ECON4510 – Finance Theory Lecture 9

Diderik Lund Department of Economics University of Oslo

21 October 2013

Valuation of options before expiration

- Need to distinguish between American and European options.
- Consider European options with time t until expiration.
- Value now of receiving c_T at expiration? (Later also p_T .)
- Have candidate model already: Use CAPM?
- Problematic: Non-linear functions of S_T .
- Difficult to calculate $E(c_T)$ and $cov(c_T, r_M)$.
- Instead: Theory especially developed for options.
- (But turns out to have other applications as well.)
- "Valuation of derivative assets."
- Value of one asset as function of value of another.
- Will find c(S,...) and p(S,...).
- Other variables (—hopefully observable—) as arguments besides S.

Net value diagrams (Hull, figs. 9.1–9.4, 11.1–11.12)

- Value at expiration *minus* purchase cost.
- S_T on horizontal axsis. (Some examples, blackboard)
- Fig. 9.1: $c_T c$, buying a call option.
- Resembles gross value, c_T , diagram.
- But removed vertically by subtracting c, today's price.
- These diagrams only approximately true:
- No present-value correction for time lag -c to c_T .
- There isn't one exact relationship between c and c_T .
- That exact relationship depends on other variables.
- Fig. 9.3: $c c_T$, selling a call option.
- Observe: Selling and buying cancel out for each S_T .
- Options redistribute risks (only). Zero-sum.

Net value diagrams, contd.

- Similar to fig. 11.10: Buy share, buy two put options with S = K.
- Diagrams show $S_T S$, $2p_T 2p$, $S_T S + 2p_T 2p$.
- Good idea if you believe S_T will be different from S (and K), but you do not know direction.
- Fig. 11.1(c): Buy put option with K = S, plus one share.
- $p_T p + S_T S$.
- Resembles value of call option.
- Will soon show exact relationship to call option.

Determinants of option value (informally)

Six candidates for explanatory variables for c and p:

- S, today's share price. Higher S means market expects higher S_T, implies higher c (because higher c_T), lower p (lower p_T).
- K, the striking price. Higher K means lower c (because lower c_T), higher p (higher p_T).
- Uncertainty. Higher uncertainty implies both higher *c* and higher *p*, because option owner gains from extreme outcomes in one direction, while being protected in opposite direction. (Remark: This is total risk in S_T , not β from CAPM.)

Determinants of option value (informally)

Six candidates for explanatory variables for c and p:

- Interest rate. Higher interest rate implies present value of K is reduced, increasing c, decreasing p.
- Time until expiration. Two effects (for a fixed uncertainty per unit of time): Longer time implies increased uncertainty about S_T, and lower present value of K. Both give higher c, while effects on p go in opposite directions.
- Dividends. If share pays dividends before expiration, this reduces expected S_T (for a given S, since S is claim to both dividend and S_T). Option only linked to S_T, thus lower c, higher p.

Later: Precise formula for $c(S, K, \sigma, r, t)$ when D = 0.

Missing from the list: $E(S_T)$. Main achievement!

Put-call parity

Exact relationship between call and put values.

- Assume underlying share with certainty pays no dividends between now and expiration date of options.
- Let t = time until expiration date.
- Consider European options with same K, t.
- Consider following set of four transactions:

		At expiration		
	Now	If $S_T \leq K$	If $S_T > K$	
Sell call option	С	0	$K - S_T$	
Buy put option	-p	$K - S_T$	0	
Buy share	-S	S_T	S_T	
Borrow (risk free)	Ke ^{-rt}	-K	-K	
Total	$c - p - S + Ke^{-rt}$	0	0	

Put-call parity

Must have $c = p + S - Ke^{-rt}$, if not, riskless arbitrage.

- To exploit arbitrage if, e.g., $c > p + S Ke^{-rt}$:
- "Buy cheaper, sell more expensive."
- Sell (i.e., write) call option.
- Buy put option and share.
- Borrow Ke^{-rt}.
- Receive $c p S + Ke^{-rt} > 0$ now.
- At expiration: Net outlay zero whatever S_T is.

