Credit rationing

- Loan markets are special
 - Personalized
 - o Clearing through both quantities and prices
- This is because of private information among borrowers
 - Adverse selection: There are both good and bad firms out there, and banks cannot tell who is who.
 - Moral hazard: Banks cannot observe actions taken by firms.
- Increasing the interest rate makes the borrower care less about the project that is being financed.
 - o Lower borrower's income in the absence of bankruptcy
 - No effect on her income in case of bankruptcy
- Moral hazard: a reduced stake reduces incentives
- Adverse selection: an increased interest rate attracts low-quality borrowers
- In equilibrium, borrowers may be *rationed*.
 - Rationed not getting the funds you need even though you are willing to accept the terms that are required.
 - Prices alone do not clear markets.
- In order to get outside financing, you may need own funds.

A simple model: Fixed investment

Moral hazard Verifiable outcome Project costs I. Entrepreneur has equity A < I; borrows I - A; Private Pr (success) R pis protected by LL. benefit 0 Behaves p_H \overline{B} Misbehaves p_L

- A risk neutral entrepreneur has a project requiring a fixed investment *I*.
 - o If success: project return is R. If failure, return is 0.
- The entrepreneur has own funds A < I.
 - \circ A = net worth, or cash on hand.
- She needs to borrow I A to carry out the project.
- Project is risky, and success depends on entrepreneur's effort.
 - O Misbehaving lowers the success probability of this project $(p_L < p_H)$, but creates private benefits B to the entrepreneur.
 - $\circ \ \Delta p = p_H p_L.$
- Assume project is viable if and only if entrepreneur behaves
 - *Net present value* (NPV) if she behaves: $p_HR I > 0$.
 - NPV if not: $p_L R I + B < 0$.
 - In combination: $\frac{p_H R}{I} > 1 > \frac{p_L R}{I B}$
 - No loan will be granted that induces misbehavior.
- Loan contract: If success, borrower gets R_b , lender $R_l = R R_b$.
- Limited liability: If failure, both receive 0.

- Lenders are risk neutral and behave competitively.
- Competition among lenders implies $p_H R_l = I A \Rightarrow R_l = \frac{I A}{p_H}$.
- The interest rate is given by: $R_l = (1 + \iota)(I A) \Rightarrow 1 + \iota = \frac{1}{p_H}$.
 - For p_H < 1, there is a default premium: t > 0.
- Are lenders interested at these terms? Credit analysis.
 - Need to preserve borrower a sufficient stake in order to induce incentives
 - The incentive compatibility constraint

$$p_H R_b \ge p_L R_b + B \Longrightarrow R_b \ge \frac{B}{\Delta p}$$

- What the borrower gets from behaving must be more than what she gets from misbehaving
- There is a lower limit on the borrower's return
 - Increasing in the private benefits *B*.
 - Decreasing in the effect of behaving Δp .
- The maximum income that can be *pledged to lenders* without inducing misbehavior is

$$R - \frac{B}{\Delta p}$$

o Expected pledgeable income is therefore

$$P = p_H \left(R - \frac{B}{\Delta p} \right)$$

• Lenders' individual rationality constraint

$$p_H \left(R - \frac{B}{\Delta p} \right) \ge I - A$$

- Expected pledgeable income must exceed lenders' initial expenses
- Other names
 - breakeven constraint
 - participation constraint
- A necessary and sufficient condition for financing of the entrepreneur's project
- Minimum level of own funds in order to get outside financing

$$A \ge \overline{A} = p_H \frac{B}{\Delta p} - (p_H R - I)$$

• Assumption:

$$\overline{A} > 0 \Leftrightarrow (0 <) p_H R - I < p_H \frac{B}{\Delta p}$$
 (*)

- Otherwise, even a borrower without any wealth of her own would get credit
- NPV of project is less than the minimum that must be left to the borrower in order to ensure incentives.
- A project may have NPV > 0, and still not get funded
 - This happens in cases where $A < \overline{A}$.
 - o "One only lends to the rich".

