Further determinants of borrowing capacity: Boosting pledgeable income

- Diversification: more than one project
- Collateral: pledging real assets
- Liquidity: a first look
- Human capital

Diversification

- It may be beneficial for a firm, in terms of getting hold of external funds, to have several projects.
- Equivalently, it may be beneficial for multiple project owners to merge into one firm.
- Previous analysis: constant returns to scale in investment technology
- Expansion in investment project equivalent to an increase in the number of projects whose outcomes are perfectly correlated.
- Consider the opposite extreme: Several projects are available, and they are statistically independent.
- Cross pledging: Incomes on one successful project can be offered as "collateral" for other projects.
- Model: Two identical projects. Otherwise: as in the fixedinvestment model
- Entrepreneur's initial wealth per project: A; i.e., total wealth: $2 A$.
- A benchmark: project financing. For each of the two projects:
- Borrower receives R_{b} if success, 0 otherwise.
- Incentive constraint: $R_{b} \geq \frac{B}{\Delta p}$
- Breakeven constraint: $p_{H}\left(R-\frac{B}{\Delta p}\right) \geq I-A$, or: $A \geq \bar{A}$.
- Project financing not viable if $A<\bar{A}$.
- Cross pledging
- The two projects financed in combination
- Contract: Borrower receives R_{0}, R_{1}, or R_{2} when 0,1 , or 2 projects are successful.
- Expected return to borrower:

$$
p_{H}^{2} R_{2}+2 p_{H}\left(1-p_{H}\right) R_{1}+\left(1-p_{H}\right)^{2} R_{0}
$$

- Two incentive constraints:
- Working on two projects preferred to working on only one

$$
\begin{aligned}
& p_{H}^{2} R_{2}+2 p_{H}\left(1-p_{H}\right) R_{1}+\left(1-p_{H}\right)^{2} R_{0} \geq \\
& p_{H} p_{L} R_{2}+\left[p_{H}\left(1-p_{L}\right)+p_{L}\left(1-p_{H}\right)\right] R_{1}+\left(1-p_{H}\right)\left(1-p_{L}\right) R_{0}+B
\end{aligned}
$$

- Working on two projects preferred to working on none

$$
\begin{aligned}
& p_{H}^{2} R_{2}+2 p_{H}\left(1-p_{H}\right) R_{1}+\left(1-p_{H}\right)^{2} R_{0} \geq \\
& p_{L}^{2} R_{2}+2 p_{L}\left(1-p_{L}\right) R_{1}+\left(1-p_{L}\right)^{2} R_{0}+2 B
\end{aligned}
$$

- Clearly, $R_{0}=0$ in equilibrium, as before.
- Full cross pledging: We also have $R_{1}=0$ in equilibrium.
- In order to increase the borrowing capacity, the borrower offers all returns that are available in those cases where only one project succeeds.
- We can simplify the incentive constraints.
- Working on both projects better than on none:

$$
\begin{aligned}
& p_{H}^{2} R_{2} \geq p_{L}^{2} R_{2}+2 B \Leftrightarrow \\
& \left(p_{H}^{2}-p_{L}^{2}\right) R_{2} \geq 2 B \Leftrightarrow \\
& \left(p_{H}+p_{L}\right) R_{2} \geq 2 \frac{B}{\Delta p} \Leftrightarrow \\
& \frac{p_{H}+p_{L}}{2} R_{2} \geq \frac{B}{\Delta p}
\end{aligned}
$$

- Working on both projects better than on a single one:

$$
\begin{aligned}
p_{H}^{2} R_{2} & \geq p_{H} p_{L} R_{2}+B \Leftrightarrow \\
p_{H} R_{2} & \geq \frac{B}{\Delta p}
\end{aligned}
$$

- This one is always satisfied when the previous one is.
- It follows that, in equilibrium, $R_{2} \geq \frac{2 B}{\left(p_{H}+p_{L}\right) \Delta p}$
- Minimum expected payoff to borrower:

$$
p_{H}^{2} R_{2} \geq \frac{2 p_{H}^{2} B}{\left(p_{H}+p_{L}\right) \Delta p}=2\left(1-d_{2}\right) \frac{p_{H} B}{\Delta p},
$$

where $d_{2}=\frac{p_{L}}{p_{H}+p_{L}} \in\left(0, \frac{1}{2}\right)$ is an agency-based measure
of the economies of diversification into two independent projects.

