Problem Set 9 (Solution Ex. A. 2 and B) ECON 4310, Fall 2015

1. Do not write with pencil, please use a ball-pen instead.
2. Please answer in English. Solutions without traceable outlines, as well as those with unreadable outlines do not earn points.
3. Please start a new page for every short question and for every subquestion of the long questions.

Good Luck!

	Points	Max
Exercise A		XX
Exercise B		XX
\vdots		\vdots
Σ		$\mathbf{1 8 0}$

Grade: \qquad

Exercise A:
 Short Questions (XX Points)

Answer each of the following short questions on a seperate answer sheet by stating as a first answer True/False and then give a short but instructive explanation. You can write, calculate, or draw to reason your answer. You only get points if you have stated the correct True/False and provided a correct explanation to the question. We will not assign negative points for incorrect answers.

(XX Points) Exercise A.1: Precautionary savings

Consider the simple two-period real business cycle model discussed in the seminar and in the lecture. With an asset supply of zero, $w_{1}=\mathrm{E}\left[w\left(s_{2}\right)\right]$, and an optimal consumption profile, $c_{1}=w_{1}, c_{2}\left(s_{2}\right)=w\left(s_{2}\right)$, the stochastic consumption Euler equation in this model is given by

$$
\beta\left(1+r_{2}\right)=\frac{u^{\prime}\left(c_{1}\right)}{\mathrm{E}\left[u^{\prime}\left(c_{2}\left(s_{2}\right)\right)\right]}=\frac{u^{\prime}\left(\mathrm{E}\left[w\left(s_{2}\right)\right]\right)}{\mathrm{E}\left[u^{\prime}\left(w\left(s_{2}\right)\right)\right]} .
$$

The stochastic process for the wage in the second period, $w\left(s_{2}\right)$, takes the form

$$
w\left(s_{2}\right)= \begin{cases}w\left(s_{G}\right)=1+\sigma / 2, & \text { with prob. 1/2 } \\ w\left(s_{B}\right)=1-\sigma / 2, & \text { with prob. 1/2 }\end{cases}
$$

where $\sigma \in(0,2)$ parametrizes the risk in this economy. Assume that the utility function is of the following form

$$
u(c)=c-\frac{1}{4} c^{2}, \forall c \in[0,2] .
$$

Does this utility function, $u(c)$, imply precautionary savings?

Your Answer:

Yes: \square
No:

(XX Points) Exercise A.2: Asset pricing

Let m_{t+1} and x_{t+1} be two random scalars. Then

$$
E_{t}\left[m_{t+1} x_{t+1}\right]=E_{t}\left[m_{t+1}\right] E_{t}\left[x_{t+1}\right]+2 \operatorname{Cov}_{t}\left[m_{t+1}, x_{t+1}\right]
$$

where

$$
\operatorname{Cov}_{t}\left(m_{t+1}, x_{t+1}\right) \equiv E_{t}\left[\left(m_{t+1}-E_{t}\left[m_{t+1}\right]\right)\left(x_{t+1}-E_{t}\left[x_{t+1}\right]\right)\right] .
$$

Your Answer:

True: $\square \quad$ False: \square

Explanation:

False. Since the covariance is defined as

$$
\operatorname{Cov}_{t}\left(m_{t+1}, x_{t+1}\right) \equiv E_{t}\left[\left(m_{t+1}-E_{t}\left[m_{t+1}\right]\right)\left(x_{t+1}-E_{t}\left[x_{t+1}\right]\right)\right]
$$

we can expand the terms within the expectational operator to yield

$$
\begin{aligned}
\operatorname{Cov}_{t}\left(m_{t+1}, x_{t+1}\right) & =E_{t}\left[m_{t+1} x_{t+1}-m_{t+1} E_{t}\left[x_{t+1}\right]-x_{t+1} E_{t}\left[m_{t+1}\right]+E_{t}\left[m_{t+1}\right] E_{t}\left[x_{t+1}\right]\right] \\
& =E_{t}\left[m_{t+1} x_{t+1}\right]-E_{t}\left[m_{t+1}\right] E_{t}\left[x_{t+1}\right]-E_{t}\left[x_{t+1}\right] E_{t}\left[m_{t+1}\right]+E_{t}\left[m_{t+1}\right] E_{t}\left[x_{t+1}\right] \\
& =E_{t}\left[m_{t+1} x_{t+1}\right]-E_{t}\left[m_{t+1}\right] E_{t}\left[x_{t+1}\right] .
\end{aligned}
$$

This can be reformulated as

$$
E_{t}\left[m_{t+1} x_{t+1}\right]=E_{t}\left[m_{t+1}\right] E_{t}\left[x_{t+1}\right]+\operatorname{Cov}_{t}\left[m_{t+1}, x_{t+1}\right],
$$

thus the above statement is false.
(XX Points) Exercise A.X: Some more short questions follow ...

