Liquidity management

- Multistage financing
- An intermediate date between the financing stage and the realization of the project outcome.
- Following up on the discussion of the liquidity/accountability tradeoff in chapter 4.
- The borrower needs to prepare for a liquidity shock.
- The borrower should hoard reserves.
- Holding liquid securities
- Credit line
- Retensions
- Hoarding of reserves is an insurance mechanism
- True even if borrower is risk neutral
- Value of funds higher in bad states than in good states, because of credit rationing.
- Borrower wants to transfer wealth from good states to bad states. This is what an insurance contract does.

Basic model

- Fixed investment, with a stochastic need for reinvestment at an intermediate date.

- Date 0 : Investment I, own assets A, borrowing need $I-A$.
- Date 1 - the intermediate date:
- Investment yields a short-term return r; deterministic and verifiable.
- Continuation requires a reinvestment of size $\rho \geq 0$, ex ante unknown: probability distribution $F(\rho)$, density $f(\rho)$.
- The value of ρ becomes known at date 1 .
- No reinvestment means liquidation of the firm, liquidation value 0 .
- Date 2 - in case of reinvestment at date 1 : Investment returns R if success, 0 if failure. Success probability p depends on borrower's effort: $p=p_{H}$ if she behaves, $p=p_{L}<p_{H}$ if not.
- Risk neutrality. Limited liability. Competition among lenders.
- Contract: $\left\{r_{b}, R_{b}, \rho^{*}\right\}$
- r_{b} and R_{b} - what borrower receives at dates 1 and 2 .
- ρ^{*} - the cutoff reinvestment requirement: continue if and only if $\rho \leq \rho^{*}$.
- Borrower's net utility equals net present value of the project:

$$
U_{b}\left(\rho^{*}\right)=\left[r+F\left(\rho^{*}\right) p_{H} R\right]-\left[I+!\rho_{0}^{*} \rho f(\rho) d \rho\right]
$$

- Second term: expected total investment
- Borrower's incentive constraint:

$$
R_{b} \geq \frac{B}{\Delta p}
$$

- Borrower receives 0 at date $1: r_{b}=0$.
- All of r is paid out to outside investors.
- Zero r_{b} increases R_{b} and alleviates the incentive problem at date 2.
- Expected pledgeable income:

$$
\mathscr{A}\left(\rho^{*}\right)=r+F\left(\rho^{*}\right) p_{H}\left[R-\frac{B}{\Delta p}\right]-\int_{o^{*}}^{\rho^{*}} \rho f(\rho) d \rho
$$

- Investors must cover all the reinvestment
- NPV is maximized at $\rho^{*}=p_{H} R=\rho_{1}$.
- $U_{b}^{\prime}\left(\rho^{*}\right)=f\left(\rho^{*}\right) p_{H} R-\rho^{*} f\left(\rho^{*}\right)$.
\circ For $\rho^{*}<\rho_{1}$, the expected gain from rescuing the project is larger than the cost.
- Pledgeable income is maximized at $\rho^{*}=p_{H}\left[R-\frac{B}{\Delta p}\right]=\rho_{0}$.
\circ For $\rho^{*}>\rho_{0}$, the cost to the investors from continuing is larger than what they expect to get in return.

Figure 5.2, p. 204

- Three cases
- Efficient cutoff: $\mathfrak{A}\left(\rho_{1}\right) \geq I-A$.
- The NPV-maximizing cutoff leaves enough for the investors: $\rho^{*}=\rho_{1}$.
- Too much liquidation: $\mathscr{A}\left(\rho_{1}\right)<I-A \leq \mathscr{A}\left(\rho_{0}\right)$
- $r_{b}=0, R_{b}=B / \Delta p$, and $\rho^{*} \in\left[\rho_{0}, \rho_{1}\right)$ solves $\mathscr{A}(\rho)=I-A$
- Credit rationing at date 1 : In order to secure funds at date 0 , the borrower accepts a reduced reinvestment cutoff at date 1 .
- No funding: $I-A>\mathscr{A}\left(\rho_{0}\right)$
- Even maximizing pledgeable income is not enough.

