The exam consists of three parts, A, B, and C, with equal weight (1/3). Remember to allocate your time accordingly.

## Part A (1/3 of the exam): Essay

Write a short essay addressing the following question in 500–750 words. In addressing the question, relate to the course literature.

What are Friedman (1953)'s and Lucas (1976)'s criteria for a "good" model? In your opinion, which (or both, or neither) of these criteria do medium-sized DSGE models such as Norges Bank's model NEMO, as described in Gerdrup and Nicolaysen (2011), strive to satisfy? How about the SAM framework ("System for Averaging Models")?

## References

Friedman, M. (1953). The methodology of positive economics.

Gerdrup, K. R. and Nicolaisen, J. (2011). On the purpose of models - The Norges Bank experience. *Norges Bank Staff Memo*, (6).

Lucas, R. E. (1976). Econometric policy evaluation: A critique. *Carnegie-Rochester Conference Series on Public Policy*, 1:19–46

## Part B (1/3 of the exam): Consumption-Saving Models

Consider the following two-period household model

$$\max_{c_1,b_1,c_2} \frac{c_1^{1-\sigma}}{1-\sigma} + \frac{c_2^{1-\sigma}}{1-\sigma}$$
subject to
$$c_1 + b_1 = y$$

$$c_2 = (1+r)b_1$$

where c is consumption, y is income, b is savings,  $\sigma > 0$  is a parameter, and r is the interest rate.

- 1. Show that the Euler equation is  $c_1^{-\sigma} = (1 + r)c_2^{-\sigma}$ .
- 2. Explain why consumption growth depends on the interest rate r.
- 3. Show that consumption in period 1 is  $c_1 = \frac{y}{1+(1+r)^{1/\sigma-1}}$ .
- 4. Explain intuitively why the effect of a change in the interest rate r on  $c_1$  is ambiguous and depends on  $(1/\sigma 1)$ . Why is the effect negative if  $1/\sigma > 1$ ?

Consider a modified version of the model

$$\max_{\{c_1,b_1,c_2\}} \frac{c_1^{1-\sigma}}{1-\sigma} + \frac{c_2^{1-\gamma}}{1-\gamma}$$
subject to
$$c_1 + b_1 = y$$

$$c_2 = b_1$$

where c is consumption, y is income, b is savings, and  $\sigma > 0$  and  $\gamma > 0$  are parameters. Note that there are two differences compared with the problem above: (i) consumption in period 2 has a different curvature parameter and (ii) there is no interest rate (r = 0).

5. Show that  $c_2 > c_1$  if  $\sigma > \gamma$  and explain why the growth of consumption ( $c_2$  relative to  $c_1$ ) now depends on  $\sigma$  relative to  $\gamma$ .

2

## Part C (1/3 of the exam): The Solow Model

In this exercise, we consider the Solow model. There is no technological growth and no population growth. Output  $Y_t$  is given by  $Y_t = F(K_t, L)$  where F is an aggregate production function satisfying the usual ("neoclassical") properties, where  $K_t$  is capital at time t and L is the (constant) labor force. Capital depreciates at rate  $\delta > 0$ , so we have  $K_{t+1} = I_t + (1-\delta)K_t$ . Investment is a constant share of output,  $I_t = sY_t$ . The economy is closed (no trade with other economies) so  $Y_t = C_t + I_t$ 

- 1. Given these assumptions, show that the law of motion for capital is given by  $K_{t+1} = sF(K_t, L) + (1 \delta)K_t$ .
- 2. In the long run, the capital stock converges to its steady state value  $K_{ss}$ . Show that the steady-state capital-output ratio is  $K_{ss}/Y_{ss} = s/\delta$ .
- 3. Now, we consider the special case with  $F(K_t, L) = K_t^{\alpha} L^{1-\alpha}$ . For simplicity, assume L = 1, so  $F(K_t, L) = K_t^{\alpha}$  with  $\alpha > 0$ . Show that steady-state capital is given by  $K_{ss} = (s/\delta)^{1/(1-\alpha)}$  and steady-state output is given by  $Y_{ss} = (s/\delta)^{\alpha/(1-\alpha)}$ .
- 4. If the saving rate s increases, does steady-state output  $Y_{ss}$  necessarily increase? Provide a mathematical argument for your conclusion.
- 5. Steady-state consumption is given by  $(1 s)Y_{ss}$ . If the saving rate s increases, does steady-state consumption  $C_{ss}$  necessarily decrease? Provide an argument for your conclusion (which need not be mathematical).