• The *agency rent*: what must be left to the borrower to ensure incentives

$$p_{\scriptscriptstyle H} \frac{B}{\Delta p}$$

• The condition $A \ge \overline{A}$ says that agency rent net of borrower's own input must be less than the project's NPV

$$p_{H} \frac{B}{\Delta p} - A \le p_{H} R - I$$

• The borrower's net utility

$$U_b = 0,$$
 if $A < \overline{A}$;
= $p_H R_b - A = p_H (R - R_l) - A = p_H R - I$, if $A \ge \overline{A}$.

- The borrower gets the entire net present value, if only she can get the project funded.
- Determinants of credit rationing
 - Little cash on hand (low *A*)
 - High agency costs (high $p_H \frac{B}{\Delta p}$).
- Moral hazard determined by two factors
 - The extent of private benefits from misbehavior: B
 - The extent to which the verifiable final outcome reveals misbehavior
 - Informativeness measured by the likelihood ratio

$$\frac{\Delta p}{p_{\scriptscriptstyle H}} = \frac{p_{\scriptscriptstyle H} - p_{\scriptscriptstyle L}}{p_{\scriptscriptstyle H}}$$

- Is this debt or equity?
 - O Debt: Entrepreneur owes R_l and must pay this or go bankrupt
 - Equity: Entrepreneur and investor own R_b/R and R_l/R each in the firm.
- A few "dynamic" considerations
 - A second investment (sec. 3.2.4)
 - Dilution of initial lenders' claim
 - Overinvestment
 - Argument for a negative debt covenant prohibiting further debt
 - o Reputational capital (sec. 3.2.5)
 - The borrower would gain by a lowering of private benefits *B*.

$$b < B \Rightarrow \overline{A}(b) < \overline{A}(B)$$

- A more reliable borrower is more likely to get loan
- Two benefits of successful projects today
 - Increased retained earnings: A higher
 - Improved reputation: (lenders' perception of) *B* lower

Relative performance evaluation

- Making agents accountable for events they have no control over weakens incentives in general
- One should always try to make use of the most precise measurement of the agent's performance the *sufficient statistic* (Holmström, 1979).
- Benchmarking
- Reinterpreting the model in terms of benchmarking
 - Three states of nature
 - Favorable state (probability p_L): Project will succeed whatever the entrepreneur does.
 - Unfavorable state (probability $1 p_H$): Project will fail whatever the entrepreneur does.
 - Intermediate state (probability $\Delta p = p_H p_L$): Success not guaranteed but will result if entrepreneur behaves.
 - No-one knows the true state. But lenders can say, by looking at other firms in the same industry learn whether or not the state is favorable.
 - \circ Contract: Entrepreneur receives nothing in the favorable state; otherwise, she receives R_b if success.
 - Incentive compatibility constraint is the same: $R_b \ge \frac{B}{\Delta p}$
 - But *pledgeable income* is increased, since entrepreneur is not paid for being lucky: $p_H R \Delta p \frac{B}{\Delta p} = p_H R B$.

Debt overhang

- Project is profitable, but entrepreneur is unable to raise funds because of previously incurred debt
- Two interpretations
 - \circ Previous investors have collateral claims that reduce net worth A to below the threshold level \overline{A} .
 - Previous debt needs to be renegotiated in order to enable new investments.

Previous debt reduces net worth

- Suppose the entrepreneur has A in cash but owes D to the initial investors.
- Initial investors insisted on a covenant specifying that further loans require their consent.
- The assets *A* are pledged as collateral to initial investors in case of default.
- Let $A > \overline{A} > A D \ge 0$.
- The new project would have been undertaken in absence of previous debt but is not undertaken, because the investors (old and new together) cannot recoup their expenses (I-A) plus the previous debt (D), since $A-D<\overline{A}$, but they can get D by seizing the collateral, since $A \ge D$.

