ECON4510 - Finance Theory Lecture 11

Diderik Lund
Department of Economics
University of Oslo

4 November 2013

Stochastic processes

- These are stochastic variables which evolve over time.
- Some of you may know about these from
- time series econometrics,
- other applications in microeconomics or macroeconomics.
- Purpose here: Analyze prices of stocks and options.
- Binomial tree example of stochastic process in discrete time.
- "Discrete time:" Process only defined at certain time points.
- Black-Scholes-Merton option values based on another process.

Stochastic processes, contd.

- In continuous time, i.e., stock values S_{t} change continuously.
- (Although we typically observe only at some points in time.)
- Also continuous-valued, i.e., S_{t} can be any positive number.
- (In typical markets, S_{t} only has two or three decimals.)
- Could just define that process directly.
- Will instead follow Hull, ch. 13.
- First some rather simple, motivating points.
- Will then develop motivation for more complications.

The Markov property

- S_{t} called a Markov process if (the Markov property:) the probability distribution of all $S_{t+\Delta t}$ for all later dates $t+\Delta t$, as seen from date t, depends on S_{t} only.
- For instance, if S_{t} is a given number, knowledge of particularly high outcomes for S_{t-2} and S_{t-1}, or for $S_{t-0.2}$ and $S_{t-0.1}$, will not affect the probability distribution of $S_{t+0.1}$ or $S_{t+0.2}$ or
- Alternatively, we could think that the probability distribution of $S_{t+\Delta t}$ could depend on the whole history of S 's, or some part of it, say S_{t-2}, S_{t-1}, S_{t}. Not Markov.

The Markov property, contd.

- One possible type of dependence, called momentum, is that a falling sequence $S_{t-2}>S_{t-1}>S_{t}$ increases the probability of an outcome S_{t+1} less than S_{t}. This is not Markov. For a Markov process, a rising sequence $S_{t-2}<S_{t-1}<S_{t}$ will, if it has the same value for S_{t}, imply exactly the same probability distribution for S_{t+1} as the falling sequence $S_{t-2}>S_{t-1}>S_{t}$.
- Exist many types of processes are Markov process, with many different types of probability distributions for, e.g., S_{t+1} conditional on S_{t}.
- "Markov processes" should thus be viewed as a wide class of stochastic processes, with one particular common characteristic, the Markov property.

The Markov property, economic implications

- Connection to weak-form market efficiency.
- All available information reflected in today's S_{t}.
- Probabilities of future $S_{t+\Delta t}$ depend on S_{t}.
- But historical S values cannot matter.
- Implication of $S_{t-\Delta t}$ for $S_{t+\Delta t}$? Already in S_{t}.

Implications of Markov property for variance

- Markov: $S_{2}-S_{1}$ is stochastically independent of $S_{1}-S_{0}$.
- Also $S_{3}-S_{2}$, etc.
- Assume we are at time 0 , know S_{0}.
- Can write $S_{2}=S_{0}+\left(S_{1}-S_{0}\right)+\left(S_{2}-S_{1}\right)$.
- As seen from time $0, S_{0}$ has no variance.
- Then:
$\operatorname{var}\left(S_{2}\right)=\operatorname{var}\left[\left(S_{2}-S_{1}\right)+\left(S_{1}-S_{0}\right)\right]=\operatorname{var}\left(S_{2}-S_{1}\right)+\operatorname{var}\left(S_{1}-S_{0}\right)$.
- The last equality is due to stochastic independence.

Implications for variance, contd.

- Assume all changes $S_{t+1}-S_{t}$ have same variance.
- Then $\operatorname{var}\left(S_{2}\right)=\operatorname{var}\left(S_{2}-S_{1}\right)+\operatorname{var}\left(S_{1}-S_{0}\right)=2 \operatorname{var}\left(S_{t+1}-S_{t}\right)$.
- More precisely, introduce conditional variance, given S_{0}.
- $\operatorname{var}\left(S_{2} \mid S_{0}\right)=2 \operatorname{var}\left(S_{t+1}-S_{t}\right)$.
- Likewise: $\operatorname{var}\left(S_{3} \mid S_{0}\right)=3 \operatorname{var}\left(S_{t+1}-S_{t}\right)$.
- Generally: $\operatorname{var}\left(S_{T} \mid S_{0}\right)=T \operatorname{var}\left(S_{t+1}-S_{t}\right)$.
- (Conditional) variance proportional to time.
- Standard deviation proportional to square root of time.

