An infinite horizon model

In this problem we consider an infinite horizon model with a representative agent and perfect foresight. Each period, the agent must obey the following budget constraint:

$$C_s + B_{s+1} = Y_s + (1+r)B_s$$

1. Based on the fact that the budget constraint holds for every period from t to t + T, show that this implies

$$(1+r)B_t = \sum_{s=t}^{t+T} \left(\frac{1}{1+r}\right)^{s-t} (C_s - Y_s) + \frac{B_{t+T+1}}{(1+r)^T}$$

2. Explain the intuition behind

$$\lim_{T \to \infty} \frac{B_{t+T+1}}{(1+r)^T} = 0$$

- 3. Impose this restriction and assume that $C_s = cY_s$ and $Y_s = (1+g)^s Y_t$.
 - (a) Find the intertemporal budget constraint for this case (when g < r).
 - (b) Imagine that keeping consumption at a fixed share c of output indeed is the optimal consumption-choice of a representative agent. Is c above or below one?
 - (c) Assume g = 0. What does the time-profile of B_t look like for a given value of c?
 - (d) Assume g > 0 (but also g < r). What does the time-profile look like now?
- 4. Now assume (as in question 6 of the first problem) that output is a function of the capital stock, $Y_t = A_t F(K_t)$. The utility function is specified as $U_t = \sum_{s=t}^{\infty} \beta^{s-t} u(C_s)$. Use the period s budget constraint to insert for C_s in the utility function.
 - (a) Find the first-order condition with respect to K_{t+1} and B_{t+1}
 - (b) Suppose productivity is constant $A_s = A_t$ for all $s \ge t$ and that, by coincidence, $\beta(1+r) = 1$. Describe the time-profiles of consumption, investment and the current account (you can assume that initial net foreign assets, B_t , are zero).

- (c) Sketch the effects on consumption, investment and the current account from
 - i. An unexpected temporary increase in productivity in period t+1 (that only lasts one period)
 - ii. A temporary increase in productivity in t+1 (that only lasts one period) that becomes known at the beginning of period t
 - iii. An unexpected permanent increase in productivity