Investor activism

- The costs and benefits of active monitoring
- Incentives of an active monitor
- Important topics in corporate governance
 - o Banks vs stock markets
 - Concentrated vs dispersed ownership
- Costs and benefits of active monitoring
 - o Costs
 - Monitoring costs
 - Scarcity rents to monitors
 - Monitor illiquidity
 - o Benefits
 - Learning by lending
 - Externalities to non-monitoring investors
 - Control (chapter 10)

Basic model of investor activism

- Fixed-investment model
 - Risk neutral entrepreneur has assets A and a project needing I > A. Project yields R if success, 0 if failure. Success probability p_H if entrepreneur works, $p_L = p_H - \Delta p$ if not.
- No monitoring
 - Benefit from shirking *B*.
 - Funding to project if expected pledgeable income exceeds investors' expenses:

$$p_H(R-\frac{B}{\Delta p}) \ge I-A$$

- Monitoring
 - The monitor moves first.
 - The extent of moral hazard is reduced.
 - The benefit from shirking reduced from *B* to b < B.
 - \circ Monitor's private cost: *c*

• Interpretation

 Manager picks among three projects: good, bad and Bad.

	Pr (success)	Private benefit
Bad	p_L	В
bad	p_L	b

- By incurring cost *c*, monitor eliminates Bad project but still cannot tell good from bad.
- With a monitor present, entrepreneur's incentive constraint is

$$R_b \geq \frac{b}{\Delta p}$$

• Incentives for the monitor

- Also monitor is risk neutral
- When not incurring cost c, the monitor cannot prevent shirking
- Monitor's reward *R_m* must satisfy

$$R_m \geq \frac{c}{\varDelta p}$$

- Suppose first that *monitoring capital is abundant*: there is a large supply of monitors willing to invest their capital.
 - A monitor is available supplying investment *I_m* such that his net payment equals his costs:

$$p_H R_m - I_m = c$$

 Funding possible if non-monitoring investors' breakeven constraint is satisfied:

$$p_{H}(R - R_{b} - R_{m}) \ge I - A - I_{m} \Leftrightarrow$$

$$p_{H}(R - \frac{b}{\Delta p}) - (I_{m} + c) \ge I - A - I_{m} \Leftrightarrow$$

$$p_{H}(R - \frac{b}{\Delta p}) \ge I - A + c$$

 Monitoring reduces the moral-hazard problem – at cost *c*.

• Investment by monitor: blockholding

$$I_m = p_H R_m - c = p_H \frac{c}{\Delta p} - c = c(\frac{p_H}{\Delta p} - 1) = \frac{p_L}{\Delta p}c$$

• Return on the investment: $\frac{p_H R_m}{I_m} = \frac{p_H c/\Delta p}{p_L c/\Delta p} = \frac{p_H}{p_L}$

 Monitoring has a role to play when it increases pledgeable income, which happens when

$$p_H \frac{b}{\Delta p} + c < p_H \frac{B}{\Delta p} \Leftrightarrow c < \frac{p_H}{\Delta p} (B - b)$$

- Entrepreneur's utility equals NPV under monitoring $U_b = p_H R - I - c.$
 - The entrepreneur will only enlist a monitor when this is necessary to obtain funding.
 - Strong firms are financed without monitoring.

No funding	Intermediated finance	Direct finance (no monitoring)
	(monitoring)	

- Empirical evidence: Legal systems with poor investor protection have also concentrated ownership.
 - High *B* leads to high needs for monitoring by a monitor holding a block of shares.

Overmonitoring

- The monitor exerts two kinds of externalities
 A positive externality on other investors
 - A negative externality on the entrepreneur
- A model of *variable monitoring intensity*.
 - The monitor identifies the Bad project with prob *x*, and learns nothing with prob 1 x.
 - The greater monitoring costs incurred, the greater is the probability *x*:

c = c(x), c' > 0, c'' > 0.

- Borrower's utility equals NPV and depends on *x*: $U_b(x) = xp_H R + (1 - x)(p_L R + B) - I - c(x)$
- NPV is maximized at monitoring level x^* , where $c'(x^*) = (\Delta p)R B$
- Suppose that this monitoring level is sufficient for funding, while no monitoring is not.