Wiener processes (also called Brownian motion)

- So far, in addition to the Markov property, have assumed the variance of changes is the same for different periods.
- Assume now in addition that $\operatorname{var}\left(S_{t+1}-S_{t} \mid S_{t}\right)$ equals 1 , and that the expected change $E\left(S_{t+1}-S_{t} \mid S_{t}\right)$ equals 0 .
- (A bit like looking at a standardized distribution, like $N(0,1)$. Will call this process z_{t} (or sometimes $z(t)$), not S_{t}.)
- This gives us a particular type of Markov process called a Wiener process, defined by two properties. z_{t} is a Wiener process if and only if both are satisfied:
- The change Δz during a short time interval Δt is $\Delta z=\epsilon \sqrt{\Delta t}$, where ϵ has a standard normal (Gaussian) distribution (with $E(\epsilon)=0, \operatorname{var}(\epsilon)=1)$.
- The values of Δz for non-overlapping intervals Δt are stochastically independent.

Wiener processes, contd.

- Over longer interval, $z(T)-z(0)$ is normally distributed, the sum of N changes over intervals of length Δt, i.e., $N \Delta t=T$; $z(T)-z(0)=\sum_{i=1}^{N} \epsilon_{i} \sqrt{\Delta t}$.
- This implies
$E(z(T)-z(0))=0$, $\operatorname{var}(z(T)-z(0))=N \Delta t=$ T. These do not depend on the length of Δt.
- In limit when $\Delta t \rightarrow 0, d z$ is change during $d t$; $\operatorname{var}(d z)=d t$.
- Illustrated in Figure 13.1 in Hull, p. 283.

Figure 13.1 How a Wiener process is obtained when $\Delta t \rightarrow 0$ in equation

Relatively large value of Δt

Smaller value of Δt

The true process obtained as $\Delta t \rightarrow 0$

Generalized Wiener processes

- First multiply the Wiener process $d z$ by a constant, b.
- $b d z$ has variance
$b^{2} \operatorname{var}(d z)=b^{2} d t$.
- Then allow for an expected change different from zero,

$$
d x=a d t+b d z
$$

- This amounts to adding a non-stochastic linear growth

Figure 13.2 Generalized Wiener process with $a=0.3$ and $b=1.5$.
 path to the stochastic $b d z$, and is illustrated in Figure 13.2 in Hull, p. 285.

Generalized Wiener processes, contd.

- The generalized Wiener process X is normally distributed with

$$
\begin{aligned}
E(X(T)-X(0) \mid X(0)) & =a T \\
\operatorname{var}(X(T)-X(0) \mid X(0)) & =b^{2} T
\end{aligned}
$$

- The process is also called Brownian motion with drift.

Generalized Wiener processes; Itô processes

- A further generalization: Allow a and b to depend on (x, t),

$$
d x=a(x, t) d t+b(x, t) d z
$$

- This is called an Itô process. In general not normally distributed.
- Over a small time interval Δt we get

$$
\Delta x \approx a(x, t) \Delta t+b(x, t) \epsilon \sqrt{\Delta t}
$$

- For non-overlapping intervals the changes in x are stochastically independent, so all Itô processes are Markov processes.

Stochastic process for a stock price

- Looking for something more realistic than the binomial tree.
- Expected change will not be zero, so cannot use Wiener process.
- Could we use generalized Wiener process?
- Expected change over interval of length T is $a T$.
- Suppose $S_{0}=10, a=1$, and that T is measured in years.
- Expected stock price in ten years is $E\left(S_{10} \mid S_{0}=10\right)=20$.
- Expected stock price ten years later, $E\left(S_{20} \mid S_{0}=10\right)=30$.
- Also, if S_{10} equals its expectation, $E\left(S_{20} \mid S_{10}=20\right)=30$.

Stochastic process for a stock price, contd.