- The breakeven constraint:
- Expected pledgeable income \geq investors' expenses

$$
\begin{aligned}
& 2 p_{H} R-2\left(1-d_{2}\right) \frac{p_{H} B}{\Delta p} \geq 2 I-2 A \Leftrightarrow \\
& p_{H} R-\left(1-d_{2}\right) \frac{p_{H} B}{\Delta p} \geq I-A \Leftrightarrow \\
& A \geq \overline{\bar{A}}, \text { where } \overline{\bar{A}}=I-p_{H}\left[R-\left(1-d_{2}\right) \frac{B}{\Delta p}\right]<\bar{A}
\end{aligned}
$$

○ Recall: $\bar{A}=p_{H} \frac{B}{\Delta p}-\left(p_{H} R-I\right)=I-p_{H}\left[R-\frac{B}{\Delta p}\right]$

- Diversification and cross pledging facilitates financing: $\overline{\bar{A}}<\bar{A}$
- Statistical independence of projects similarly facilitates financing.
- Variable investment: Diversification increases the borrowing capacity, rather than giving better access to financing.
- Extension to n independent projects: Let borrower have net worth $n A$. Breakeven constraint for investors now becomes:

$$
\begin{aligned}
& p_{H} R-\left(1-d_{n}\right) \frac{p_{H} B}{\Delta p} \geq I-A, \\
& \text { where } d_{n}=\frac{p_{L}\left(p_{H}^{n-1}-p_{L}^{n-1}\right)}{p_{H}^{n}-p_{L}^{n}} \text { increases with } n .
\end{aligned}
$$

- Limits to diversification
- Endogenous correlation: The borrower has an incentive to choose correlated projects, if she can. This decreases the value of cross pledging. \rightarrow Asset substitution.
- Limited expertise.
- Limited attention.
- Sequential projects
- Supplementary section 4.7
- Variable investment in two projects.
- Benchmark: simultaneous projects
- Investment I_{i} in project $i \in\{1,2\}$.
- Return $R I_{i}$ if success in project $i, 0$ otherwise
- Probability of success $p_{H}\left(p_{L}\right)$ if the borrower behaves (misbehaves)
- Private benefit from misbehaving in project $i: B I_{i}$.
- Total investment: $I=I_{1}+I_{2}$.
- Optimal with reward only when both projects succeed: R_{b}.
- Binding incentive constraint: misbehavior on both projects

$$
p_{H}^{2} R_{b} \geq p_{L}^{2} R_{b}+B I
$$

- We disregard misbehavior on one project for now
- Total net present value: $\left(p_{H} R-1\right) I$
- Investors' breakeven constraint:

$$
p_{H} R I-p_{H}^{2} \frac{B I}{p_{H}^{2}-p_{L}^{2}}=I-A
$$

- In equilibrium,

$$
\begin{aligned}
& I=\frac{A}{1-\hat{\rho}_{0}}, \text { where } \\
& \hat{\rho}_{0}=p_{H}\left(R-\frac{p_{H}}{p_{H}+p_{L}} \frac{B}{\Delta p}\right)=p_{H}\left[R-\left(1-d_{2}\right) \frac{B}{\Delta p}\right], \text { and } \\
& U_{b}=\left(p_{H} R-1\right) I=\frac{\rho_{1}-1}{1-\hat{\rho}_{0}} A
\end{aligned}
$$

