
1 Lecture Notes: The Ramsey Model

1.1 Deriving the Key Equations in the Ramsey Model

Purpose of lecture: amend the Solow model with endogenous choices generated
by preferences of individuals, i.e.,

• Individual Preferences
T∑
t=1

βtu (ct)

and each period they face a budget constraint

ct + at+1 = (1 + rt) at + wt

aT+1 ≥ 0,

where β < 1. The constraint aT+1 ≥ 0 rules out Ponzi/Meadoff schemes.
Given complete markets and no Ponzi (Meadoff) schemes, the borrowing
constraints can be written as one constraint, where the NPV of consump-
tion is equal to the present value of wages plus current financial wealth:

T∑
t=1

ct
Πt
j=1 (1 + rj)

≤ a1 +

T∑
t=1

wt
Πt
j=1 (1 + rj)

(1)

• Perfect foresight:

– Note: future wages and interest rates matter for the optimal decision

– Key question: what does the individuals expect about the future?

– Answer: they have rational expectations about future prices. Other-
wise, a rational individual can achieve systematic arbitrage and drive
the irrational individuals out of the market (arrange bets on future
realizations; Friedman, 1953)

• Under no uncertainty, rational expectations imply perfect foresight about
the future. Thus, agents solve

max
{ct}∞t=1

T∑
t=1

βtu (ct) ,

subject to (1)

– Set the problem up as a Lagrangian problem

max
{ct}Tt=1

Λ =

T∑
t=1

βtu (ct)+λ

(
a1 +

T∑
t=1

wt
Πt
j=1 (1 + rj)

−
T∑
t=1

ct
Πt
j=1 (1 + rj)

)
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First-order conditions are

βtu′ (ct)− λ
1

Πt
j=1 (1 + rj)

= 0

Combine (by taking the ration on both sides) the FOC for period t
and period t+ 1 to archieve the Euler equation:

βtu′ (ct)

βt+1u′ (ct+1)
=

λ 1
Πtj=1(1+rj)

λ 1
Πt+1
j=1(1+rj)

⇒
u′ (ct)

βu′ (ct+1)
=

(1 + rt+1) ·Πt
j=1 (1 + rj)

Πt
j=1 (1 + rj)

⇒
u′ (ct)

u′ (ct+1)
= β (1 + rt+1) ,

and then solve for rt+1 using the optimality condition for firms,
rt+1 = f ′ (kt+1)− δ.

• Alternatively: formulate problem as planner’s problem (it is natural to
assume that the planner has perfect foresight)

max
{ct}Tt=1

T∑
t=1

βtu (ct) ,

subject to

ct + kt+1 = f (kt) + (1− δ) kt
kT+1 ≥ 0

– Write it as a Lagrangian:

max
{ct}Tt=1

Λ =

T∑
t=1

βt {u (ct) + λ [f (kt) + (1− δ) kt − ct − kt+1]}

First-order conditions are

∂Λ

∂ct
= βt {u′ (ct)− λt} = 0

∂Λ

∂kt+1
= −λtβt + βt+1λt+1 {f ′ (kt+1) + (1− δ)} = 0

Combining the FOCs yield

β {f ′ (kt+1) + 1− δ} =
λt
λt+1

=
u′ (ct)

u′ (ct+1)
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With u (c) = c1−γ/ (1− γ), the Euler equation becomes

(ct)
−γ

(ct+1)
−γ = β {f ′ (kt+1) + 1− δ}

⇒
ct+1

ct
= [β {f ′ (kt+1) + 1− δ}]

1
γ

1.2 Characterize the solution

• Solution is characterized by three equations

1. The Euler equation

ct+1

ct
= (β (f ′ (kt+1) + 1− δ))

1
γ (2)

2. Resource constraint

kt+1 = f (kt) + (1− δ) kt − ct (3)

3. The terminal condition kT+1 ≥ 0. Note that when T → ∞, there
is no ”last period” and the terminal condition gets replaced by a
”tansversality condition”:

lim
T→∞

βtu′ (ct) = 0

– Consider T = 2. There are 2 variables each period, (ct, kt), so four
unknowns. The initial k1 is predetermined, the two equations give
relationships between (ct, kt) and (ct+1, kt+1). Finally the transver-
sality condition provides the last equation).

• Uniqueness: The social-planner problem has a unique solution. Due to
the Welfare Theorems, the competitive equilibrium must therefore also be
unique. This suggests that the competitive equilibrium is also unique in
the infinite horizon case when T →∞. (this can be proven formally when
β < 1)

• Analyze the solution in three ways:

1. Steady-state analysis (today), focusing on the infinite horizon case
when T →∞

2. Dynamics:

(a) Phase diagram (today)
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1.3 Steady State Analysis

• Assume there exists a steady state (where all variable grow at the same
rate). Since there is no technical growth, it is natural to guess zero growth
in the long run (otherwise, capital accumulation would drive rt to zero)

• Set ct+1 = ct = c∗ and kt+1 = kt = k∗ in equations (2)-(3):

c∗

c∗
= (β (f ′ (k∗) + 1− δ))

1
γ

k∗ = f (k∗) + (1− δ) k∗ − c∗

which implies

k∗ =

(
α

1
β − 1 + δ

) 1
1−α

• Note that k∗ increases in β and α and decreases in δ (why?)

• Note that this is smaller than the golden rule:

k∗ ≤ kg =
(α
δ

) 1
1−α

– Why?? Answer: becuase with discounting agents require a compen-
sation to wait (i.e., r > 0). Note that when β = 1, there is no
difference: k∗ = kg

• Stability: need to prove that the steady state is stable (note: we ignored
the trivial and uninteresting steady state with c = k = 0). By combining
equations (2)-(3) we get a second-order difference equation in k:

ct = f (kt) + (1− δ) kt − kt+1

f (kt+1)+(1− δ) kt+1−kt+2 = [β (f ′ (kt+1) + 1− δ)]
1
γ ·[f (kt) + (1− δ) kt − kt+1]

(4)
It turns out that equation (4) is stable iff β < 1 ()

1.4 Dynamics

• Fundamental problem: given k1 (a state variable), what is the optimal
choice of c1? Note that the Euler equation determines the whole sequence
of {ct}∞t=1 if we know the initial c1. Simple tool: Phase diagram of the
(kt, ct) space:

– Consider the choices of c1 (given initial k1) such that capital is con-
stant (i.e., k2 = k1) in the resource constraint:

k2 = k1 = f (k1) + (1− δ) k1 − c1
⇒

c1 = f (k1)− δk1
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... hump-shaped graph originating in origin.

– Consider the choices of c1 (given initial k1) such that consumption is
constant (i.e., c2 = c1) in the Euler equation:

c2
c1

=
c1
c1

= (β (f ′ (k2) + 1− δ))
1
γ

⇒
1 = β (f ′ (k2) + 1− δ)

1

β
− 1 + δ = f ′ (k2) = α (k2)

α−1

k2 = k∗

so the combinations of (c1, k1) such that consumption is constant
(according to the Euler equation) are given by

k∗ = f (k1) + (1− δ) k1 − c1
⇒

c1 = f (k1) + (1− δ) k1 − k∗

– Analysis of dynamics.
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