UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Exam: ECON4310 - Consumption, investment and pensions, fall 2003

Date of exam: Friday, January 16, 2004

Time for exam: 9 a.m. – 12 noon

The problem set covers 4 pages

Resources allowed:

Calculator

The grades given: A-F, with A as the best and E as the weakest passing grade. F is fail.

4310 – Consumption, Investment and Pensions Exam, 9:00-12:00 January 16, 2004

Before you start, please read the following:

- You are allowed to use a calculator ("lommekalkulator") on the exam.
- You can answer in either English or Norwegian.
- Answer all questions and write brief and concise answers!
- Good style will not matter for grades, but please write clearly.
- Good luck!

1 Question 1

Land and asset pricing.

Suppose the utility function is given by

$$u_t^h = \log c_t^h(t) + \frac{1}{2} \log \left(c_t^h(t+1) \right)$$

and that endowments are $\omega_t^h = [3, 4]$. The population is constant at N = 10 and there exists two assets, private lending (which pays an interest rate r(t)) and A = 10 units of land, which pays a dividend of d per unit of land each period. As demonstrated in the textbook (you do not have to derive this), in this economy individuals have a savings function given by

$$s\left(r\left(t\right)\right) = 1 - \frac{8}{3} \frac{1}{r\left(t\right)}.$$

- 1. Write down the equilibrium conditions for a time t temporary equilibrium. and illustrate in a diagram how one can find temporary equilibria, given expectations about the future price of land.
- 2. Write down equilibrium conditions for a perfect foresight competitive equilibrium. Why are there more temporary equilibria than perfect foresight equilibria?
- 3. Assume that d = 1 and show that the stationary competitive equilibrium price of land and the associated interest rate are given by p = 1/3 and r = 4.
- 4. Show (using diagrammatic analysis) that there cannot be other competitive equilibria.
- 5. Is the competitive equilibrium Pareto optimal? Please explain.

2 Question 2

Expectations hypothesis.

Suppose the prices of one-period bonds and two-period (zero coupon) bonds in period t, i.e. the "yield curve", are given by $p_1(t) = \frac{9}{10}$ and $p_2(t) = \frac{9}{11}$, respectively.

- 1. Explain why in equilibrium it must be that the interest rate is given by the price of the one-period bond, $r(t) = \frac{1}{p_1(t)}$.
- 2. Explain why perfect foresight/rational expectations can be used to forecast r(t+1), the interest rate in period t+1 (where the interest rate in period t is implied by $p_1(t+1)$, the price of a one-period bond in period t+1).
- 3. Compute the forecasted interest rate in period t+1.

3 Question 3

Precautionary savings.

Consider the savings-problem of an agent who lives for two periods and has an endowment of $\omega_1 = 1$ when young. The endowment when old, ω_2 , is stochastic with

$$E(\omega_2) = 1$$
$$var(\omega_2) = \sigma^2.$$

The agent maximizes

$$\max_{c_{1},c_{2}}\left\{ u\left(c_{1}\right) +u\left(c_{2}\right) \right\} ,$$

subject to

$$c_1 = \omega_1 - s$$

$$c_2 = \omega_2 + s.$$

1. Suppose, first, that the utility function is linear-quadratic, so

$$u\left(c\right) = c - \frac{a}{2}c^{2},$$

where $a \in (0,1)$. Compute the optimal savings s. Would the result change if one instead considered an alternative case with $var(\omega_2) = 0$?

- 2. Suppose instead that $\omega_1=2$ and $\omega_2=0$, so there is no risk in the second-period endowment.
 - (a) Compute the new level of savings s. Explain why the optimal consumption-path is the same as the one above.

- (b) Suppose instead that a=0, so that utility is linear. Explain why the agent does not care any longer about consumption smoothing.
- (c) Explain what feature of the utility function u that imply consumption smoothing.
- 3. Consider instead a case with the following alternative "constant relative risk-aversion" utility function:

$$u\left(c\right) = \frac{c^{1-\gamma} - 1}{1 - \gamma},$$

where $\gamma > 0$. Go back to the case with $E(\omega_2) = 1$ and $var(\omega_2) > 0$. Prove that savings will increase relative to the quadratic utility case above.

4. Give the intuition for why savings are larger under the second utility function (with constant relative risk-aversion). In particular, explain what feature of the utility function that matters.