- The monitor's incentives: he maximizes $[xp_H + (1 - x)p_L]R_m - c(x)$
- In order to get the monitor to choose the correct monitoring level, it is necessary for the entrepreneur that

$$(\Delta p)R - B = c'(x^*) = (\Delta p)R_m \Leftrightarrow R_m = R - \frac{B}{\Delta p}$$

• The entrepreneur not getting funding without monitoring implies that $R_b < \frac{B}{\Delta p}$. Therefore:

$$R_m = R - \frac{B}{\Delta p} < R - R_b \Leftrightarrow R_b + R_m < R$$

- In order to get the proper monitoring level, the entrepreneur needs other, non-monitoring investors in addition to the monitor.
 - If the monitor holds all external shares, there is no positive externality on other outside investors, only a negative externality on the entrepreneur – *excessive monitoring*.
- A large monitoring investor may also
 - aggravate the problem of soft budget constraints, by facilitating renegotiations
 - dampen the entrepreneur's incentives to come up with new ideas.

Scarce monitoring capital

- People with *both* skills in monitoring *and* own capital to invest may be scarce.
- Polar case monitor has no own capital: $I_m = 0$.
 - Example: monitors as non-owning board members.
 - Monitor's incentive constraint: *R_m* ≥ *c*/*Δp* Monitor earns a *rent*: *p_HR_m* − *c* = *p_L*/*Δp*
 - Borrower's utility is no longer equal to NPV.

NPV =
$$p_H R - I - c$$

 $U_b = p_H R - I - c - \frac{p_L}{\Delta p}c = p_H R - I - \frac{p_H}{\Delta p}c$

• A decrease in the scope for monitoring, and an increase in the occurrence of no funding.

• More generally, a high return on monitor's investment, because of investment opportunities elsewhere:

$$\chi = \frac{p_H R_m}{I_m} > \frac{p_H}{p_L}$$

• Monitor's rent:

$$M = p_H R_m - I_m - c = p_H R_m - \frac{p_H R_m}{\chi} - c =$$
$$p_H \frac{c}{\Delta p} (1 - \frac{1}{\chi}) - c = (p_L - \frac{p_H}{\chi}) \frac{c}{\Delta p} > 0.$$

- Borrower's utility: $p_H R I c M$.
- Funding possible if

$$p_H(R-\frac{b}{\Delta p})-c-M\geq I-A$$

• The scarcer monitor capital is, the higher is χ , the higher is M, and therefore the more difficult it is to get funding.

Monitor-entrepreneur collusion

- A three-tier hierarchy
 - o principal-supervisor-agent
 - o here: investor-monitor-entrepreneur
 - two incentive problems: agent and supervisor
 - in addition: the agent may try to persuade the supervisor into not performing
 - *Ex ante* collusion: the agreement to collude is made before the monitor decides to collect information.
 - <u>Ex post collusion</u>: the monitor collects information and then offers to the entrepreneur to be cooperative, by not ruling out the Bad project.

- A model of *ex post* collusion
 - The entrepreneur bribes the monitor into colluding by diverting corporate resources.
 - The diversion creates a gain G > 0 to the monitor but uniformly reduces the success probability by $\tau > 0$
 - from p_H to $p_H \tau$ if entrepreneur works,
 - from p_L to $p_L \tau$ if not.
 - The diversion is wasteful: $G < \tau R$. Direct payments not possible.
 - Collusion occurs if both monitor and entrepreneur gain from it:

$$G \ge (\varDelta p + \tau) R_m$$
$$B \ge (\varDelta p + \tau) R_b$$

• In order to prevent collusion, monitor's stake must be raised from $\frac{c}{\Delta p}$ to $\frac{G}{\Delta p + \tau}$, if the latter is higher.

The monitor as advisor

- Board members and others perform *two* tasks: monitoring and advising.
- Advisory activity is *productive*, like that of the entrepreneur.
 - A double-sided moral hazard problem
 - The advisor increases NPV and is useful even without own capital.
 - Strong entrepreneurs do not need *pure monitors* to get funding and are therefore more interested in a *pure advisor*.

