Intertemporal macroeconomics

Econ 4310 Lecture 4. Part 1

Asbjørn Rødseth

University of Oslo
7th September 2009

Intertemporal macroeconomics

Ramsey-model with underlying natural growth

$$
\begin{gathered}
\max U_{0}=\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t} A_{t}\right) L_{t} \\
\text { given } c_{t}=k_{t}+f\left(k_{t}\right)-(1+n)(1+g) k_{t+1}, k_{0}=\overline{k_{0}}, \\
A_{t}=A_{0}(1+g)^{t}, L_{t}=L_{0}(1+n)^{t} \\
\text { and } k_{t} \geq 0, c_{t} \geq 0 \\
0<\beta=1 /(1+\rho)<1
\end{gathered}
$$

Maximization is with respect to c_{t} and k_{t+1} for $t=0,1,2, \ldots$

The value function

Definition:

$$
\begin{equation*}
V\left(k_{t}, A_{t}, L_{t}\right)=\max \sum_{j=0}^{\infty} \beta^{t} u\left(c_{j} A_{j}\right) L_{j} \tag{3}
\end{equation*}
$$

Bellman equation:

$$
\begin{equation*}
V\left(k_{t}, A_{t}, L_{t}\right)=\max _{c_{t}, k_{t+1}}\left[u\left(c_{t} A_{t}\right) L_{t}+\beta V\left(k_{t+1}, A_{t+1}, L_{t+1}\right)\right] \tag{4}
\end{equation*}
$$

Maximization is subject to constraint (2) etc. Insertion yields:

$$
V\left(k_{t}, A_{t}, L_{t}\right)=
$$

$$
\max _{k_{t+1}}\left[u\left(\left[k_{t}+f\left(k_{t}\right)-(1+n)(1+g) k_{t+1}\right] A_{t}\right) L_{t}+\beta V\left(k_{t+1}, A_{t+1}, L_{t+1}\right)\right]
$$

Deriving first order conditions

$$
\max _{k_{t+1}}\left[u\left(\left[k_{t}+f\left(k_{t}\right)-(1+n)(1+g) k_{t+1}\right] A_{t}\right) L_{t}+\beta V\left(k_{t+1}, A_{t+1}, L_{t+1}\right)\right]
$$

Differentiation yields

$$
u^{\prime}\left(c_{t} A_{t}\right)[-(1+n)(1+g)] A_{t} L_{t}+\beta V_{1}^{\prime}\left(k_{t+1}, A_{t+1}, L_{t+1}\right)=0
$$

Since $V_{1}^{\prime}\left(k_{t+1}, A_{t+1}, L_{t+1}\right)$ is the result of maximization,

$$
V_{1}^{\prime}\left(k_{t+1}, A_{t+1}, L_{t+1}\right)=u^{\prime}\left(c_{t+1} A_{t+1}\right) A_{t+1} L_{t+1}\left(1+f^{\prime}\left(k_{t+1}\right)\right)
$$

Combining the two above yields
$u^{\prime}\left(c_{t} A_{t}\right)[-(1+n)(1+g)] A_{t} L_{t}+\beta u^{\prime}\left(c_{t+1} A_{t+1}\right) A_{t+1} L_{t+1}\left(1+f^{\prime}\left(k_{t+1}\right)\right)=0$ which simplifies to

$$
\begin{equation*}
u^{\prime}\left(c_{t} A_{t}\right)=\beta u^{\prime}\left(c_{t+1} A_{t+1}\right)\left(1+f^{\prime}\left(k_{t+1}\right)\right) \tag{5}
\end{equation*}
$$

CES-preferences

$$
u(x)=(1 /(1-\theta)) x^{1-\theta}, \sigma=1 / \theta>0
$$

First order condition:

$$
\begin{gather*}
\left(c_{t} A_{t}\right)^{-\theta}=\left(c_{t+1} A_{t+1}\right)^{-\theta} \beta\left(1+f^{\prime}\left(k_{t+1}\right)\right) \\
\frac{\left(c_{t} A_{t}\right)^{-\theta}}{\left(c_{t+1} A_{t+1}\right)^{-\theta}}=\beta\left(1+f^{\prime}\left(k_{t+1}\right)\right) \tag{6}
\end{gather*}
$$

