Risk management in banks

Econ 4335 Lecture 13

Asbjørn Rødseth

University of Oslo
April 26, 2010

Types of risk

- Credit risk (default)
- Liquidity risk
- Interest rate risk
- Exchange rate risk
- Market risk
- Counterparty risk
- Operational risk

Mitigating risks

- Risk pricing
- Diversification
- Hedging
- Risk measurement
- Good procedures

The expected cost of default

Consider a marketable loan (e.g. a bond)

- Promised repayments: $C_{1}, C_{2}, \ldots, C_{n}$ at $t_{1}, t_{2}, \ldots t_{n}$
- Risk-free interest rate: r, continuous compounding

Value if all repayments on time:

$$
\begin{equation*}
P_{0}=\sum_{k=1}^{n} C_{k} e^{-r t_{k}} \tag{1}
\end{equation*}
$$

Value of loan to risk-neutral investors when positive probability of default:

$$
\begin{equation*}
P_{N}=\sum_{k=1}^{n} E\left[C_{k}\right] e^{-r t_{k}} \tag{2}
\end{equation*}
$$

Expected cost of default: $P_{0}-P_{N}$.

The yield to maturity

The yield to maturity is the rate of interest that the buyer of a loan implicitly gets if there is no default.

If the loan above is sold for the price P, the yield to maturity R is defined by

$$
\begin{equation*}
\sum_{k=1}^{n} C_{k} e^{-R t_{k}}=P \tag{3}
\end{equation*}
$$

If the market is dominated by risk-neutral investors, $P=P_{N}$ and

$$
\begin{equation*}
\sum_{k=1}^{n} C_{k} e^{-R t_{k}}=\sum_{k=1}^{n} E\left[C_{k}\right] e^{-r t_{k}}=P_{N} \tag{4}
\end{equation*}
$$

- The credit spread is defined as $s=R-r$.
- Alternative measure of credit risk
- Measure of expected cost of default when investors are risk neutral

Application to banking

- Marginal funding rate replaces the risk-free interest rate
- Risk-neutral bank in a competitive environment then sets repayments that make $P_{N}=L$.
- The yield to maturity on the loan is then R.

Example

All repayments made in period n. Probability of no default in period n is p_{n}. No recovery if default. The banks sets the C_{n} that satisfies

$$
P_{N}=p_{n} C_{n} e^{-r n}=L
$$

The return to maturity is given by

$$
C_{n} e^{-R n}=P_{N}=L
$$

Solution: $C_{n}=L e^{r n} / p_{n}=L e^{R n}, R=r-(1 / n) \ln p_{n}$

The spread

$$
\begin{equation*}
s=R-r \tag{5}
\end{equation*}
$$

- depends positively on default probabilities
- depends negatively on recovery rate
- depends in complicated way on time path of cash flow and default probabilities
- if the probability of default per unit of time is constant, λ (Poisson process) and the recovery rate is zero, $s=\lambda$
- Higher spread for borrowers with high debt-to-asset ratios
- Higher spreads for borrowers with more risky assets or incomes

The spread

- Banks with pricing power will add a profit margin
- Should risk-averse banks add a risk premium?

A digression on accounting

- Default probabilities often start low and increase as the loan matures
- In the beginning the spread is usually more than enough to cover actual losses
- Loan loss provisions are usually not made before a loss is more likely than not (either on an individual loan or a group of loans)
- Fast growing banks tend to show high profits to begin with
- Their accounts may exaggerate their solidity
- Reform proposal: Use spread to make provisions in advance

Another digression on accounting

Spread on bonds sometimes exceed default probabilities by a wide margin

- In many bond market liquidity is low
- Statutory regulations severely limits demand for bonds that are rated beyond a certain levels
- Bond markets sometimes freeze
- Market prices reflect forced sales (" fire sales")
- Value on the basis of "hold to maturity" or market price?

Back to banks' management of credit risk

Suppose

- large number of small borrowers
- default probabilities for the individual borrowers are independent
- the spread is set to cover expected default loss
- loan loss provisions properly reflect the spread and expected losses
Conclusion
- no reason for a risk-averse bank to charge more for the loan
- no need to keep equity in order to offset loan losses.

