
The exam consists of three parts, A, B, and C, with equal weight (1/3). Remember to
allocate your time accordingly.

Part A (1/3 of the exam): Essay

Write a short essay addressing the following question in 500–750 words. In addressing
the question, relate to the course literature.

What are Friedman (1953)’s and Lucas (1976)’s criteria for a “good” model? In your opinion,
which (or both, or neither) of these criteria do medium-sized DSGE models such as Norges Bank’s
model NEMO, as described in Gerdrup and Nicolaysen (2011), strive to satisfy? How about the
SAM framework (“System for Averaging Models”)?
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Part B (1/3 of the exam): Consumption-Saving Models

Consider the following two-period household model

max
c1,b1,c2

c1−σ
1

1 − σ
+

c1−σ
2

1 − σ

subject to

c1 + b1 = y

c2 = (1 + r)b1

where c is consumption, y is income, b is savings, σ > 0 is a parameter, and r is the interest
rate.

1. Show that the Euler equation is c−σ1 = (1 + r)c−σ2 .

2. Explain why consumption growth depends on the interest rate r.

3. Show that consumption in period 1 is c1 =
y

1+(1+r)1/σ−1 .

4. Explain intuitively why the effect of a change in the interest rate r on c1 is ambiguous
and depends on (1/σ − 1). Why is the effect negative if 1/σ > 1?

Consider a modified version of the model

max
{c1,b1,c2}

c1−σ
1

1 − σ
+

c1−γ
2

1 − γ

subject to

c1 + b1 = y

c2 = b1

where c is consumption, y is income, b is savings, and σ > 0 and γ > 0 are parameters.
Note that there are two differences compared with the problem above: (i) consumption in
period 2 has a different curvature parameter and (ii) there is no interest rate (r = 0).

5. Show that c2 > c1 if σ > γ and explain why the growth of consumption (c2 relative
to c1) now depends on σ relative to γ.
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Part C (1/3 of the exam): The Solow Model

In this exercise, we consider the Solow model. There is no technological growth and no
population growth. Output Yt is given by Yt = F(Kt,L) where F is an aggregate production
function satisfying the usual (“neoclassical”) properties, where Kt is capital at time t and L
is the (constant) labor force. Capital depreciates at rate δ > 0, so we have Kt+1 = It+(1−δ)Kt.
Investment is a constant share of output, It = sYt. The economy is closed (no trade with
other economies) so Yt = Ct + It

1. Given these assumptions, show that the law of motion for capital is given by Kt+1 =

sF(Kt,L) + (1 − δ)Kt.

2. In the long run, the capital stock converges to its steady state value Kss. Show that
the steady-state capital-output ratio is Kss/Yss = s/δ.

3. Now, we consider the special case with F(Kt,L) = Kαt L1−α. For simplicity, assume
L = 1, so F(Kt,L) = Kαt with α > 0. Show that steady-state capital is given by
Kss = (s/δ)1/(1−α) and steady-state output is given by Yss = (s/δ)α/(1−α).

4. If the saving rate s increases, does steady-state output Yss necessarily increase?
Provide a mathematical argument for your conclusion.

5. Steady-state consumption is given by (1 − s)Yss. If the saving rate s increases, does
steady-state consumption Css necessarily decrease? Provide an argument for your
conclusion (which need not be mathematical).
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