- But the expected growth rate over the time interval $(10,20)$ is substantially lower than the expected growth rate over $(0,10)$, since growth rates are relative numbers, and $30 / 20<20 / 10$.
- More likely shareholders require constant expected growth rate.
- Need exponential expected path, not linear expected path.
- Will obtain this by letting $E(d S)=\mu S d t$.
- For the non-stochastic part (or, if $\sigma=0$): $\frac{d S}{d t}=\mu S$.
- Integrating between 0 and $T: S_{T}=S_{0} e^{\mu T}$ when $\sigma=0$.
- This leads to a suggestion of

$$
d S=\mu S d t+\sigma d z
$$

or, better,

$$
d S=\mu S d t+\sigma S d z
$$

Stochastic process for a stock price, contd.

- From previous slide: a suggestion of

$$
d S=\mu S d t+\sigma d z
$$

or

$$
d S=\mu S d t+\sigma S d z
$$

- Choose the latter so that a relative change in S not only has a constant expected value, $\mu d t$, but also a constant variance, $\sigma^{2} d t$,

$$
\frac{d S}{S}=\mu d t+\sigma d z
$$

- This stock price process process is basis for the most widespread option pricing theories, like the one in Chapter 14 of Hull, Black-Scholes-Merton.
- The process is called geometric Brownian motion with drift.

Stochastic process for a stock price, contd.

- Since S appears on right-hand side in $d S$ formula: Not a generalized Wiener process, but a bit more complicated.
- $d S$ is an Itô process, with $a(S, t)=\mu S$ and $b(S, t)=\sigma S$.
- Different stocks will differ in μ and/or σ.
- Hull discusses these variables in section 13.4.
- Remember: Hull's book does not rely on the CAPM.
- Imprecise discussion of how μ depends on r_{f} and risk.
- Footnote 4, p. 289, means μ depends on covariance, not on σ.

Functions of Itô processes

- When x is an Itô process, $d x=a(x, t) d t+b(x, t) d z$:
- Is a function G of x also an Itô process?
- If yes, what happens to the functions $a(x, t)$ and $b(x, t)$?
- Put differently: G will also have functions like these.
- What do the two functions look like for G ?
- Motivation: Call option value as function of S.
- Find this via a general rule, Itô's lemma.
- A bit more complicated than suggested above.
- Call option not only function of S; also of t.
- Option's value depends on time until expiration.
- For some given S, different t 's give different c 's.
- Thus, the more general questions are:
- If x is an Itô process, is $G(x, t)$ an Itô process?
- If yes, what do the "a and b functions" look like for G ?
- The answers are given by Itô's lemma.
- Will not prove this mathematically.
- But will show how and why it differs from usual differentiation.

Itô's lemma

- Assume x is an Itô process:
- $d x=a(x, t) d t+b(x, t) d z$, where z is a Wiener process.
- Then $G(x, t)$ is also an Itô process:

$$
d G=\left(\frac{\partial G}{\partial x} a+\frac{\partial G}{\partial t}+\frac{1}{2} \frac{\partial^{2} G}{\partial x^{2}} b^{2}\right) d t+\frac{\partial G}{\partial x} b d z
$$

- We recognize the general form of an Itô process.
- The expression above is Hull's equation (13.12).
- In fact, this is short-hand, dropping arguments.

Itô's lemma, contd.

- Contains six different functions of (x, t).
- Both a, b, G, and the partial derivatives of G.
- Right-hand side should really be written like this:

$$
\begin{aligned}
\left(\frac{\partial G(x, t)}{\partial x} a(x, t)\right. & \left.+\frac{\partial G(x, t)}{\partial t}+\frac{1}{2} \frac{\partial^{2} G(x, t)}{\partial x^{2}}[b(x, t)]^{2}\right) d t \\
& +\frac{\partial G(x, t)}{\partial x} b(x, t) d z
\end{aligned}
$$

- Perhaps this looks complicated, but:
- In our applications, G, a, and b are fairly simple.

Why not use ordinary differentiation? Hull, p. 297 f

- Approximation of a function by its tangent:

$$
\Delta G \approx \frac{d G}{d x} \Delta x
$$

when G is a function of one variable, x.

- Holds precisely in limit as $\Delta x \rightarrow 0$.
- As long as $\Delta x \neq 0$, can use Taylor series expansion:

$$
\Delta G=\frac{d G}{d x} \Delta x+\frac{1}{2} \frac{d^{2} G}{d x^{2}} \Delta x^{2}+\frac{1}{6} \frac{d^{3} G}{d x^{3}} \Delta x^{3}+\ldots
$$

- As $\Delta x \rightarrow 0$, higher-order terms vanish.
- $G(x, y)$, two dimensions, a tangent plane:

$$
\Delta G \approx \frac{\partial G}{\partial x} \Delta x+\frac{\partial G}{\partial y} \Delta y .
$$

Why not use ordinary differentiation, contd.