Lack of renegotiation with previous lenders

- Suppose the borrower has no cash: A = 0
- But \overline{A} < 0: the project would be able to attract funds even without any net worth for the borrower.
- The borrower has already a long-term debt *D*, which is due later.
- The problem cannot be overcome by the (expected) profitability of the new project: The slack in pledgeable income, $-\bar{A}$, is smaller than what has to be paid back to previous investors, p_HD , if the project is funded:

$$p_H D > -\overline{A} \iff \overline{A} + p_H D > 0$$

- Initial investors may want to put in more funds, since they get nothing in case of bankruptcy now (A = 0).
- But what if initial investors have no funds available? Are new investors willing? The problem is that old debt is senior, and that the borrower needs to keep a minimum stake in the project to ensure incentives; so expected pledgeable income is

$$p_H \left(R - \frac{B}{\Delta p} - D \right)$$

New investors are willing to fund if and only if:

$$p_H \left(R - \frac{B}{\Delta p} - D \right) \ge I \iff \overline{A} + p_H D \le 0$$

- This contradicts the assumption above.
- It is impossible to raise funds from new investors unless some debt forgiveness is renegotiated with old investors.

Borrowing capacity: a variable-investment model

Contract: Moral hazard Outcome 0 or RIInvestment I. Sharing rule Private Pr $R_b + R_\ell = RI$ benefit (success) 0 Behaves p_H Misbehaves \overline{BI} p_L

- Constant returns to scale in investment: Investing $I \ge 0$ yields a return RI if success, 0 if failure, with R > 0.
- Borrower's private benefit from misbehaving: BI, with B > 0.
- Borrower can choose to behave or not.
- Borrower's cash: A; must borrow I A to invest I.
- Loan contract: $\{R_b, R_l\}$, where $R_b + R_l = RI$.
- Assume project is profitable if and only if borrower behaves

$$p_H R > 1 > p_L R + B$$

• ... but that NPV per unit of investment is less than agency costs per unit

$$p_H R - 1 < \frac{p_H B}{\Delta p}$$

- Equivalent to the $\overline{A} > 0$ assumption in the fixed-investment model
- Needed here to ensure equilibrium investment being finite, because of the constant-returns-to-scale technology.

- Lenders behave competitively
- Lenders' credit analysis
 - o Incentive compatibility: $R_b \ge \frac{BI}{\Delta p}$
 - Breakeven: $p_H(RI R_b) \ge I A$
 - o Borrower's net utility: $U_b = (p_H R 1)I$
 - The borrower would like as much funding as possible.
- The equity multiplier
 - Determined by incentive compatibility and breakeven constraints. Combining them, we get

$$I \leq kA$$
, where

$$k = \frac{1}{1 - p_H \left(R - \frac{B}{\Delta p} \right)} > 1.$$

- The borrower can lever her wealth, with the *equity multiplier k*.
- The *equity multiplier* is smaller, the higher is the private benefit B, and the lower is the likelihood ratio $\Delta p/p_H$ our two measures of agency cost.

- The entrepreneur's borrowing capacity.
 - Outside financing capacity; debt capacity
 - \circ It is possible for the borrower to invest k times her cash A, that is, to borrow d = k 1 times her cash, where

$$d = \frac{p_H \left(R - \frac{B}{\Delta p} \right)}{1 - p_H \left(R - \frac{B}{\Delta p} \right)}.$$

- \circ The maximum loan, dA, is the borrowing capacity.
- The borrowing capacity
 - increases with per-unit return *R*
 - decreases with the extent of the agency problem
- The shadow value of equity
 - o Borrower's gross utility: $U_b^s = A + U_b$
 - Combine $U_b = (p_H R 1)I$ and I = kA to get:

$$U_b^g = vA$$
, where $v = \frac{p_H \frac{B}{\Delta p}}{1 - p_H \left(R - \frac{B}{\Delta p}\right)} > 1$

- \circ The shadow value of equity ν
 - increases in the per-unit return R
 - decreases in the extent of the agency problem

- Useful notation
 - Expected payoff per unit of investment: $\rho_1 = p_H R$
 - Expected pledgeable income per unit of investment:

$$\rho_0 = p_H \left(R - \frac{B}{\Delta p} \right)$$

- Earlier assumptions imply: $\rho_1 > 1 > \rho_0$.
- The equity multiplier: $k = \frac{1}{1 \rho_0}$
- The borrowing capacity per unit of net worth: $d = \frac{\rho_0}{1 \rho_0}$
- The shadow value of equity: $v = \frac{\rho_1 \rho_0}{1 \rho_0}$
- o Borrower's net utility: $U_b = (\nu 1)A = (\rho_1 1)I$.
- Note: Firms with a low agency cost has a greater *sensitivity of investment to cash flow*.

