Problem set 1

1. Theory

Verify the form of the true value function: Consider a model economy where the social planner chooses an infinite sequence of consumption and next period's capital stock $\left\{c_{t}, k_{t+1}\right\}_{t=0}^{\infty}$ in order to

$$
\max _{\left\{c_{t}, k_{t+1}\right\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)
$$

subject to

$$
\begin{aligned}
c_{t}+k_{t+1} & \leq y_{t}, & & \forall t \\
c_{t}, k_{t} & \geq 0, & & \forall t \\
k_{0} & >0 . & & \text { given }
\end{aligned}
$$

Assume the following functional forms

$$
\begin{aligned}
u\left(c_{t}\right) & =\ln c_{t}, & & \forall t, \sigma>0 \\
y_{t} & =F\left(k_{t}, 1\right)=\gamma k_{t}^{\alpha}, & & \forall t, \alpha \in(0,1)
\end{aligned}
$$

Reformulate this optimization problem as a dynamic programming problem and write up the Bellman equation. Verify that the value function solving the functional equation (i.e. the Bellman equation) is of the following form

$$
v(k)=a+b \ln k .
$$

Find a and b as functions of the model economy's structural parameters.

2. Computations

Consider a model economy where the social planner chooses an infinite sequence of consumption and next period's capital stock $\left\{c_{t}, k_{t+1}\right\}_{t=0}^{\infty}$ in order to

$$
\max _{\left\{c_{t}, k_{t+1}\right\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)
$$

subject to

$$
\begin{aligned}
c_{t}+k_{t+1} & \leq f\left(k_{t}\right)+(1-\delta) k_{t}, & & \forall t \\
c_{t}, k_{t} & \geq 0, & & \forall t \\
k_{0} & >0 . & & \text { given }
\end{aligned}
$$

Assume the following functional forms

$$
\begin{aligned}
u\left(c_{t}\right) & =\frac{c_{t}^{1-\sigma}-1}{1-\sigma}, & & \forall t, \sigma>0 \\
y_{t} & =\gamma k_{t}^{\alpha}, & & \forall t, \alpha \in(0,1)
\end{aligned}
$$

where $\alpha=.35, \beta=.98, \delta=.025, \sigma=2$, and $\gamma=5$.
As we have derived in class we know that we can rewrite this as a recursive problem and that the Bellman equation is

$$
v\left(k_{t}\right)=\max _{k_{t+1}}\left\{u\left(k_{t}, k_{t+1}\right)+\beta v\left(k_{t+1}\right)\right\} .
$$

In order to compute the stationary value function you choose to use discrete value function iteration. The capital stock can take three discrete values; $k \in\left\{k^{(1)}, k^{(2)}, k^{(3)}\right\}=\{2.85,3.00,3.15\}$. That means that $v\left(k_{t}\right)$ and $v\left(k_{t+1}\right)$ are 3×1 vectors (Figure 1) whereas $u\left(k_{t}, k_{t+1}\right)$ is a 3×3 matrix (Figure 2).
(a) Compute a (3×3) dimensional consumption matrix $C(i, j)$ with the value of consumption for all the (3×3) values of k_{t} and k_{t+1}. Then compute a (3×3)-dimensional matrix with the utility of consumption for all the (3×3) values of k_{t} and k_{t+1} similar to the one in Figure 2.
(b) Assume

$$
v\left(k_{t+1}\right)=\left[\begin{array}{l}
167.6 \\
168.1 \\
168.6
\end{array}\right] .
$$

Before you maximize $\left\{u\left(k_{t}, k_{t+1}\right)+\beta v\left(k_{t+1}\right)\right\}$ you need to compute the sum of two elements $u\left(k_{t}, k_{t+1}\right)$ and $\beta v\left(k_{t+1}\right)$. But since $u\left(k_{t}, k_{t+1}\right)$ is a 3×3 matrix whereas $v\left(k_{t+1}\right)$ is a 3×1 vector you need to transform $v\left(k_{t+1}\right)$ into a 3×3 matrix. Note that $v\left(k_{t+1}\right)$ is independent of k_{t}. The resulting matrix should therefore be like the matrix represented in Figure 3.
Hint: To transpose a matrix in Matlab you simply use '.
(c) Now that you have $\left\{u\left(k_{t}, k_{t+1}\right)+\beta v\left(k_{t+1}\right)\right\}$ you can compute $v\left(k_{t}\right)$;

$$
v\left(k_{t}\right)=\max _{k_{t+1}}\left\{u\left(k_{t}, k_{t+1}\right)+\beta v\left(k_{t+1}\right)\right\} .
$$

Hint: lookup help for max, i.e. type help max.

Appendix: Figures

Figure 1: $v\left(k_{t}\right)$ and $v\left(k_{t+1}\right)$

Figure 2: $u\left(k_{t}, k_{t+1}\right)$

| k_{t+1} | | |
| :--- | :--- | :--- | :--- |
| $u\left(k_{t}^{(1)}, k_{t+1}^{(1)}\right)+\beta v\left(k_{t+1}^{(1)}\right)$ | $u\left(k_{t}^{(1)}, k_{t+1}^{(2)}\right)+\beta v\left(k_{t+1}^{(2)}\right)$ | $u\left(k_{t}^{(1)}, k_{t+1}^{(3)}\right)+\beta v\left(k_{t+1}^{(3)}\right)$ |
| k_{t} | | |
| $u\left(k_{t}^{(2)}, k_{t+1}^{(1)}\right)+\beta v\left(k_{t+1}^{(1)}\right)$ | $u\left(k_{t}^{(2)}, k_{t+1}^{(2)}\right)+\beta v\left(k_{t+1}^{(2)}\right)$ | $u\left(k_{t}^{(2)}, k_{t+1}^{(3)}\right)+\beta v\left(k_{t+1}^{(3)}\right)$ |
| $u\left(k_{t}^{(3)}, k_{t+1}^{(1)}\right)+\beta v\left(k_{t+1}^{(1)}\right)$ | $u\left(k_{t}^{(3)}, k_{t+1}^{(2)}\right)+\beta v\left(k_{t+1}^{(2)}\right)$ | $u\left(k_{t}^{(3)}, k_{t+1}^{(3)}\right)+\beta v\left(k_{t+1}^{(3)}\right)$ |

Figure 3: $u\left(k_{t}, k_{t+1}\right)+\beta v\left(k_{t+1}\right)$