Or: What about model and statistical uncertainty?

Why equity is needed

- Some borrowers are large
- Losses are highly correlated
- Specialized banks
- Accounts do not always reflect all expected losses

The Basel accords

- Old approach: Minimum capital requirement relative to total liabilities
- Basel I, 1988: Capital requirement 8 per cent of risk-weighted assets.
- Four different risk weight depending on type of borrower, collateral and maturity
- Range from 0.0 for OECD-states, via 0.2 for OECD banks, 0.5 for residential mortgages (below 100 per cent), to 100 for loans to businesses
- Some off-balance sheet items included
- Basel II
- Banks may use their own risk models to produce weights
- More types of risk included (market risk)

The Basel accords

Capital requirements can be satisfied with equity, subordinated loans or hybrid capital.

- Tier 1: Minimum 4 per cent. Equity and some hybrids
- Tier 2: Other hybrids and subordinated loans.

Detailed rules differ from country to country.
Capital adequacy rules are supplemented by limits on credits to single customers.

Academic criticism of Basel I

- The risk weights do not represent the actual risks well
- It is macro risk factors that matter, not individual risks
- Fixed weights can never represent more than one macro risk factor well (F\&R8.1.3)

The demand for reserves

The bank's expected profits

$$
\begin{equation*}
\Pi(R)=r_{L}(D-R)+r R-r_{p} E[\max (0, \tilde{x}-R)]-r_{D} D \tag{6}
\end{equation*}
$$

- $R=$ level of reserves
- $r=$ interest rate on reserves
- $r_{p}=$ penalty interest rate
- $x=$ net withdrawals

Cost of liquidity shortages

$$
\begin{gather*}
C(R)=E[\max (0, \tilde{x}-R)]=r_{p} \int_{R}^{D}(x-R) f(x) d x \tag{7}\\
C^{\prime}(R)=-r_{p} \int_{R}^{D} f(x) d x=-r_{p} \operatorname{Pr}[\tilde{x} \geq R]<0 \tag{8}\\
C^{\prime \prime}(R)=r_{p} f(R) \geq 0 \tag{9}
\end{gather*}
$$

$C(R)$ decreasing and convex

Choice of R

$$
\begin{equation*}
\Pi(R)=r_{L}(D-R)+r R-C(R)-r_{D} D \tag{10}
\end{equation*}
$$

First order condition for R

$$
\begin{align*}
& -r_{L}+r-C^{\prime}(R)=0 \\
& \operatorname{Pr}[\tilde{x} \geq R]=\frac{r_{L}-r}{r_{p}} \tag{11}
\end{align*}
$$

Probability of borrowing at penalty rate equals liquidity premium $r_{L}-r$ over penalty rate r_{p}

Marginal costs and benefits

Insert $R=D-L$ in definition of profits:

$$
\begin{equation*}
\Pi=r_{L}(L)+r(D-L)-C(D-L)-r_{D} D \tag{12}
\end{equation*}
$$

Marginal cost of loans / Marginal benefit from deposits

$$
\begin{equation*}
r-C^{\prime}(D-L)=r+r_{p} \operatorname{Pr}[\tilde{x} \geq R] \tag{13}
\end{equation*}
$$

- Charge more for loans and pay more for deposits
- Marginal costs and gains falls with $D-L$
- Can be incorporated in monopolistic bank model

Liquidity management in practice

- Wholesale deposits more volatile
- Reserves mainly in interbank market
- Premium on longer interbank loans
- Prudent banks who borrow a lot in interbank market must also have deposits there or unused credit lines
- Longer term interbank loans carry a liquidity premium

Interest rate risk

Interest rate risk can in principle be avoided by two methods

- floating interest rates on all deposits and loans
- every loan with fixed interest rate is financed with fixed interest rate bonds or time deposit with the same duration
Reason that banks assume interest rate risk:
- Depositors prefer more liquid deposits
- Deposit financing is cheaper than bond financing
- Some borrowers are willing to pay more for fixed-rate loans

Reserves will be needed