Maturity at a cash rich firm

- Cash rich firm: $r>\rho^{*}$; high short-term returns.
- Implementing the optimal contract
- Short-term debt: $d=r-\rho^{*}$.
- Long-term debt: $D=R-\frac{B}{\Delta p}$ (to be paid if continuation)
- A theory of maturity structure of debt
- Stronger firms have larger A, and subsequently (weakly) higher ρ^{*} and therefore less short-term debt.
- The more current debt a firm has, the lower is its A, and the more short-term its future debt will be.
- Short-term debt vs dividend.

Credit lines for cash poor firms

- Cash poor firm: $r<\rho^{*}$. The extreme case: $r=0$.
- With $r=0$, there are no short-term returns to cover (in part) the liquidity needs at the intermediate date.
- Can a wait-and-see strategy work?
- At date 1 , the value of ρ is known. But the outside investors are not able to supply more funds than what the firm is worth to them, so the firm will only get funding if

$$
\rho \leq p_{H}\left[R-\frac{B}{\Delta p}\right]=\rho_{0} .
$$

- This is not optimal, since $\rho^{*} \in\left[\rho_{0}, \rho_{1}\right]$.
- It is better to hoard reserves at date 0 to face the liquidity shock at date 1 .
- Liquidity management is necessary.
- Two ways to hoard reserves:
- Borrowing $I+\rho^{*}$ at date 0 , with a covenant that no further claims be issued at date 1 , so that initial claimholders are not diluted.
- Securing a line of credit equal to $\rho^{*}-\rho_{0}$, with a right to dilute initial claimholders in order to get ρ_{0} in new funds at date 1 .
- A line of credit is an agreement providing credit up to a certain amount.
- The line of credit must be non-revokable; otherwise, the lender would not want to abide with the agreement in cases where $\rho \in\left(\rho_{0}, \rho^{*}\right)$.

Growth opportunities

- An alternative scenario: if you do not reinvest at the intermediate date, you don't have to close down; but if you do reinvest, you increase the prospects of your project.
- Reinvestment increases probabilities of success from p_{H} and p_{L} (depending on borrower efforts) to $p_{H}+\tau$ and $p_{L}+$ τ, where $0<\tau<1-p_{H}$.
- Better growth opportunities (higher τ) call for longer maturities, that is, less short-term debt.

The liquidity-scale tradeoff

- Liquidity management with a variable investment.
- The entrepreneur now faces a choice between a larger investment and more liquidity.
- Variable-investment model.
- First a simple version - two values of the per-unit liquidity shock
$\circ 0$, with probability $1-\lambda$: the firm is intact.
- ρ, with probability λ : the firm is in distress.

- Initial investment I. Continuation, which requires a reinvestment ρI if the firm is in distress at date 1 , is subject to moral hazard.
- Project yields RI at date 2 if success, 0 otherwise.
- Success probability p_{H} or p_{L}.
- Private benefit from misbehaving $B I$.
- Assumption: $\rho_{0}<c<\rho_{1}$, where $c \equiv \min \left\{1+\lambda \rho, \frac{1}{1-\lambda}\right\}$.
- No liquidity shock: $\lambda=0$, and so $c=1$.
- Borrower receives R_{b} if success, 0 otherwise, where $R_{b} \geq \frac{B}{\Delta p}$.
- If distress: abandon or pursue the project?
- Abandon project if distress
- Investors' breakeven constraint

$$
(1-\lambda) \rho_{0} I=I-A
$$

- Entrepreneur's net utility = NPV

$$
U_{b}^{0}=\left[(1-\lambda) \rho_{1}-1\right] I=\frac{(1-\lambda) \rho_{1}-1}{1-(1-\lambda) \rho_{0}} A=\frac{\rho_{1}-\frac{1}{1-\lambda}}{\frac{1}{1-\lambda}-\rho_{0}} A
$$