- When both Δx and $\Delta y \neq 0$, can use Taylor series:

$$
\Delta G=\frac{\partial G}{\partial x} \Delta x+\frac{\partial G}{\partial y} \Delta y+\frac{1}{2} \frac{\partial^{2} G}{\partial x^{2}} \Delta x^{2}+\frac{\partial^{2} G}{\partial x \partial y} \Delta x \Delta y+\frac{1}{2} \frac{\partial^{2} G}{\partial y^{2}} \Delta y^{2}+\ldots
$$

- Again, precisely in limit as $\Delta x \rightarrow 0$ and $\Delta y \rightarrow 0$:

$$
d G=\frac{\partial G}{\partial x} d x+\frac{\partial G}{\partial y} d y
$$

- Want to find a similar expression for Itô processes.
- But all higher-order terms do not vanish.

Itô's lemma vs. ordinary differentiation

- Assume x is an Itô process:
- $d x=a(x, t) d t+b(x, t) d z$, where z is a Wiener process.
- Let G be a function $G(x, t)$, and use Taylor expansion:

$$
\Delta G=\frac{\partial G}{\partial x} \Delta x+\frac{\partial G}{\partial t} \Delta t+\frac{1}{2} \frac{\partial^{2} G}{\partial x^{2}} \Delta x^{2}+\frac{\partial^{2} G}{\partial x \partial t} \Delta x \Delta t+\frac{1}{2} \frac{\partial^{2} G}{\partial t^{2}} \Delta t^{2}+\ldots
$$

- Only novelty here: Have called second variable t, not y.
- When $\Delta x \rightarrow 0$, need to observe the following.
- $\Delta x=a \Delta t+b \epsilon \sqrt{\Delta t}$ implies:
- $(\Delta x)^{2}=b^{2} \epsilon^{2} \Delta t+$ terms of higher order.
- Since Δx contains a $\sqrt{\Delta t}$ term, normal rules don't work.
- Must include extra term with second-order partial derivative.
- The extra term contains ϵ^{2}, and ϵ is stochastic.

Itô's lemma vs. ordinary differentiation, contd.

- Hull explains why $E\left(\epsilon^{2} \Delta t\right)=\Delta t$.
- Hull also explains that $\operatorname{var}\left(\epsilon^{2} \Delta t\right)$ is of order $(\Delta t)^{2}$.
- Variance approaches zero fast as $\Delta t \rightarrow 0$.
- Thus: In limit $\epsilon^{2} \Delta t$ is nonstochastic, $=\Delta t$.
- This gives us the following formula in the limit:

$$
d G=\frac{\partial G}{\partial x} d x+\frac{\partial G}{\partial t} d t+\frac{1}{2} \frac{\partial^{2} G}{\partial x^{2}} b^{2} d t
$$

- Insert for $d x$ from above to find the form we used above:

$$
d G=\left(\frac{\partial G}{\partial x} a+\frac{\partial G}{\partial t}+\frac{1}{2} \frac{\partial^{2} G}{\partial x^{2}} b^{2}\right) d t+\frac{\partial G}{\partial x} b d z
$$

Example of application of Itô's lemma

- Consider the stock price process from slide 16 :
- Assume $d S=\mu S d t+\sigma S d z ; z$ is a Wiener process.
- What kind of process is $\ln S$?
- Natural question; deterministic part of S is exponential in t.
- Might believe that deterministic part of $\ln S$ is linear in t.
- Observe this application of Itô's lemma is fairly simple:
- "a(S,t) function" of S process is μS. Simple, and no t.
- "b(S,t) function" of S process is σS. Simple, and no t.
- The $G(S, t)$ function is $\ln S$. Fairly simple, and no t.
- Know from Itô's lemma that $\ln S$ is an Itô process.
- But what are the "a and b functions" of the G process?
- Will turn out that they are very simple. Constants, no S, no t.
- But slightly less simple than one might have thought.
- The constant which multiplies $d t$ is not μ.
- Would be natural suggestion based on deterministic $S_{T}=S_{0} e^{\mu T}$.