- Checking the other incentive constraint: misbehavior on project i :

$$
p_{H}^{2} R_{b} \geq p_{H} p_{L} R_{b}+B I_{i}
$$

- Combining with the other incentive constraint:

$$
\frac{I_{i}}{I} \leq \frac{p_{H}}{p_{H}+p_{L}}
$$

- This constraint does not bind if total investment is split relatively equally among the two projects
- Sequential projects: Short-term loan agreements
- Financing one project at the time.
- Increased incentives early on: success at the first project provides the borrower with extra funds for the second project.
- Think ahead and reason back.
- Project 2: the single-project variable-investment case, with the borrower entering date 2 with assets A_{2}.
- Expected payoff per unit of investment: $\rho_{1}=p_{H} R$
- Expected pledgeable income per unit of investment:

$$
\rho_{0}=p_{H}\left(R-\frac{B}{\Delta p}\right)
$$

- Borrower's gross utility from project 2 :

$$
v A_{2}=\frac{\rho_{1}-\rho_{0}}{1-\rho_{0}} A_{2}
$$

- $\quad v>1$ is the shadow value of equity: If you can increase your assets at the start of date 2 with 1 unit, then you increase your utility with v.
- Project 1: Borrower's initial assets A. Return if success: $R I_{1}=R_{b}+R_{l}$
- Investors' breakeven constraint

$$
P_{H} R_{l} \geq I_{1}-A
$$

- Borrower's incentive constraint: $v R_{b} \geq \frac{B I_{1}}{\Delta p}$
- Expected pledgeable income per unit of investment

$$
\tilde{\rho}_{0}=p_{H}\left(R-\frac{B}{v \Delta p}\right)=\rho_{1}-\frac{\rho_{1}-\rho_{0}}{v}=\rho_{1}+\rho_{0}-1 .
$$

- Debt capacity at date 1 given by $I_{1}=k_{1} A$, where

$$
k_{1}=\frac{1}{1-\tilde{\rho}_{0}}=\frac{1}{2-\rho_{0}-\rho_{1}}>\frac{1}{1-\rho_{0}}=k
$$

- Assume $\frac{\rho_{0}+\rho_{1}}{2}<1$; otherwise, debt capacity is infinite.
- Recall earlier assumption: $\rho_{1}>1>\rho_{0}$.
- The borrower invests in project 2 if and only if project 1 is successful. She then invests:

$$
\begin{aligned}
& I_{2}=k A_{2}=k R_{b}=\frac{k B}{v(\Delta p)} I_{1}= \\
& \frac{\frac{1}{1-\rho_{0}} B}{\frac{\rho_{1}-\rho_{0}}{1-\rho_{0}} \Delta p} I_{1}=\frac{B}{p_{H} \frac{B}{\Delta p} \Delta p} I_{1}=\frac{1}{p_{H}} I_{1}
\end{aligned}
$$

- Expected investments in the projects are the same:

$$
p_{H} I_{2}=I_{1}
$$

- Stakes increase over time: $I_{2}>I_{1}$
- Sequential vs simultaneous projects

$$
\begin{aligned}
& U_{b}^{\text {seq }}=p_{H} v A_{2}-A=\left(p_{H} v \frac{B}{v(\Delta p)} k_{1}-1\right) A \\
& U_{b}^{\text {seq }}=\frac{2\left(\rho_{1}-1\right)}{2-\rho_{0}-\rho_{1}} A>\frac{\rho_{1}-1}{1-\hat{\rho}_{0}} A=U_{b}^{\text {sin }} \\
& \Leftrightarrow \hat{\rho}_{0}<\frac{\rho_{0}+\rho_{1}}{2} \Leftrightarrow d_{2}=\frac{p_{L}}{p_{H}+p_{L}}<\frac{1}{2}
\end{aligned}
$$

- Note error in Tirole, p. 186.
- Sequentiality is better: The borrower has no chance to misbehave on project 2 if project 1 fails, so the moral hazard problem is less serious.
- Long-term loan agreements
- One agreement for both projects
- A long-term agreement can never do worse than a sequence of short-term agreements.
- Risk neutrality and constant returns to scale imply that short-term agreements fair equally well.