• A model of pure advising

 \circ Fixed investment *I*, entrepreneur's own funds A < I.

 \circ Success probability is p + q

- Entrepreneur determines *p* ∈ {*p_H*, *p_L*} and earns
 B when misbehaving.
- Advisor determines q ∈ {q_H, q_L = 0} and incurs non-verifiable cost c to give a useful advice raising success probability by q_H.
- $\circ\,$ Suppose advising is socially efficient:

 $(\Delta q)R = q_H R > c.$

- Crucial difference between entrepreneur and advisor: Entrepreneur owns the idea and decides whether or not to hire advisor.
- Benchmark: no advisor.
 - Funding if $A \ge \overline{A} = I p_H(R \frac{B}{\Delta p})$
 - Borrower's utility: $U_{b}^{nm} = p_{H}R I$.

- Suppose that advisors' capital is abundant.
- In case of success, entrepreneur receives R_b , advisor R_m , and other investors $R R_b R_m$.
- Advisor's incentive constraint binding: $R_m = \frac{c}{\Delta q}$.
- o Investment demanded from advisor:

$$I_m = (p_H + q_H)R_m - c = (p_H + q_H)\frac{c}{\Delta q} - c = \frac{p_H}{q_H}c$$

- Borrower's utility equals NPV, since advisor does not receive rent: $U_{b}^{m} = (p_{H} + q_{H})R - I - c.$
- The entrepreneur prefers advising as long as she can afford it, since $U_b^m > U_b^{nm}$.

• But does advising make funding easier?

• Other investors' breakeven constraint with advising:

$$(p_{H} + q_{H})(R - \frac{B}{\Delta p} - \frac{c}{\Delta q}) \ge I - A - I_{m} \Leftrightarrow$$
$$(p_{H} + q_{H})(R - \frac{B}{\Delta p}) - c \ge I - A \Leftrightarrow$$
$$A \ge \hat{A} = I - (p_{H} + q_{H})(R - \frac{B}{\Delta p}) + c$$

• Funding facilitated by advising if and only if $q_H(R - \frac{B}{\Delta p}) > c$

• Two cases

• If $q_H R > c > q_H (R - \frac{B}{\Delta p})$, then advising

increases NPV but makes funding more difficult. Advisor hired by strong firms only.

• If $q_H(R - \frac{B}{\Delta p}) > c$, then advising helps on

funding. Advisor hired by all funded firms.

A monitor arising endogenously

- Suppose, instead of the entrepreneur enlisting him (a *private deal*), the monitor needs to arise through share purchases in the stock market.
- To start with, external shares are held by dispersed owners.
- A potential large monitor makes *an unconditional and unrestricted tender offer* of price *P* per share on all external shares.
 - Unconditional and unrestricted: the offer stands irrespective of how many shares it attracts.
- A free-rider problem
 - \circ Getting a monitor enhances the value of the firm.
 - Selling to the potential monitor supplies a public good to other current share owners.

- In order to attract any shares, the potential monitor has to offer a price corresponding to the ex post value of the firm.
- The potential monitor has himself to bear the full cost of monitoring.
- In equilibrium, there will no monitoring.
- Ways to monitoring in equilibrium
 - Liquidity traders, making it possible for the potential monitor to disguise his offer.
 - Risk aversion among current investors.
 - The entrepreneur selling shares.

Learning by lending

- An additional effect from monitoring
 - \circ Not only alleviating the moral hazard problem
 - But also providing the monitor with information about the borrower that the monitor can profit from later on.
- Competition among asymmetrically informed investors.
- Model: Fixed investment. Two periods. Discount factor β. No cash initially: A = 0. No savings between periods. Short-term contracts only.
- Date 1: Entrepreneur has a project requiring *I* > 0. Private benefit without monitoring, *B*, is large: no funding unless a monitor is enlisted. With monitor, private benefit *b* < *B*. No scarcity of monitors.
 - Assume pledgeable income sufficient even with no continuation project:

$$p_H(R-\frac{b}{\Delta p}) \ge I+c$$

- Date 2: Independently of what happens at date 1, the entrepreneur has a new project, statistically independent of the first project, and identical to it, with one difference:
 - With probability α , the date-2 profitability is high: success probability has increased uniformly by τ . If the entrepreneur behaves, the success probability is $p_H + \tau$, if not, it is $p_L + \tau$. But *B* is so large that the project still gets no funding without monitoring.
 - With probability (1α) , the success probabilities are unchanged from date 1.
- Symmetric information: no-one learns date-2 profitability. No gain to the borrower from having the same monitor in both periods.