Put-call parity allows us to concentrate on (e.g.) calls.

Allow for uncertain dividends

- Share may pay dividends before expiration of option.
- These drain share value, do not accrue to call option.
- In Norway dividends paid once a year, in U.S., typically 4 times.
- Only short periods without dividends.
- Theoretically easily handled if dividends are known.
- But in practice: Not known with certainty.
- For short periods: $S \approx E(D + S_T)$.
- For given S, a higher D means lower S_T , lower c, higher p.
- Intuitive: High *D* means less left in corporation, thus option to *buy* share at *K* is less valuable.
- Intuitive: High *D* means less left in corporation, thus option to *sell* share at *K* is more valuable.

Allow for uncertain dividends

- Absence-of-arbitrage proofs rely on short sales.
- Short sale of shares: Must compensate for dividends.
- Short sale starts with borrowing share. Must compensate the lender of the share for the dividends missing. (Cannot just hand back share later, neglecting dividends in meantime.)
- When a-o-arbitrage proof involves shares: Could in some cases assume D = 0 with full certainty.
- If not D = 0 with certainty, conclude with inequalities instead of equalities.

More inequality results on option values

Absence-of-arbitrage proofs for American calls:

- O C ≥ 0: If not, buy option, keep until expiration. Get something positive now, certainly nothing negative later.
- ② C ≤ S: If not, buy share, sell (i.e., write) call, receive C − S > 0. Get K > 0 if option is exercised, get S if not.
- $C \ge S K$: If not, buy option, exercise immediately.
- When (for sure) no dividends: $C \ge S Ke^{-rt}$: If not, do the following:

			Expiration	
	Now	Div. date	If $S_T \leq K$	If $S_T > K$
Sell share	S	0	$-S_T$	$-S_T$
Buy call	-C	0	0	$S_T - K$
Lend	−Ke ^{−rt}	0	K	K
	\geq 0	0	\geq 0	0

A riskless arbitrage.

More inequality results on option values

Important implication: American call option on shares which certainly will not pay dividends before option's expiration, should not be exercised before expiration, since

 $C \geq S - Ke^{-rt} > S - K.$

Worth more "alive than dead." When no dividends: *Value of American call equal to value of European*, since it is not rational to exercise these options early.

Both American and European call options on shares which for sure pay no dividends:

$$C \geq S - Ke^{-rt} > S - K.$$

American call options on shares which may pay dividends:

$$C \geq S - K$$
.

American calls when dividends possible: More

- For each dividend payment: Two dates.
 - One date for announcement, after which *D* known.
 - One ex-dividend date, after which share does not give the right to that dividend payment.
- Our interest is in ex-dividend dates, not announcement.
- Owners of shares on morning of ex-div. date receive D.
- Assume there is a given number of ex-div. dates.
- Say, 2 ex-div. dates, t_{d1} , t_{d2} , before option's expiration, T.
- Can show: C > S K except just before t_{d1}, t_{d2}, T .

American calls when dividends possible: More

- Assume contrary, $C \leq S K$. Then riskless arbitrage:
- Buy call, exercise just before: Now Just before next t_{di} or TBuy call -C S-KSell share S -SLend -K $Ke^{r\Delta t}$ ≥ 0 $K(e^{r\Delta t}-1)$

• Riskless arbitrage, except if $\Delta t \approx 0$, just before.

Implication: When possible ex-dividend dates are known, American call options should never be exercised except perhaps just before one of these, or at expiration.

Trading strategies with options, Hull ch. 11

- Consider profits as functions of S_T .
- Can obtain different patterns by combining different options.
- Example: bear spread, Hull fig. 11.5
- Strategies in ch. 11 sorted like this:
 - Sect. 11.1: One option, one share.
 - ▶ Sect. 11.2: 2 or 3 calls, or 2 or 3 puts, different K values.
 - ► End of 11.2, pp. 227–229: Different expiration dates.
 - Sect. 11.3: "Combinations", involving both puts and calls.
- Among these types of strategies, those with different expiration dates cannot be described by same method as others.