Collateral

- Assets $=$ cash + productive assets
- Productive assets = quasi-cash, since they may be pledged as collateral to lenders
- Redeployability of productive assets
- Fixed-investment model, with one new feature.
- Suppose, after investment is made but before effort is put in, it becomes publicly known whether the project is viable
- With probability x, the project is viable and the model proceeds as before
- With probability $(1-x)$, the project is not viable, and assets can be sold at a given price $P \leq I$.
- Economic distress, as opposed to financial distress.
- New assumption on NPV: $x p_{H} R+(1-x) P>I$.
- The entrepreneur chooses to pledge the resale price in full.
- Breakeven constraint for investors:

$$
x p_{H}\left(R-\frac{B}{\Delta p}\right)+(1-x) P \geq I-A
$$

- Threshold level of net worth:

$$
\bar{A}=x p_{H} \frac{B}{\Delta p}-\left[x p_{H} R+(1-x) P-I\right]
$$

- Decreases with asset redeployability
- Borrowing patterns across industries: The more liquid assets, the easier it is for firms borrow.
- Endogenous redeployability: fire sale externalities further aggravating credit rationing.

Collateral is costly

- A deadweight loss associated with collateralization: assets may have lower value for lenders than for the borrower
- Transaction costs
- Borrower's private benefit from ownership: sentimental values, specific skills
- Prospects of future credit rationing makes the asset of higher value to the borrower than to investors
- Risk aversion
- Collateralized assets may receive poor maintenance

Costly collateral and contingent pledging

- Suppose first collateral would not exist without the investment.
- Borrower has no cash initially, needs to borrow I.
- Asset has residual value
- A to the entrepreneur
- $A^{\prime} \leq A$ to the lenders
- Deadweight loss if asset is seized: $A-A^{\prime}$
- Contract: $\left\{R_{b}, R_{l}, y_{S}, y_{F}\right\}$
- $y_{S}-$ probability that the borrower keeps the asset if success
- $y_{F}-\ldots$ if failure
- stochastic pledging: needed in a simple model
- Otherwise, fixed-investment model.
- The equilibrium contract is the one that maximizes borrower's utility, subject to borrower's incentive-compatibility constraint and lenders' breakeven constraint.

$$
\operatorname{Max} U_{b}=p_{H}\left(R_{b}+y_{S} A\right)+\left(1-p_{H}\right) y_{F} A
$$

subject to

$$
\begin{aligned}
& \Delta p\left[R_{b}+\left(y_{S}-y_{F}\right) A\right] \geq B, \text { and } \\
& p_{H}\left[R_{l}+\left(1-y_{S}\right) A^{\prime}\right]+\left(1-p_{H}\right)\left(1-y_{F}\right) A^{\prime} \geq I
\end{aligned}
$$

- Borrower wants to pledge as little collateral as possible
- The outcome depends on the strength of the balance sheet of the borrower
- Strength of balance sheet depends on
- Investment level I
- Agency costs, measured by $p_{H} \frac{B}{\Delta p}$
- Any initial cash, \tilde{A}
- Strong balance sheet - no collateral

$$
y_{S}=y_{F}=1 ; R_{b}>0 .
$$

- Intermediate balance sheet - collateral if failure:

$$
y_{S}=1, y_{F} \leq 1 ; R_{b} \geq 0 .
$$

- Weak balance sheet - borrower gets a share of the asset if success:

$$
y_{S} \leq 1, y_{F}=0 ; R_{b}=0 .
$$

- Contingent pledging: borrower gets a contingent share of the asset rather than of income.

Solution: derivative of the Lagrangian with respect to y_{S} is positive if that with respect to R_{b} or that with respect to y_{F} is. Some of the three regimes may not exist.