- Compare with case without liquidity shock: $\lambda=0$.
- Pursue project if distress
- Investors' breakeven constraint

$$
\rho_{0} I=(1+\lambda \rho) I-A
$$

- Entrepreneur's net utility $=$ NPV

$$
U_{b}^{1}=\left[\rho_{1}-(1+\lambda \rho)\right] I=\frac{\rho_{1}-(1+\lambda \rho)}{(1+\lambda \rho)-\rho_{0}} A
$$

- Pursuing the project in case of distress at date 1 is better than abandoning it if:

$$
U_{b}^{1} \geq U_{b}^{0} \Leftrightarrow 1+\lambda \rho \leq \frac{1}{1-\lambda} \Leftrightarrow \rho \leq \frac{1}{1-\lambda}
$$

- Withstanding the liquidity shock is optimal if it is
- low: ρ is low
- likely: λ is high.
- If $\rho_{0}<\rho \leq \frac{1}{1-\lambda}$, then liquidity management is required.
- For example: a credit line.

A continuum of liquidity shocks

- Continuous investment, continuous shock.
- At date 1 , continuation requires a reinvestment ρI, where $\rho \geq 0$.
- Per-unit-of-investment cost overruns.
- Probability distribution $F(\rho)$, density $f(\rho)$.

- $\operatorname{NPV}(\tilde{\rho})-$ net present value for a given cutoff $\tilde{\rho}$.

$$
\operatorname{NPV}(\tilde{\rho})=\left\{F(\tilde{\rho}) p_{H} R-\left[1+\int_{0}^{\tilde{0}} \rho f(\rho) d \rho\right]\right\} I
$$

- Assumption: There exists some $\tilde{\rho}$ such that $\operatorname{NPV}(\tilde{\rho})>0$.
- Question: What is the optimal cutoff rule ρ^{*} ?
- Incentive constraint if continuation: $R_{b} \geq \frac{B I}{\Delta p}$
- Breakeven constraint with cutoff at ρ^{*} :

$$
F\left(\rho^{*}\right) p_{H}\left(R I-R_{b}\right) \geq I-A+\int_{0}^{\rho^{*}} \rho I f(\rho) d \rho
$$

- Borrowing capacity:

$$
I \leq k\left(\rho^{*}\right) A=\frac{1}{1+!\rho_{0}^{*} \rho f(\rho) d \rho-\rho_{0} F\left(\rho^{*}\right)} A
$$

- Recall the equity multiplier without liquidity shock: $k=\frac{1}{1-\rho_{0}}$
- Liquidity shocks reduce the equity multiplier: $k\left(\rho^{*}\right)<\frac{1}{1-\rho_{0}}$.
- Due to competition among creditors, borrower obtains $\operatorname{NPV}\left(\rho^{*}\right)$.

$$
\begin{aligned}
U_{b}= & \left\{F\left(\rho^{*}\right) \rho_{1}-\left[1+!\rho^{*} \rho f(\rho) d \rho\right]\right\} I \Leftrightarrow \\
U_{b}= & m\left(\rho^{*}\right) k\left(\rho^{*}\right) A, \\
& \text { where } \\
& m\left(\rho^{*}\right)=F\left(\rho^{*}\right) \rho_{1}-1-!_{0}^{\rho^{*}} \rho f(\rho) d \rho
\end{aligned}
$$

- The margin per unit of investment: $m\left(\rho^{*}\right)$
- The borrower must trade off the margin and the equity multiplier
- Maximizing $m\left(\rho^{*}\right)$ would maximize profit and yield $\rho^{*}=\rho_{1}$. But $k^{\prime}\left(\rho_{1}\right)<0$.
- Maximizing $k\left(\rho^{*}\right)$ would maximize pledgeable income and yield ρ_{0}. But $m^{\prime}\left(\rho_{0}\right)>0$.