Example; lognormal property, Hull, sect. 13.7

- With $G(S, t) \equiv \ln S$, need three partial derivatives:

$$
\frac{\partial G}{\partial S}=\frac{1}{S}, \quad \frac{\partial^{2} G}{\partial S^{2}}=-\frac{1}{S^{2}}, \quad \frac{\partial G}{\partial t}=0
$$

- Then Itô's lemma says that:

$$
\begin{aligned}
d G=\left(\frac{1}{S} \mu S\right. & \left.+0+\frac{1}{2}\left(-\frac{1}{S^{2}}\right)(\sigma S)^{2}\right) d t+\frac{1}{S} \sigma S d z \\
& =\left(\mu-\frac{\sigma^{2}}{2}\right) d t+\sigma d z
\end{aligned}
$$

- So this is an Itô process with constant a and b functions.
- Implies that $\ln S$ is a generalized Wiener process.
- Can use formulae from slide 12.

Example, contd.

- The change $\ln S_{T}-\ln S_{0}$ is normally distributed:

$$
\ln S_{T}-\ln S_{0} \sim \phi\left[\left(\mu-\frac{\sigma^{2}}{2}\right) T, \sigma^{2} T\right]
$$

which implies (by adding the known $\ln S_{0}$)

$$
\ln S_{T} \sim \phi\left[\ln S_{0}+\left(\mu-\frac{\sigma^{2}}{2}\right) T, \sigma^{2} T\right]
$$

- $\ln S$ is normally distributed.
- By definition then, S is lognormally distributed.
- Not obvious earlier, but by using Itô's lemma.

The lognormal distribution of stock prices

- On slide 15 , required an exponential expected path, $S_{T}=S_{0} e^{\mu T}$.
- Could thus not use the generalized Wiener process for S.
- (Would have implied S having a normal distribution.)
- Found instead something similar for relative changes in S,

$$
\frac{d S}{S}=\mu d t+\sigma d z
$$

- This implies S is lognormal, $\ln (S)$ is normal.
- Relation between these two distributions may be confusing.
- Remember that $\ln (S)$ is not linear, thus $E[\ln (S)] \neq \ln [E(S)]$:
- $E\left[\ln \left(S_{T}\right) \mid S_{0}\right]=\ln \left(S_{0}\right)+\left(\mu-\sigma^{2} / 2\right) T$,
- $E\left(S_{T} \mid S_{0}\right)=S_{0} e^{\mu T}$ so that $\ln \left[E\left(S_{T} \mid S_{0}\right)\right]=\ln \left(S_{0}\right)+\mu T$.

The lognormal distribution of stock prices

- The variance expression is simpler for $\ln \left(S_{T}\right)$ than for S_{T} :
- $\operatorname{var}\left[\ln \left(S_{T}\right) \mid S_{0}\right]=\sigma^{2} T$,
- $\operatorname{var}\left(S_{T} \mid S_{0}\right)=S_{0}^{2} e^{2 \mu T}\left(e^{\sigma^{2} T}-1\right)$.
- Footnote 2 on p. 301 in Hull refers to a note on this:
http://www.rotman.utoronto.ca/ hull/TechnicalNotes/TechnicalNote2.pdf
- $S_{T}=S_{0} e^{x T}$ defines continuously-compounded rate of return x.
- Its distribution is $x \sim \phi\left(\mu-\frac{\sigma^{2}}{2}, \frac{\sigma^{2}}{T}\right)$.

Monte Carlo simulation (Hull sections 13.3, 20.6)

- From slide 27 of lecture 10: Can find option values as expectations.
- Not based on actual probabilities, but on "risk neutral" probabilities.
- Next lecture finds $c(S, K, T, r, \sigma)$ from lognormal distribution.
- Numerically, e.g., $c(10,8,2,0.05,0.2)$: Exists alternative method.
- For complicated nonlinear functions: Use Monte Carlo simulation:
- Computer draws numbers, S_{T}, from a probability distribution.
- Typically thousands of independent drawings from same distribution.
- Gives frequency distribution, similar to probability distribution.
- For each draw, compute some function of it, e.g., $\max \left(0, S_{T}-K\right)$.
- Across, e.g., 10000 draws: Can calculate $E\left[\max \left(0, S_{T}-K\right)\right]$.
- Could also calculate, e.g., $\operatorname{var}\left[\max \left(0, S_{T}-K\right)\right]$, but less interesting.
- Expectation gives option value if use risk neutral probabilities for S_{T}.
\star Just need to take present value, $E\left[\max \left(0, \hat{S}_{T}-K\right)\right] e^{-r T}$.
- Can also be done for many periods, and for functions of many variables.