- Weak borrowers pledge more collateral than strong borrowers
- Pledging collateral in lack of cash
- Opposite prediction from adverse-selection theories, where strong firms pledge collateral to show strength.

Pledging existing assets

- Suppose next that the entrepreneur has existing wealth
- Contingent pledging
- If success, the entrepreneur keeps the asset.
- If failure, the investors receive the collateral.
- Continuous collateral: the entrepreneur chooses an amount $C \in$ [$\left.0, C^{\text {max }}\right]$ to pledge as collateral in case of failure.
- We need an upper limit on $C^{\text {max. }}$; see below.
- Costly collateral: Value βC to investors, where $\beta<1$.
- Borrower's net utility: Project's NPV without collateral minus expected deadweight loss from pledging collateral.

$$
U_{b}=p_{H} R-I-\left(1-p_{H}\right)(1-\beta) C
$$

- To ensure that $U_{b} \geq 0$ for any feasible C, we assume

$$
C^{\max } \leq \frac{p_{H} R-I}{\left(1-p_{H}\right)(1-\beta)}
$$

- Collateral costly $\Rightarrow C=0$ if $A \geq \bar{A}$.
- The borrower's incentive compatibility constraint

$$
\begin{aligned}
& p_{H} R_{b}-\left(1-p_{H}\right) C \geq p_{L} R_{b}-\left(1-p_{L}\right) C+B \Leftrightarrow \\
& \quad R_{b}+C \geq \frac{B}{\Delta p}
\end{aligned}
$$

- The borrower loses both the reward and the collateral when she fails
- Limited liability: In order to ensure that $R_{b} \geq 0$ for any feasible C, we assume:

$$
C^{\max } \leq \frac{B}{\Delta p}
$$

- The investors' breakeven constraint

$$
\begin{aligned}
& p_{H}\left(R-R_{b}\right)+\left(1-p_{H}\right) \beta C \geq I-A \Leftrightarrow \\
& p_{H}\left(R-\frac{B}{\Delta p}\right)+p_{H} C+\left(1-p_{H}\right) \beta C \geq I-A
\end{aligned}
$$

- Collateral has two ways of affecting pledgeable income
- Directly: + $\left(1-p_{H}\right) \beta C$
- Indirectly through a lower reward to borrower: $+p_{H} C$
- Borrower pledges the minimum collateral necessary to satisfy the investors' breakeven constraint:

$$
C=\frac{I-A-p_{H}(R-B / \Delta p)}{p_{H}+\left(1-p_{H}\right) \beta}
$$

- ... except if this expression gets too big, in which case collateral cannot solve the funding problem.
- Weaker firms pledge more collateral: $\frac{d C}{d A}<0$.
- Conditional collateral preferable to unconditional.
- More abstract forms of collateral: Putting one's job at stake.

The liquidity-accountability tradeoff

- When should the borrower receive her compensation?
- Towards the end: good for accountability, because more information about the project is available
- Along the way, because of her need for liquidity
- Consumption
- New projects
- Outside investment opportunities not observable for investors

○ A scope for "strategic exit", escaping sanctions following poor performance

- The other side of the coin: the liquidity of investors
- The more control you have, the less liquid your assets are
- Model: an extension of the fixed-investment one

