} v = 1$, and $\hat{w} = 0$.
 - With dilution: raider gets $\hat{w} = \phi(\hat{v} v) = \phi$, and current shareholders get $(1 \phi)(\hat{v} v) = 1 \phi$.
 - Shareholders' beliefs about the probability of a successful raid is again such that they are indifferent between selling and holding shares:

$$\beta(1-\phi)=P$$

• The raider will not have to bid more than $P = 1 - \phi$. For bids $P \le 1 - \phi$, his profit, when buying a fraction κ of the shares to obtain control, is:

$$\pi = [\kappa + (1 - \kappa)\phi]\beta - \kappa P$$

= $[\kappa + (1 - \kappa)\phi]\beta - \kappa\beta(1 - \phi) = \beta\phi.$

- Raider maximizes profit at $P = 1 \phi$, getting $\pi = \phi$.
 - He gets the dilution value on *all* shares.
- Takeover defenses
 - They work in the opposite direction of dilution, making it harder for the raider to acquire the firm.
 - An example of a *poison pill*: a scheme allowing shareholders to buy new shares at a discount in case of a takeover.
 - Making it possible for current shareholders to appropriate all or part of raider's private benefit, ŵ.
- A finite number of shares
 - Calculating each shareholder's equilibrium strategy.
 - One vs many shares per shareholder.
 - When a shareholder holds several shares, his tendering one of his shares increases the value of his other shares. This increases his incentives to tender, and therefore reduces the free-rider problem and increases the scope for takeovers.

- Value-decreasing takeovers: $\hat{v} < v$.
 - Necessarily, the raider must have private benefits from the takeover: $\hat{w} > 0$.
 - Suppose price *P* is such that $\hat{v} v < P < 0$.
 - Tendering an offer exerts a *negative externality* on non-tendering shareholders – the same way as there is a positive externality when the takeover is value-enhancing.
 - If a value-decreasing takeover takes place, it is best for current shareholders that the raider buys as many shares as possible: *one share – one vote*.
- Takeovers with multiple bidders: *bidding contests*.
 - Preemptive behavior:
 - early high price
 - toehold
- Managerial resistance to takeovers
 - Conflict of interest
 - Formal vs real authority