Growth rate for consumption per capita:

$$
\frac{c_{t+1} A_{t+1}}{c_{t} A_{t}}=\left[\beta\left(1+f^{\prime}\left(k_{t+1}\right)\right)\right]^{\sigma}
$$

Conditions for balanced growth

Growth in consumption per efficiency unit of labor:

$$
\begin{align*}
\frac{c_{t+1}}{c_{t}} & =\frac{1}{1+g}\left[\beta\left(1+f^{\prime}\left(k_{t+1}\right)\right)\right]^{\sigma} \\
& =(1+g)^{-1}(1+\rho)^{-\sigma}\left[\left(1+f^{\prime}\left(k_{t+1}\right)\right)\right]^{\sigma} \tag{7}
\end{align*}
$$

Balanced growth $\left(k_{t+1}=k_{t}=k^{*}, c_{t+1}=c_{t}=c^{*}\right)$ requires:

$$
\begin{gather*}
1=(1+g)^{-1}(1+\rho)^{-\sigma}\left[\left(1+f^{\prime}\left(k^{*}\right)\right)\right]^{\sigma} \tag{8}\\
c^{*}=f\left(k^{*}\right)-(n+g+n g) k^{*} \tag{9}
\end{gather*}
$$

Loglinearizing steady state condition (8)

$$
\begin{gather*}
(1+g)^{-1}(1+\rho)^{-\sigma}\left[\left(1+f^{\prime}\left(k^{*}\right)\right)\right]^{\sigma}=1 \\
-\ln (1+g)-\sigma \ln (1+\rho)+\sigma \ln \left(1+f^{\prime}\left(k^{*}\right)\right)=\ln 1=0 \\
-g-\sigma \rho+\sigma f^{\prime}\left(k^{*}\right) \approx 0 \\
f^{\prime}\left(k^{*}\right) \approx \rho+\frac{1}{\sigma} g \tag{10}
\end{gather*}
$$

Short period, g, ρ and $f^{\prime}(k)$ small numbers, $\ln (1+x) \approx x$

Observations on the steady state

$$
f^{\prime}\left(k^{*}\right) \approx \rho+\frac{1}{\sigma} g
$$

$\triangleright k^{*}$ is independent of n
$\triangleright k^{*}$ depends negatively on ρ
$\triangleright k^{*}$ depends negatively on g and more so the lower is σ
$\triangleright k^{*}$ depends positively on σ when $g>0$
High g implies high real interest rate.

Comparison of steady states

Golden rule $f^{\prime}\left(k^{* *}\right) \approx n+g$

$$
\begin{gathered}
\text { Ramsey } f^{\prime}\left(k^{*}\right) \approx \rho+\frac{1}{\sigma} g \\
k^{*}<k^{* *} \Longleftrightarrow f^{\prime}\left(k^{*}\right)>f^{\prime}\left(k^{* *}\right) \Longleftrightarrow \rho+\frac{1}{\sigma} g>n+g \\
k^{*}<k^{* *} \Longleftrightarrow \rho>(1-\theta) g+n
\end{gathered}
$$

How come that it is not satisfied always? $k^{*}>k^{* *}$ is impossible on an optimal path.

Value of objective function infinite when $\rho<(1-\theta) g+n$

$$
\sum_{t=0}^{\infty} \beta^{t} \frac{1}{\theta}\left[c^{*} A_{0}(1+g)^{t}\right]^{1-\theta} L_{0}(1+n)^{t}=\sum_{t=0}^{\infty} \text { Const. }\left(\beta(1+g)^{1-\theta}(1+n)\right)^{t}
$$

Diverges if

$$
\begin{gathered}
=(1+\rho)^{-1}(1+g)^{1-\theta}(1+n)>1 \\
-\ln (1+\rho)+(1-\theta) \ln (1+g)+\ln (1+n)>0 \\
\rho<(1-\theta) g+n
\end{gathered}
$$

Same as condition for $k^{*}>k^{* *}$. Optimization not meaningful when $\rho<(1-\theta) g+n$.