- New feature: A new, fleeting investment opportunity at an intermediate date
- Initial investment I, entrepreneur's assets $A<I$.
- Moral hazard: misbehavior means a lower success probability $\left(p_{L}<p_{H}\right)$ but also a private benefit B.
- Project returns at final date: R or 0 (whether or not an intermediate investment opportunity shows up).
- Limited liability, risk neutrality.
- Project would have been financed in the absence of the intermediate liquidity needs:

$$
A>\bar{A}
$$

- Liquidity shock: With probability λ, a new investment opportunity arises.
\circ Investing x returns μx, where $\mu>1$.
- Contract: $\left\{r_{b}, R_{b}\right\}$. Borrower receives
- r_{b} on the intermediate date and nothing on the final date, in the case of a liquidity shock.
- R_{b} on the final date if success (0 if failure) and nothing on the intermediate date, in the case of no liquidity shock.
- What if the liquidity shock is not verifiable?
- Exit vs vesting: what about partial vesting? - Some cash at the intermediate date and some payment at the final date (if success).
- Implementation: where does r_{b} come from? - Needs to be subtracted from pledgeable income.
- Benchmark case: Verifiable liquidity shock
- Borrower's incentive compatibility constraint

$$
\begin{aligned}
& \lambda \mu r_{b}+(1-\lambda) p_{H} R_{b} \geq \lambda \mu r_{b}+(1-\lambda) p_{L} R_{b}+B \Leftrightarrow \\
& (1-\lambda)(\Delta p) R_{b} \geq B \Leftrightarrow \\
& R_{b} \geq \frac{1}{1-\lambda} \frac{B}{\Delta p}
\end{aligned}
$$

- No incentive effect from r_{b}.
- Only effect of the liquidity shock is that the borrower's stake must be increased, since final date is reached only with probability $(1-\lambda)$.
- Borrower receives r_{b} with probability λ. So this is similar to no liquidity shock, but the entrepreneur having available $A-\lambda r_{b}$.
- Expected pledgeable income:

$$
p_{H} R-\left\{\lambda r_{b}+(1-\lambda) p_{H} \frac{1}{1-\lambda} \frac{B}{\Delta p}\right\}=p_{H}\left(R-\frac{B}{\Delta p}\right)-\lambda r_{b} .
$$

- Competition among investors ensures that the borrower gets the NPV from the project. So her total expected net utility is

$$
U_{b}=p_{H} R-I+\lambda(\mu-1) r_{b} .
$$

- It is optimal to have r_{b} as high as possible subject to incentive compatibility:

$$
p_{H}\left(R-\frac{B}{\Delta p}\right)-\lambda r_{b}=I-A
$$

- In equilibrium: $r_{b}=\frac{1}{\lambda}\left[p_{H}\left(R-\frac{B}{\Delta p}\right)-(I-A)\right] ; R_{b}=\frac{1}{1-\lambda} \frac{B}{\Delta p}$.
- Non-verifiable liquidity shock
- A two-dimensional moral-hazard problem. Incentives needed for borrower
- to behave in carrying out the project, and
- to report truthfully about the liquidity shock
- The two forms of moral hazard interact
- Strategic exit: A misbehaving borrower may want to exit even without a liquidity stock before the consequences are disclosed.
- Simplifying assumption: $p_{L}=0 \Rightarrow \Delta p=p_{H}$
- A misbehaving borrower would indeed want to cash out early, since there is nothing to be had later: $p_{L} R_{b}=0$.
- Borrower's incentive constraint

$$
\begin{aligned}
& \lambda \mu r_{b}+(1-\lambda) p_{H} R_{b} \geq[\lambda \mu+(1-\lambda)] r_{b}+B \Leftrightarrow \\
& (1-\lambda)\left[p_{H} R_{b}-r_{b}\right] \geq B \Leftrightarrow \\
& (1-\lambda)\left[(\Delta p) R_{b}-r_{b}\right] \geq B \Leftrightarrow \\
& R_{b} \geq \frac{r_{b}}{\Delta p}+\frac{1}{1-\lambda} \frac{B}{\Delta p}
\end{aligned}
$$