- Write the borrower's net utility as

$$
U_{b}=\frac{\rho_{1}-c\left(\rho^{*}\right)}{c\left(\rho^{*}\right)-\rho_{0}} A \text {, where: } c\left(\rho^{*}\right)=\frac{1+!\rho^{*} \rho f(\rho) d \rho}{F\left(\rho^{*}\right)}
$$

- Note: $F\left(\rho^{*}\right) c\left(\rho^{*}\right)=1+!_{0}^{\rho^{*}} \rho f(\rho) d \rho$
- $c\left(\rho^{*}\right)$ is the expected cost per unit of effective investment
- Maximizing U_{b} is tantamount to minimizing $c\left(\rho^{*}\right)$.
- Minimizing $c\left(\rho^{*}\right)$:

$$
\begin{aligned}
& c^{\prime}\left(\rho^{*}\right)=\frac{\rho^{*} f\left(\rho^{*}\right) F\left(\rho^{*}\right)-\left[1+\rho^{\sigma^{*}} \rho f(\rho) d \rho\right] f\left(\rho^{*}\right)}{\left[F\left(\rho^{*}\right)\right]^{2}} \\
& c^{\prime}\left(\rho^{*}\right)=\frac{f\left(\rho^{*}\right)}{F\left(\rho^{*}\right)}\left[\rho^{*}-c\left(\rho^{*}\right)\right] .
\end{aligned}
$$

- The optimal cutoff is implicitly defined by:

$$
\rho^{*}=c\left(\rho^{*}\right)
$$

- In equilibrium, the borrower's net utility is

$$
U_{b}=\frac{\rho_{1}-\rho^{*}}{\rho^{*}-\rho_{0}} A
$$

- The optimum cutoff lies between the expected per-unit-ofinvestment pledgeable income and income:

$$
\rho_{0}<\rho^{*}<\rho_{1}
$$

- Trading off size and liquidity: Increasing the cutoff above ρ^{*} would be good for profit but would also increase the demand for liquidity.

Risk management

- Suppose there is some residual uncertainty ε in the reinvestment requirement at date 1 , such that $E(\varepsilon \mid \rho)=0$.
- Consequences are adverse if liquidity falls short of a reinvestment
- Calls for buying insurance even if the entrepreneur is risk neutral.
- Tirole, Sec. 5.4

Endogenous liquidity shocks

- The entrepreneur may incur efforts to reduce - or even eliminate - the need for reinvestments. How to provide her with incentives to do this?
- A simple situation:
- Before date 1, the borrower can incur effort costs c that will eliminate reinvestment needs completely: $\rho=0$ with probability 1 . If not, then ρ is drawn from the distribution $F(\rho)$ as before.
- If the firm is cash poor - little or no income r at date 1 the optimal contract has a covenant that no more funds shall be reinvested. But is this credible?
- If the borrower does not incur costs c and the liquidity needs turn out to be $0 \leq \rho \leq \rho_{0}$, then it is in both lender's and borrower's interest to renegotiate the original contract.
- This scope for renegotiation reduces the borrower's incentives to incur the effort costs c.
- Soft budget constraint.
- More generally: Suppose the borrower can act at date 0 in a way that would improve the project, and that information arrives at date 1 that indicates whether or not she did so.
- Moral hazard at both dates 0 and 1 (with respect to outcomes at dates 1 and 2).
- Examples
- Short-term income r stochastic and dependent on date-0 efforts
- The project, if abandoned at date 1 , has a liquidation value L that is stochastic and dependent on date 0 efforts
- The project's date-2 return can be improved through efforts at date 0 , and information about these improvements may be available before the reinvestment decision is made.
- Here: short-term income affected stochastically by date-0 efforts.

Endogenous intermediate income

- Variable-investment model.
- The usual stochastic return $R I$ at date 2 , subject to date- 1 moral hazard.
- An investment of I at date 0 returns $r I$ at date 1 , where r is verifiable, and $r \in\left[0, r^{+}\right]$.
- Exerting effort affects the probability distribution of r.
- If the entrepreneur works at date 0 , then r is distributed according to $G(r)$, with density $g(r)$. If the entrepreneur shirks at date 0 , then r is distributed according to $\widetilde{G}(r)$, with density $\tilde{g}(r)$.
- The likelihood ratio