Trading strategies with options, Hull ch. 11

- The first, second, and fourth type:
 - Use diagram for values at expiration for each security involved.
 - Payoff at expiration is found by adding and subtracting these values.
 - Net profit is found by subtracting initial outlay from payoff.
 - Initial outlay could be negative (if, e.g., short sale of share).
 - Remember: No exact relationship between payoff and initial outlay is used in these diagrams — will depend upon, e.g., time until expiration, volatility, interest rate.
- For the third type: "Profit diagrams for calendar spreads are usually produced so that they show the profit when the short-maturity option expires on the assumption that the long-maturity option is closed out at that time" (Hull, p. 244).

Developing an exact option pricing formula

- Exact formula based on observables very useful.
- Most used: Black and Scholes formula.
- Fischer Black and Myron Scholes, 1973.
- Their original derivation used difficult math.
- Continuous-time stochastic processes.
- First here: (Pedagogical tool:) Discrete time.
- Assume trade takes place, e.g., once per week.
- Option pricing formula in discrete time model.
- Then let time interval length decrease.
- Limit as interval length goes to zero.
- Option pricing formula in continuous time.

Common assumptions

- No riskless arbitrage exists.
- Short sales are allowed.
- No taxes or transaction costs.
- Sexists a constant risk free interest rate, r.
- Trade takes place at each available point in time. (Two different interpretations: Once per period, or continuously.)
- S_{t+s}/S_t is stoch. indep. of S_t and history before t.

Separate assumptions (discrete = d, continuous = c)

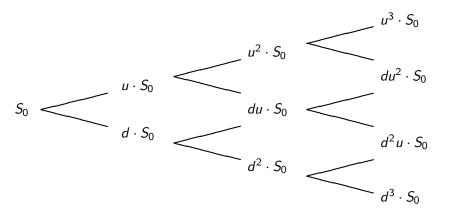
7d. S_{t+1}/S_t has two possible 7c. Any sample path $\{S_t\}_{t=0}^T$ outcomes. u and d. Evervone agrees on these.

8d.
$$\Pr(S_{t+1}/S_t = u) = p^*$$
 80
for all *t*.

9d. S_{t+s} has a binomial dis- 9c. S_{t+s} has a lognormal distribution.

- is continuous.
- c. var[ln(S_{t+s}/S_t)] = $\sigma^2 s$. Everyone agrees on this. tribution.

Discrete time binomial share price process



Discrete time binomial share price process

Define $X_n = S_{t+n}/S_t$. (These are stochastic variables as viewed from time *t*. Their distributions do not depend on *t*.)

$$\Pr(X_1 = u) = p^*.$$

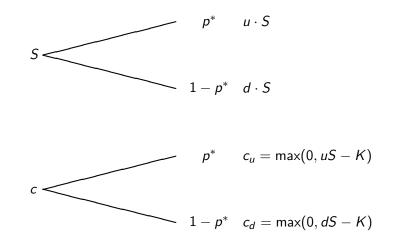
For this course we will not go into detail on the following:

$$\Pr(X_n = u^j d^{n-j}) = \frac{n!}{j!(n-j)!} p^{*j} (1-p^*)^{n-j},$$

the binomial probability for exactly j outcomes of one type (here u) with probability p^* , in n independent draws. ($j \le n$.)

$$\Pr(X_n \ge u^a d^{n-a}) = \sum_{j=a}^n \frac{n!}{j!(n-j)!} p^{*j} (1-p^*)^{n-j}$$

Corresponding trees for share and option



Corresponding trees for share and option

- Value of call option with expiration one period ahead?
- "Corresponding trees" mean that option value has upper outcome if and only if share value has upper outcome.
- For any K, know the two possible outcomes for c.
- I.e., for a particular option, c_u, c_d known.
- If $K \leq dS$, then $c_d = dS K$, $c_u = uS K$.
- If $dS < K \leq uS$, then $c_d = 0, c_u = uS K$.
- If uS < K, then $c_d = 0, c_u = 0$.
- This third kind of option is obviously worthless.