- Asymmetric information: only the date-1 monitor (the incumbent) learns date-2 profitability.
 - Suppose the entrepreneur auctions off the position as active monitor.
 - The incumbent has an informational advantage.
 - Sequential-move bidding game where incumbent moves last: pure-strategy equilibrium.
 - Stage 1 of date-2 bidding game: Entrepreneur offers a monitor a stake R²_m = c/∆p in the date-2 project and seeks bids of investment contribution I²_m for the position of active monitor.
 - Stage 2: New investors bid.
 - Stage 3: Incumbent monitor bids.
 - Stage 4: Uninformed investors contribute the residual investment: *I I*²_m.

- Adverse selection: it never pays for uninformed investors to bid according to a higher date-2 success probability than p_H ; if it is in fact higher, uninformed bidders will be outbid.
- Monitor investment at date 2:

$$I_m^2 = p_H R_m^2 - c = p_H \frac{c}{\Delta p} - c$$

• Date 1: Because of the expected informational rent at date 2, investors are willing to contribute up to

$$I_{m}^{1} = p_{H}\frac{c}{\Delta p} + \beta \alpha \tau \frac{c}{\Delta p} - c = (p_{L} + \beta \alpha \tau) \frac{c}{\Delta p}$$

• The monitor position acquired at a premium and maintained at a discount.

- Discussion: Learning by lending
 - Endogenous date-2 profitability: a *hold-up problem*
 - Suppose the entrepreneur, through an effort, can affect the chance of increased date-2 profitability. The incumbent monitor's informational advantage deteriorates the entrepreneur's incentives to perform.
 - Empirical studies indicate a value to being associated with a long-term investor.
 - Firms with close ties to investors are less liquidity constrained than others.
 - Firms with a bank relationship observe positive reactions in stock price.
 - The possibility of commitment.
 - The entrepreneur's own knowledge about date-2 profitability.
 - Competition among investors: with imperfect competition among available investors, the possibility for the monitor to recoup expenses later on is further increased, facilitating funding at date 1 even more.
 - Empirical evidence: concentrated banking markets may facilitate funding for weak firms.

Liquidity needs among monitors

- Tradeoff: commitment vs liquidity
- Comparative corporate governance
 - Market-based systems: lack of investor commitment
 - Bank-based systems: lack of investor liquidity
- A monitor may have liquidity needs before project returns arrive. Liquidity vs accountability just as with the borrower (chapter 4).
 - Late compensation to the monitor is good for accountability, since more information about the project is known, but bad for monitor liquidity.
- Performance measures along the way may give the monitor an exit option.
 - A role for *passive monitoring* in providing liquidity to the active monitor.

• A model of monitor liquidity

 Basic model of investor activism, with monitor liquidity needs added.

- Fixed-investment model. Risk neutral entrepreneur has asset *A* and a project needing *I* > *A* at date 0. Project yields *R* if success, 0 if failure, at date 2. Success probability *p_H* or *p_L*.
- At date 1, the monitor faces a liquidity shock with probability λ : An investment opportunity transforming an intermediate compensation r_m into μr_m , where $\mu > 1$.
- Strategic exit: the monitor may choose to exit even without a liquidity shock.
- Imperfect performance measurement at date 1: After the monitor learns about the liquidity shock, *speculative information* arrives which is informative about effort, but which is *not* a sufficient statistic: the final outcome is even more informative.

