UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Exam: ECON4310 - Consumption, investment and pensions, fall 2003
Date of exam: Friday, January 16, 2004
Time for exam: 9 a.m. - 12 noon
The problem set covers 4 pages
Resources allowed:

- Calculator

The grades given: $\mathrm{A}-\mathrm{F}$, with A as the best and E as the weakest passing grade. F is fail.

4310 - Consumption, Investment and Pensions Exam, 9:00-12:00 January 16, 2004

Before you start, please read the following:

- You are allowed to use a calculator ("lommekalkulator") on the exam.
- You can answer in either English or Norwegian.
- Answer all questions and write brief and concise answers!
- Good style will not matter for grades, but please write clearly.
- Good luck!

1 Question 1

Land and asset pricing.

Suppose the utility function is given by

$$
u_{t}^{h}=\log c_{t}^{h}(t)+\frac{1}{2} \log \left(c_{t}^{h}(t+1)\right)
$$

and that endowments are $\omega_{t}^{h}=[3,4]$. The population is constant at $N=10$ and there exists two assets, private lending (which pays an interest rate $r(t)$) and $A=10$ units of land, which pays a dividend of d per unit of land each period. As demonstrated in the textbook (you do not have to derive this), in this economy individuals have a savings function given by

$$
s(r(t))=1-\frac{8}{3} \frac{1}{r(t)}
$$

1. Write down the equilibrium conditions for a time t temporary equilibrium. and illustrate in a diagram how one can find temporary equilibria, given expectations about the future price of land.
2. Write down equilibrium conditions for a perfect foresight competitive equilibrium. Why are there more temporary equilibria than perfect foresight equilibria?
3. Assume that $d=1$ and show that the stationary competitive equilibrium price of land and the associated interest rate are given by $p=1 / 3$ and $r=4$.
4. Show (using diagrammatic analysis) that there cannot be other competitive equilibria.
5. Is the competitive equilibrium Pareto optimal? Please explain.

2 Question 2

Expectations hypothesis.

Suppose the prices of one-period bonds and two-period (zero coupon) bonds in period t, i.e. the "yield curve", are given by $p_{1}(t)=\frac{9}{10}$ and $p_{2}(t)=\frac{9}{11}$, respectively.

1. Explain why in equilibrium it must be that the interest rate is given by the price of the one-period bond, $r(t)=\frac{1}{p_{1}(t)}$.
2. Explain why perfect foresight/rational expectations can be used to forecast $r(t+1)$, the interest rate in period $t+1$ (where the interest rate in period t is implied by $p_{1}(t+1)$, the price of a one-period bond in period $\left.t+1\right)$.
3. Compute the forecasted interest rate in period $t+1$.

3 Question 3

Precautionary savings.

Consider the savings-problem of an agent who lives for two periods and has an endowment of $\omega_{1}=1$ when young. The endowment when old, ω_{2}, is stochastic with

$$
\begin{aligned}
E\left(\omega_{2}\right) & =1 \\
\operatorname{var}\left(\omega_{2}\right) & =\sigma^{2} .
\end{aligned}
$$

The agent maximizes

$$
\max _{c_{1}, c_{2}}\left\{u\left(c_{1}\right)+u\left(c_{2}\right)\right\},
$$

subject to

$$
\begin{aligned}
& c_{1}=\omega_{1}-s \\
& c_{2}=\omega_{2}+s .
\end{aligned}
$$

1. Suppose, first, that the utility function is linear-quadratic, so

$$
u(c)=c-\frac{a}{2} c^{2},
$$

where $a \in(0,1)$. Compute the optimal savings s. Would the result change if one instead considered an alternative case with $\operatorname{var}\left(\omega_{2}\right)=0$?
2. Suppose instead that $\omega_{1}=2$ and $\omega_{2}=0$, so there is no risk in the second-period endowment.
(a) Compute the new level of savings s. Explain why the optimal consumptionpath is the same as the one above.
(b) Suppose instead that $a=0$, so that utility is linear. Explain why the agent does not care any longer about consumption smoothing.
(c) Explain what feature of the utility function u that imply consumption smoothing.
3. Consider instead a case with the following alternative "constant relative risk-aversion" utility function:

$$
u(c)=\frac{c^{1-\gamma}-1}{1-\gamma}
$$

where $\gamma>0$. Go back to the case with $E\left(\omega_{2}\right)=1$ and $\operatorname{var}\left(\omega_{2}\right)>0$. Prove that savings will increase relative to the quadratic utility case above.
4. Give the intuition for why savings are larger under the second utility function (with constant relative risk-aversion). In particular, explain what feature of the utility function that matters.