Monte Carlo simulation in Excel spreadsheet

- Consider $c(10,8,2,0.05,0.2)$ when stock price is lognormal. ${ }^{1}$
- First determine parameters of probability distribution of $\ln \left(\hat{S}_{2}\right)$.
- For "risk neutral" process, should let $\mu=r$.
- Use $S_{0}=10$, and observe that $\sigma=0.2 \Rightarrow \sigma^{2}=0.04$.
- Use these μ, S_{0}, σ^{2} in formula from slide 27 ,

$$
\ln \hat{S}_{2} \sim \phi\left[\ln (10)+\left(0.05-\frac{0.04}{2}\right) \cdot 2,0.04 \cdot 2\right] .
$$

- Create lognormal sample using Excel's RAND, NORMSINV, and EXP.
- For each S_{T} in sample, calculate function values using Excel's MAX.
- Across sample, estimate expectation using Excel's AVERAGE.
- Next time: Exact formula, may then compare results with M-C.
${ }^{1}$ Previous version had $T=1$ in this formula.

Monte Carlo simulation in Excel, contd.

Column B contains sample of 100 numbers uniformly distributed on $[0,1]$.

1	A	B	C	D	E	F	G
1		Uniform rand. no.s	Normally distributed	Lognormal price	Call option	Input data	
2	Average of below	=AVERAGE(B3:B102)	=AVERAGE(C3:C102)	=AVERAGE(D3:D102)	=AVERAGE(E3:E102)		
3		=RAND()	$=$ NORMSINV(B3)*\$G\$	= EXP(C3)	= MAX (0;D3-\$G\$4)	$\mathrm{SO}=$	10
4		=RAND()	=NORMSINV(B4)*\$G\$	= EXP(C4)	=MAX (0;D4-\$G\$4)	$\mathrm{K}=$	8
5		=RAND()	=NORMSINV(B5)*\$G\$	= EXP(C5)	$=\mathrm{MAX}(0 ; \mathrm{D}-$ \$G\$4)	$\mathrm{T}=$	2
6		=RAND()	$=$ NORMSINV(B6)*\$G\$	$=\mathrm{EXP}(\mathrm{C} 6)$	=MAX (0;D6-\$G\$4)	$\mathrm{r}=$	0,05
7		=RAND()	=NORMSINV(B7)*\$G\$	$=\mathrm{EXP}(\mathrm{C} 7)$	=MAX (0;D7-\$G\$4)	$\mathrm{sig}=$	0,2
8		=RAND()	=NORMSINV(B8)*\$G\$	= EXP(C8)	=MAX (0;D8-\$G\$4)		
9		=RAND()	$=$ NORMSINV(B9)*\$G\$	= EXP(C9)	$=\mathrm{MAX}(0 ; \mathrm{D}-$ \$G\$4)	Output call	
10		=RAND()	=NORMSINV(B10)*\$G	= EXP(C10)	$=\mathrm{MAX}(0 ; \mathrm{D} 10-\$ \mathrm{G}$ \$4)	option val. =	
11		=RAND()	$=$ NORMSINV(B11)*\$G	= EXP(C11)	$=\mathrm{MAX}(0 ; \mathrm{D} 11-\$ \mathrm{G}$ 4 4$)$	$=\$ \mathrm{E} \mathbf{2}^{*} \mathrm{EXP}(-\mathrm{S}$	
12		-namin		-rvoirias	-annvininis dedal		

NORMSINV applied to uniform distribution gives normal distribution. The full contents of cell C3, which gives the normally distributed $\ln \left(S_{2}\right)$: $=$ NORMSINV(B3)*\$G\$7*SORT(\$G\$5)+LN(\$G\$3)+\$G\$5*(\$G\$6-0,5*\$G\$7^2)

The full contents of cell F11, which gives the c_{0}, the call option value: $=$ =SES2*EXP(-SG\$6*\$G\$5)
(This is Norwegian; comma as decimal sign; semicolon as separator.)