• The probability of an *H* signal is q_H with effort and q_L without effort, where

$$\frac{q_H - q_L}{q_H} < \frac{p_H - p_L}{p_H}$$

- Scarce monitoring capital
 - Monitor earns a gross surplus $U_m = \kappa I_m$, where κ is the monitor's return on alternative investments; we assume $\kappa \ge \lambda \mu + 1 \lambda$.
- *Illiquid contract*: Monitor receives *R_m* at date 2, if success, and nothing at date 1.

• Participation constraint of monitor: $p_H R_m - c = \kappa I_m$

- Incentive constraint of monitor: $R_m \ge \frac{c}{\Delta p}$
- The cost of enlisting an active monitor exceeds the cost of monitoring

$$C^{IL} = p_H R_m - I_m = \frac{p_H - \frac{p_L}{\kappa}}{p_H - p_L} c > c$$

- Borrower's utility: $U_b = p_H R I C^{IL}$
- Pledgeable income: $p_H(R \frac{b}{\Delta p}) C^{IL}$

- Liquid contract: $\{r_m, R_m\}$. The monitor receives
 - \circ r_m at date 1 if signal is H and nothing at date 2, in the case of a liquidity shock.
 - \circ R_m on date 2 if success and nothing at date 1, in the case of no liquidity shock.
- Assume p_L is so low that, if he does not monitor, the active monitor prefers receiving r_m to waiting for an unlikely R_m , even without a liquidity shock.
- Without monitoring, he earns $\lambda \mu q_L r_m + (1 - \lambda)q_L r_m = [\lambda \mu + 1 - \lambda]q_L r_m$
- Truth-telling constraint when there is no liquidity shock: $p_H R_m \ge q_H r_m$
- With monitoring, the active monitor earns $U_m = \lambda q_H \mu r_m + (1 - \lambda) p_H R_m - c$
- Incentive constraint for the monitor: $\lambda q_H \mu r_m + (1 - \lambda) p_H R_m - c \ge [\lambda \mu + 1 - \lambda] q_L r_m$
- The constraint is binding, and so the monitor earns $U_m = [\lambda \mu + 1 - \lambda]q_L r_m$

• The cost of hiring the monitor with a liquid contract is

$$C^{L} = \lambda q_{H}r_{m} + (1 - \lambda)p_{H}R_{m} - I_{m} =$$

$$\lambda \mu q_{H}r_{m} + (1 - \lambda)p_{H}R_{m} - \lambda(\mu - 1)q_{H}r_{m} - I_{m} =$$

$$U_{m} + c - \frac{U_{m}}{\kappa} - \lambda(\mu - 1)q_{H}r_{m} =$$

$$c + r_{m}[(1 - \frac{1}{\kappa})(\lambda\mu + 1 - \lambda)q_{L} - \lambda(\mu - 1)q_{H}] =$$

$$c + Kr_{m} > c \text{ if and only if } K > 0.$$

• Providing the monitor with liquidity – that is, giving him a liquid contract – is optimal if $C^L < C^{IL}$.

• Simple case: $p_L = 0 \rightarrow C^{IL} = c$.

• We have $C^L < c = C^{IL}$ if and only if

$$(1 - \frac{1}{\kappa})(\lambda \mu + 1 - \lambda)q_L < \lambda(\mu - 1)q_H$$

$$\Leftrightarrow$$
$$\frac{q_H - q_L}{q_H} > \frac{1}{\kappa - 1}(\frac{\kappa}{\lambda \mu + 1 - \lambda} - 1)$$

$$\frac{q_{\scriptscriptstyle H}-q_{\scriptscriptstyle L}}{q_{\scriptscriptstyle H}} > \frac{1}{\kappa-1} (\frac{\kappa}{\lambda\mu+1-\lambda}-1)$$

- The liquid contract is more likely to be the optimal one when
 - The monitor's liquidity shock is likely: λ high
 - The value of the monitor's reinvestment opportunity is high: µ high
 - Speculative information is of high quality: $\frac{q_H - q_L}{q_H}$ high
 - Speculative activity helps in providing liquidity for large, monitoring shareholders.
 - Monitoring capital is not too scarce: κ low
 - When scarcity is high, too much of the benefit from liquidity is kept by the monitor and not returned to the entrepreneur.
- <u>Liquid monitors</u>: market-based corporate governance.