- Compare with the case of verifiable liquidity shock: the possibility of a strategic exit makes the incentive constraint stricter (for a given $r_{b}>0$).
- When there is no liquidity shock, the borrower strictly prefers to continue: $p_{H} R_{b}>r_{b}$.
- But would the borrower want to cash out when there is a liquidity shock? Is $\mu r_{b} \geq p_{H} R_{b}$? - Suppose first that it is.
- Again, competition among investors ensures that all NPV of the project accrues to the borrower. So, given r_{b}, her expected net utility is:

$$
U_{b}=p_{H} R-I+\lambda(\mu-1) r_{b} .
$$

- But the incentive constraint is stricter, so pledgeable income is smaller. Therefore, r_{b} is lower when liquidity shock is nonverifiable.
- Expected pledgeable income for a given r_{b} :

$$
p_{H} R-\left\{\lambda r_{b}+(1-\lambda) p_{H}\left[\frac{r_{b}}{\Delta p}+\frac{1}{1-\lambda} \frac{B}{\Delta p}\right]\right\}=p_{H}\left(R-\frac{B}{\Delta p}\right)-r_{b}
$$

- In equilibrium:

$$
r_{b}=p_{H}\left(R-\frac{B}{\Delta p}\right)-(I-A) ; R_{b}=\frac{1}{1-\lambda} \frac{B+(1-\lambda) r_{b}}{\Delta p}
$$

- Compared to the case of verifiable liquidity shock:
r_{b} is lower, R_{b} is higher.
- The possibility of strategic exit hurts the borrower, since she is allowed less liquidity.
- If the above contract does not obey $\mu r_{b} \geq p_{H} R_{b}$:
- Happens when A is low.
- Solution: partial vesting. Only implementation changes.
- Total compensation has two components: One, a basis compensation, R_{b}^{0}, paid out in case of success.
- At the intermediate date, the borrower receives cash r_{b}. She can choose to buy shares for this, which would pay ΔR_{b} in case of success, where

$$
R_{b}^{0}+\Delta R_{b}=R_{b}
$$

Inalienability of human capital

- Is there a scope for the loan contract to be renegotiated as the project proceeds?
- A renegotiation must mean that the existing contract is not efficient for the parties involved - that a new contract exists that is weakly better for both borrower and lender, and strictly better for at least one of them.
- Hold-up: Suppose the entrepreneur is indispensable - the project cannot be completed without her. The entrepreneur may want to renegotiate the initial contract in order to obtain a better deal.
- The inalienability of human capital.
- Model: no moral hazard: $B=0$; no cash: $A=0$.
- Otherwise, fixed-investment model.
- The act of "completing the project" cannot be contracted upon until after investment has been made: Renegotiation is needed.
- Renegotiation replaces effort as the source of the incentive problem.
- Incomplete project returns 0 .
- Complete project returns $R\left[\operatorname{prob} p_{H}\right]$ or $0\left[\operatorname{prob}\left(1-p_{H}\right)\right]$.
- Disregarding renegotiation, the project can be financed by a debt contract: borrower pays investors D in case of success, such that $p_{H} D=I$.

○ $R_{l}=D, R_{b}=R-D$, and $U_{b}=p_{H}(R-D)=p_{H} R-I$.

- Renegotiation: Bargaining over $p_{H} R-I$.
- Who has bargaining power?
- No longer competition among creditors: lender has b.p.
- Entrepreneur is indispensable: borrower has b.p.
- Both receive 0 in case of noncompletion of project
- Lender's bargaining power: θ
- In the renegotiation, lender receives θR in case of success, and borrower receives $(1-\theta) R$.
- Lender willing to invest if $\theta p_{H} R \geq I$.
- If $\theta>D / R$, then the borrower prefers to simply skip the renegotiation and complete the project.
- If $\theta<D / R$, then $\theta p_{H} R<p_{H} D=I$: the project will not be financed.
- If the borrower is too indispensable, the project is not carried out.
- Determinants of bargaining power
- Reputations on both sides
- Dispersion of lenders
- Outside options
- If possible, the borrower may want to give the lenders the right to seize the firm's assets - in order to secure some external finance.
- A parallel to collateral - the value of the collateral may depend on how indispensable the entrepreneur is.