$$
l(r)=\frac{g(r)-\tilde{g}(r)}{g(r)}
$$

- The monotone likelihood ratio property (MLRP): $l^{\prime}(r) \geq 0$.
- Implying that the distribution of r improves if the entrepreneur works: $G(r) \leq \widetilde{G}(r), \forall r$.
- Private benefit at date 0 if entrepreneur shirks: $B_{0} I$.
- Benchmark: Credibility is not an issue - the "no soft budget constraint" (NSBC) case.
- Contract: $\left\{\rho^{*}(r), \Delta(r)\right\}$, where
- $\rho^{*}(r)$ is the state-contingent cutoff
- $\Delta(r) \geq 0$ is the borrower's state-contingent "extra rent" per unit of investment:
- If continuation,

$$
\Delta(r)=p_{H}\left(R_{b}-\frac{B I}{\Delta p}\right),
$$

what the borrower receives over and above the minimum required to preserve date- 1 incentives.

- If liquidation, $\Delta(r)$ is cash compensation.
- Lenders' breakeven constraint $\left(I R_{l}\right)$:

$$
\left\{\int_{0}^{r^{+}}\left[r+F\left(\rho^{*}(r)\right) \rho_{0}-\int_{0}^{\rho^{*}(r)} \rho f(\rho) d \rho-\Delta(r)\right] g(r) d r\right\} I \geq I-A
$$

- Borrower's date-0 incentive constraint $\left(I C_{b}\right)$:

$$
\begin{aligned}
& \left\{\int_{0}^{r^{+}}\left[F\left(\rho^{*}(r)\right)\left(\rho_{1}-\rho_{0}\right)+\Delta(r)\right][g(r)-\tilde{g}(r)] d r\right\} I \geq B_{0} I \Leftrightarrow \\
& \left\{\int_{0}^{r^{+}}\left[F\left(\rho^{*}(r)\right)\left(\rho_{1}-\rho_{0}\right)+\Delta(r)\right] l(r) g(r) d r\right\} I \geq B_{0} I
\end{aligned}
$$

- The optimal contract maximizes borrower's net utility subject to the two above constraints, with respect to $\left\{\rho^{*}(r), \Delta(r), I\right\}$. We ignore the choice of I for the moment.

$$
U_{b}=\left\{\int_{0}^{r^{+}}\left[r+F\left(\rho^{*}(r)\right) \rho_{1}-\int_{0}^{\rho^{*(r)}} \rho f(\rho) d \rho-1\right] g(r) d r\right\} I
$$

- Lagrangian multipliers: μ for $I R_{l}$ and v for $I C_{b}$.
- Pointwise maximization.
- For each r, find the optimal pair $\left\{\rho^{*}(r), \Delta(r)\right\}$
- Fix r. First-order conditions with respect to $\rho^{*}(r)$ and $\Delta(r)$:

$$
\begin{aligned}
& \left\{f\left(\rho^{*}\right) \rho_{1}-\rho^{*} f\left(\rho^{*}\right)+\mu\left[f\left(\rho^{*}\right) \rho_{0}-\rho^{*} f\left(\rho^{*}\right)\right]+v\left[f\left(\rho^{*}\right)\left(\rho_{1}-\rho_{0}\right)\right] l(r)\right\} \\
& \times g(r) I=0 \\
& \{-\mu+v l(r)\} g(r) I=0 \\
& \Leftrightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \rho^{*}(r)=\frac{\rho_{1}+\mu \rho_{0}}{1+\mu}+\frac{v\left(\rho_{1}-\rho_{0}\right)}{1+\mu} l(r) \\
& \mu=v l(r)
\end{aligned}
$$

- But the constraint $\Delta(r) \geq 0$ may be binding. Therefore,
- either: $\Delta(r)>0 \Rightarrow \mu=v l(r) \Rightarrow \rho^{*}=\rho_{1}$,
- or: $\Delta(r)=0 \Rightarrow-\mu+v l(r) \leq 0 \Rightarrow \rho^{*} \leq \rho_{1}$.
- $E_{G(\cdot)}[l(r)]=\int_{0}^{r^{+}} \frac{g(r)-\tilde{g}(r)}{g(r)} g(r) d r=\int_{0}^{r^{+}} g(r) d r-\int_{0}^{r^{+}} \tilde{g}(r) d r=0$
- This implies: $E[\rho *(r)]=\frac{\rho_{1}+\mu \rho_{0}}{1+\mu}$
- In expectation, the cutoff is a weighted average of ρ_{1} and ρ_{0}, and $\left.\rho_{0}<E\left[\rho^{*}(r)\right)\right]<\rho_{1}$; as in the case without date- 0 moral hazard, the firm trades off size and liquidity.
- We can write:

$$
\begin{aligned}
& \rho^{*}(r)=E\left[\rho^{*}(r)\right]+\lambda l(r), \\
& \quad \text { where: } \lambda=\frac{v}{1+\mu}\left(\rho_{1}-\rho_{0}\right)>0 .
\end{aligned}
$$

- By assumption (MLRP): $l^{\prime}(r) \geq 0$. Therefore: $\frac{d \rho^{*}}{d r} \geq 0$.
- The continuation rule is more lenient, the higher is the date- 1 income r.
- Two possibilities:
- $\rho^{*}(r)$ increases moderately
- because the date-0 incentive problem is small
- date- 0 private benefits B_{0} not very high, so that the borrower's date-0 incentive constraint is not very restrictive, making v low;
- date-0 liquidity shocks being mainly outside the borrower's control, so that $l(r)$ stays close to 0 .
- or because the date- 1 incentive problem is small
- date-1 private benefits B small, or $\Delta p / p_{H}$ large, again making v low.

- No extra rent to the borrower: $\Delta(r)=$ $0, \forall r$.
- $\rho^{*}(r)$ increases steeply
- because one or both of the two moral hazard problems are more serious
- When intermediate income is high, first-best can be reached: $\rho^{*}=\rho_{1}$.
- Extra rent to the borrower at high r : When intermediate income is high, she gets to keep some of it.
- At a low intermediate income, we may even have ρ^{*} $<\rho_{0}$.

- Soft budget constraint: $\rho^{*}<\rho_{0}$ is not credible.
- The parties will renegotiate a contract whenever r is realized and $\rho^{*}(r)<\rho_{0}$.
- Formally, same problem as before, with an added constraint: $\rho^{*} \geq \rho_{0}$.
- When incentive problems are small, so that there is only a moderate increase in $\rho^{*}(r)$ in the NSBC case, there is no change in the optimal contract.
- When incentive problems are greater, the constraint $\rho^{*} \geq \rho_{0}$ binds for small values of r.
- Increasing ρ^{*} in order to satisfy the credibility constraint at low values of r calls for decreasing it for higher values of r, in order to keep satisfying the lenders' breakeven constraint.

- Credibility problems at low values of r decreases continuation - and reduces efficiency - at larger values.

Free cash flow

- Tirole, Sec. 5.6.
- If the firm has more cash than it needs, there are incentives for overinvestment. It has been argued that debt may mitigate this problem.
- Back to the discussion of the liquidity-scale tradeoff.
- But now there is a deterministic short-term income rI, which is fully pledgeable.
- Lenders' breakeven constraint with cutoff at ρ^{*} :

$$
r I+F\left(\rho^{*}\right) p_{H}\left(R I-R_{b}\right) \geq I-A+\int_{0}^{\rho^{*}} \rho I f(\rho) d \rho
$$

- Everything as if the unit investment cost is $(1-r)$ rather than 1 .
- Cutoff implicitly given by:

$$
\rho^{*}=c\left(\rho^{*}\right)=\frac{1-r+\int_{0}^{\rho^{*}} \rho f(\rho) d \rho}{F\left(\rho^{*}\right)}
$$

- Cutoff ρ^{*} is now decreasing in the short-term income r.
- A high r makes it possible to reduce continuation in order to increase the borrowing capacity.
- The free-cash-flow assumption: $r>\rho^{*}$.
- The entrepreneur would like to commit herself not to reinvest the amount $\left(r-\rho^{*}\right) I$.
- This calls for short-term debt, that is, debt to be paid at the intermediate date.
- In more general settings, short-term debt may not fully resolve the free-cash-flow problem.