Exercise B:
 Long Question (XX Points)

Consumption-based asset pricing

Consider a representative household of an economy that maximizes expected lifetime utility

$$
U\left(c_{t}, c_{t+1}\left(s_{t+1}\right)\right)=\frac{c_{t}^{1-\theta}}{1-\theta}+\beta E_{t}\left[\frac{c_{t+1}\left(s_{t+1}\right)^{1-\theta}}{1-\theta}\right], \quad 0<\beta<1,
$$

by choosing consumption c_{t} and c_{t+1} in both periods. The agent is endowed with the income e_{t} and e_{t+1} in the corresponding periods (let e_{t+1} be stochastic), and can shift resources across periods by borrowing or lending in a risk free bond, b_{t+1}, and in a risky asset, a_{t+1}. The risk free bond pays 1 unit of consumption for sure in the future period and has a price q_{t} in terms of today's consumption, while the risky asset's payoff is the realization of a random variable $x_{t+1} \equiv p_{t+1}+d_{t+1}$ and is of price p_{t} in terms of today's consumption. The agent initially owns neither assets nor bonds. Expectations are with respect to the future state, $s_{t+1}=\left(e_{t+1}, x_{t+1}\right) \in S$, where the set S contains the possible realizations of the state, s_{t+1}.
(a) (XX Points) Derive the agent's budget constraints for both periods (hint: the second period constraint is state-by-state).

Solution:

The agent's budget constraints read

$$
\begin{aligned}
c_{t} & =e_{t}-q_{t} b_{t+1}-p_{t} a_{t+1} \\
c_{t+1}\left(s_{t+1}\right) & =e_{t+1}+b_{t+1}+x_{t+1} a_{t+1}, \quad \forall s_{t+1} \in S .
\end{aligned}
$$

(b) (XX Points) Reduce consumption in the utility function using the agent's budget constraints and derive the optimality conditions with respect to bond holdings, b_{t+1}, and asset holdings, a_{t+1}, taking as given prices and returns. (hint: the expectation operator E_{t} is linear (think of it as a probability weighted sum), so you can just go ahead and take derivatives inside the expectation operator).

Solution:

After reducing consumption, lifetime utility reads

$$
U\left(b_{t+1}, a_{t+1}\right)=\frac{\left(e_{t}-q_{t} b_{t+1}-p_{t} a_{t+1}\right)^{1-\theta}}{1-\theta}+\beta E_{t}\left[\frac{\left(e_{t+1}+b_{t+1}+x_{t+1} a_{t+1}\right)^{1-\theta}}{1-\theta}\right],
$$

and the associated first-order optimality conditions are given by

$$
\begin{align*}
-c_{t}^{-\theta} q_{t}+\beta E_{t}\left[c_{t+1}\left(s_{t+1}\right)^{-\theta}\right]=0 & \Leftrightarrow \quad q_{t}=E_{t}\left[\beta\left(\frac{c_{t+1}\left(s_{t+1}\right)}{c_{t}}\right)^{-\theta}\right] \tag{1}\\
-c_{t}^{-\theta} p_{t}+\beta E_{t}\left[c_{t+1}\left(s_{t+1}\right)^{-\theta} x_{t+1}\right]=0 & \Leftrightarrow \quad p_{t}=E_{t}\left[\beta\left(\frac{c_{t+1}\left(s_{t+1}\right)}{c_{t}}\right)^{-\theta} x_{t+1}\right] . \tag{2}
\end{align*}
$$

(c) (XX Points) Use the optimality conditions to show that the price of the risky asset is a function of the price of the risk free bond, q_{t}, and the covariance of the stochastic discount factor, m_{t+1}, with the risky return on the asset,

$$
p_{t}=\beta E_{t}\left[m_{t+1}\right] E_{t}\left[x_{t+1}\right]+\beta \operatorname{Cov}_{t}\left(m_{t+1}, x_{t+1}\right), \quad m_{t+1} \equiv\left(\frac{c_{t+1}}{c_{t}}\right)^{-\theta} .
$$

What factors drive the agent's valuation of the asset?

Solution:

The optimality condition in Equation (2) can be written as

$$
p_{t}=\beta E_{t}\left[m_{t+1}\right] E_{t}\left[x_{t+1}\right]+\beta \operatorname{Cov}_{t}\left(m_{t+1}, x_{t+1}\right) .
$$

Moreover, we know from the optimality condition in Equation (1) that

$$
q_{t}=\beta E_{t}\left[m_{t+1}\right],
$$

which gives us the final result that the assets price is given by

$$
p_{t}=q_{t} E_{t}\left[x_{t+1}\right]+\beta \operatorname{Cov}_{t}\left(m_{t+1}, x_{t+1}\right) .
$$

Thus, the agent's valuation of assets is high, if
(1) the bond price is high (risk free interest is low),
(2) the asset's expected payoff is high,
(3) the payoff is positively correlated to the stochastic discount factor (high payoffs when the marginal utility of consumption in the future period is high (when the endowment e_{t+1} is low), as this provides insurance against future states with low consumption).

Exercise X:
 Some More Long Questions ... (XX Points)

