Problem Set 3: More on Ramsey's Growth Model

Exercise 3.1: Public spending in Ramsey's growth model

Reconsider the model setup of Exercise 2.1 and remind yourself of the phase diagram we derived there. Assume that the economy is in a stationary equilibrium with constant government expenditures, $G_t = G$, and tax policy, $\tau_t = \tau$.

- (a) Consider an unexpected and temporary cut of ΔG in government expenditures from period t_0 until period t_1 . Sketch the dynamics of consumption and physical capital back to the steady-state in the phase diagram.
- (b) Consider an unexpected and permanent cut of ΔG in government expenditures for all future periods $t \ge t_0$. Sketch the dynamics of consumption and physical capital to the new steady-state in the phase diagram.
- (c) Sketch the time path of the wage rate for both of the scenarios described in Exercise 3.1 (a) and (b).
- (d) Consider instead an unexpected and temporary decrease of $\Delta\beta$ in the discount factor from period t_0 to period t_1 . Sketch the dynamics of consumption and physical capital back to the steady-state in the phase diagram.

Exercise 3.2: Ramsey model in discrete time: a closed form solution

Consider the following version of the Ramsey model with exogenous technology and population growth

$$\max U = \sum_{t=0}^{\infty} \beta^t \log \left(c_t A_t \right) L_t, \quad 0 < \beta < 1,$$

subject to

$$\begin{split} K_{t+1} &= K_t^{\alpha} (A_t L_t)^{1-\alpha} + (1-\delta) K_t - C_t, \quad 0 < \alpha < 1, \\ A_{t+1} &= (1+g) A_t, \quad A_0 > 0, \ g > 0, \\ L_{t+1} &= (1+n) L_t, \quad L_0 > 0, \ n > 0, \end{split}$$

where we require that c_t and K_{t+1} remain non-negative, and $K_0 > 0$ is taken as given. The parameter δ denotes the depreciation rate, C_t is aggregate consumption, K_t aggregate physical capital, L_t aggregate labor supply, Y_t aggregate production, A_t labor augmenting productivity, and lower case variables correspond the the same variable in efficiency units $x_t \equiv X_t/(A_tL_t)$.

(a) Remove the trend growth from the capital accumulation equation by restating it in terms of consumption and physical capital per efficiency unit, $c_t \equiv C_t/(A_tL_t)$ and $k_t \equiv K_t/(A_tL_t)$, respectively.

- (b) State the Lagrangian and derive the first-order conditions with respect to consumption c_t and physical capital k_{t+1} per efficiency unit.
- (c) Set the depreciation rate of physical capital to $\delta = 1$, and derive the consumption Euler equation. Guess that

$$c_t(k_t) = \gamma k_t^{\alpha}$$

is the solution to the first-order conditions derived above (this corresponds to the stable saddle-path of the economy). What must be the value of the constant γ in equilibrium? (hint: plug the guess into the Euler equation to derive $k_{t+1}(k_t)$ and then use the capital accumulation equation to determine the constant γ .)

(d) Verify that the solution satisfies the transversality condition

$$\lim_{t\to\infty}\beta^t u'(c_t)k_{t+1}=0.$$

(e) What is the steady-state physical capital stock per efficiency unit, k^* , in this economy? Sketch the associated phase diagram including the saddle-path with its correct shape.

Additional Exercises (available on the course website):

• Retake Exam 2015: A.5.