$$\frac{\partial^2 I}{\partial A \partial \rho_0} = \frac{\partial k}{\partial \rho_0} = \frac{1}{\left(1 - \rho_0\right)^2} > 0.$$

The maximal incentives principle

- Resolving the debt vs equity question.
- Salvage value of assets
 - Investing $I \ge 0$ yields a return R^SI if success, R^FI if failure, with $R^S > R^F > 0$.
 - O Define $RI = (R^S R^F)I$ as the profit increase following success.
 - \circ When secondary asset markets perform better, we should expect R^F to be higher.
- Generalizing $\rho_1 > 1 > \rho_0$:

$$p_{\scriptscriptstyle H}R + R^{\scriptscriptstyle F} > 1 > p_{\scriptscriptstyle H} \left(R - \frac{B}{\Delta p} \right) + R^{\scriptscriptstyle F}$$

- Contract: $\{R_b^S, R_b^F, I\}$ how much to invest, and how much of the returns generated that the borrower should have following success and failure.
- The optimal contract maximizes the entrepreneur's net utility,

$$p_H R_b^S + (1 - p_H) R_b^F - A,$$

subject to two constraints:

o the entrepreneur's incentive compatibility constraint:

$$R_b^S - R_b^F \ge \frac{BI}{\Delta p}$$

o the investors' breakeven constraint:

$$p_H(R^SI - R_b^S) + (1 - p_H)(R^FI - R_b^F) \ge I - A$$

• In equilibrium, both constraints will be binding.

• As before, the entrepreneur receives all the NPV:

$$U_b = (p_H R + R^F - 1)I$$

- In equilibrium, the entrepreneur receives nothing following failure: $R_b^F = 0$.
 - O Suppose instead $R_b^F > 0$. Then one can reduce it, and increase R_b^S , at a rate $\frac{\Delta R_b^F}{\Delta R_b^S} = -\frac{p_H}{1-p_H}$, keeping the breakeven constraint binding and the entrepreneur's utility unchanged; but this would make the incentive compatibility constraint slack a contradiction.
- An all-equity firm is not optimal
 - \circ With no debt, the entrepreneur would, after a failure, receive her share of R^FI corresponding to her share of the firm's stocks.
- Outside investors must hold debt $D \ge R^F I$.
- Borrowing capacity: I = kA, and so D = I A = dA = (k 1)A, where now

$$k = \frac{1}{1 - \left[p_H \left(R - \frac{B}{\Delta p} \right) + R^F \right]}.$$

- Firms borrow more
 - o the lower agency costs are;
 - o the more liquid assets are.
- Incentives are maximized when outside investors hold a combination of debt and equity.

Extensions of the analysis

- Supplementary sections to chapter 3
- A *continuum of effort levels*, disutility of effort *g*(*e*)
- A *continuum of outcomes*, probability of outcome R with effort level e is p(R|e).
- Linking effort and outcome: higher effort tends to increase income *the monotone likelihood ratio property* (MLRP)

$$\left| \frac{\partial}{\partial R} \left[\frac{\partial p(R \mid e)}{\partial e} \right] > 0$$

- Essentially same result: A *standard debt contract* making entrepreneur a residual claimant for the marginal income above the debt repayment level
- <u>Risk aversion</u> brings in another problem: the *insurance/incentives tradeoff*.
 - Providing incentives means making the risk averse entrepreneur take part in the lottery.
 - A solution exists if effort can be verified after contracts are signed, but before outcome is realized, so that contracts can be *renegotiated*. This makes it possible to separate the insurance and incentives problems.

• Semi-verifiable outcome

- Outcome from investment not verifiable, unless outside investors incur an *audit cost*.
- The incentive problem is related to hiding income, rather than to enjoying private benefits or reducing effort.
- Outcome is reported by entrepreneur: \hat{R} .
- o The problem for outsiders is to induce truthful reporting.
- Contract now includes a probability $y(\hat{R})$ of no audit for each report \hat{R} .
- o Again, a standard debt contract.

• Non-verifiable outcome

- o Not even an audit can verify outcome.
- Repayment is the result of threats of termination or nonfinancing of future projects.