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Preface

The 8th International Conference on Mathematical Methods for Curves and Sur-
faces took place June 28 – July 3, 2012, in Oslo, Norway. The earlier conferences
in the series took place in Oslo (1988), Biri (1991), Ulvik (1994), Lillehammer
(1997), Oslo (2000), Tromsø (2004), and Tønsberg (2008). The conference gath-
ered 170 participants from 31 countries who presented a total of 135 talks. This
includes nine invited talks and six mini-symposia. This book contains 28 original
articles based on talks presented at the conference. The topics range from math-
ematical analysis of various methods to practical implementation on modern
graphics processing units. The papers reflect the newest developments in these
fields and also point to the latest literature. The papers have been subject to
the usual peer-review process, and we thank both the authors and the reviewers
for their hard work and helpful collaboration. We wish to thank those who have
supported and helped organize the conference. First and foremost it is a pleasure
to acknowledge the generous financial support from the Department of Informat-
ics and the Centre of Mathematics for Applications (CMA) at the University of
Oslo, and the Research Council of Norway. We would also like to thank Georg
Muntingh for his help with with technical matters, Katja Elisabeth Andersson
for help with the registration, and our students Helene Norheim Semmerud and
James Trotter for help with various practical matters.

October 2013 Michael Floater
Tom Lyche

Marie-Laurence Mazure
Knut Mørken

Larry Schumaker
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Vibrational Error Extraction Method

Based on Wavelet Technique

Loay Alkafafi1, Carsten Hamm1, and Tomas Sauer2

1 Siemens AG, Erlangen 91056, Germany
{loay.alkafafi,carsten.hamm}@siemens.com
2 University of Passau, Passau 94032, Germany

tomas.sauer@math.uni-giessen.de

Abstract. A key factor in developing and assessing any vibration atten-
uation technique for elastic systems is the measure that quantifies the oc-
curring vibrations. In this paper, we propose a general and instantaneous
vibration measure which allows for more subtle methods of localized vi-
bration attenuation techniques. This measure is based on extracting the
vibrational part from the conventional tracking error signal using wavelet
technique. The paper also provides a method for constructing a wavelet
function based on the system impulse response. This wavelet outperforms
the existing ones in representing the system behavior while guaranteeing
admissibility and providing sufficient smoothness and rate of decay in
both time and frequency domains.

Keywords: elastic system, vibration attenuation, vibrational error, im-
pulse response, wavelet transform, admissibility.

1 Introduction

Suppressing the vibrations in numerically controlled mechanical systems is a
challenge in many industrial applications. Vibrations typically occur when an
elastic system is driven by positioning commands that contain frequencies close
to the system’s critical frequency. There already exists a variety of techniques to
treat such a problem, the most popular of which is the input shaping technique
[10]. In general, all existing techniques share the same idea of filtering out the
system’s critical frequency from the driving commands.

A primary requirement for any such vibration suppression technique is to de-
rive a measure that quantifies the occurring vibrations. In literature, discussions
are often limited to performance measures for the techniques in use rather than
for the existing vibrations. A very good survey on the available key performance
measures is found in [3]. One of the limitations of the existing performance mea-
sures is that they “represent” the system vibrations merely after the command
completion and only for a specific type of input commands. On the other hand,
an instantaneous measure of vibration allows for more subtle methods for local
corrections of the input command. Providing such a measure will indeed be use-
ful in many practical applications, e.g., the attenuation of vibrations in CNC

M. Floater et al. (Eds.): MMCS 2012, LNCS 8177, pp. 1–12, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



2 L. Alkafafi, C. Hamm, and T. Sauer

machine tools via local modification of their reference motion commands [5],
where a localized algorithm is needed to allocate the critical oscillation regions,
and the assessment of the influence of motion commands on the vibrations of
industrial CNC machine tools [1], where an instantaneous measure for the oscil-
lations of the machine is needed.

A general vibration measure that characterizes the system vibrations at any
point in time is presently not available. An exception to this can be found in
Barre [1]. In this paper, we propose a general vibration measure based on ex-
tracting the vibrational part from the conventional tracking error signal using
system adapted wavelet technique.

2 Elastic Systems and Vibrational Error

Elastic systems tend to vibrate whenever they are excited by fast motion. Their
oscillatory behavior is described by the vibrational modes which in turn are char-
acterized by an oscillation frequency ω0 and a damping ratio ζ that defines how
fast the vibration will decrease in amplitude. The behavior of each vibrational
mode can be generally described by a second order underdamped system which
we will use, without loss of generality, as a representative model for elastic sys-
tems. As a mechanical system, a single-degree-of-freedom mass-spring-damper
system as shown in Fig. 1 will be used. The system is driven by a time vary-
ing displacement input function x (t). Using Newtons second law, the ordinary
differential equation (ODE) of the system is given by

mÿ (t) + dẏ (t) +Ky (t) = Kx (t) . (1)

The dynamical behavior of such a system is described by the quotient between
its output signal y (t) and input signal x (t) in the Laplace domain which is
known as the transfer function of the system. For the above system, the transfer
function is given by

G (s) =
Y (s)

X (s)
=

ω2
0

s2 + 2ζω0 s+ ω2
0

, (2)

where ω0 =
√

K
m and ζ = d

2
√
mK

. Whenever an elastic system is driven with an

input that contains frequencies close to its natural frequency, oscillating behavior
is seen in its response. A conventional measure for the performance of such a

y(t)

x(t) K d
m

Fig. 1. Single-degree-of-freedom mass-spring-damper system



Vibrational Error Extraction Method 3

0 0.2 0.4 0.6 0.8 1 1.2
−6

−5

−4

−3

−2

−1

0

1

2
x 10

−4

ε
(t

)
(m

)

Time (sec)

Fig. 2. Tracking error signal for second order underdamped system in response to
jerk-limited step command

system is the tracking error signal θ (t) which measures the deviation of the
system response from the input command:

θ (t) := y (t)− x (t) . (3)

By (2), the tracking error signal (3) can also be described in the Laplace domain
as the error model transfer function

E (s)

X (s)
= − s (s+ 2ζω0)

s2 + 2ζω0 s+ ω2
0

. (4)

Fig. 2 shows an example of a tracking error signal for a second order under-
damped system in response to a jerk-limited step command. In technical ap-
plications, jerk is used for the third derivative with respect to time, i.e., the
variation of acceleration. In addition to the vibratory behavior of the system,
the tracking error signal also shows various static deviations from the input com-
mand. In general, two types of error can be distinguished in the tracking error
signal [1]:

1. Aperiodical terms representing errors related to the tracking characteristics
of the system, denoted as θap (t),

2. Oscillatory periodical terms θvib (t) related to the vibrational behavior of the
system,
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where θ (t) = θap (t)+ θvib (t). In this paper, only the vibrational behavior of the
system, i.e. the oscillating terms of the tracking error signal, is of interest to us.
The practical reason is that in numerically controlled mechanical systems the
aperiodical terms result from the control loops of the system and can be neither
avoided nor compensated.

In [1], Barre derived a formula to describe the oscillatory terms in the track-
ing error signal as a function of the system parameters and the input command
signal, however, under the assumption that the input command signal can be
broken down into a sequence of steps with well-known amplitudes and time of
occurrence. In the case of jerk-limited commands, this will be a sequence of jerk
steps with amplitudes J = [J1, J2, · · · , Jn] and step times T = [T1, T2, · · · , Tn].
Using equation (4) and the assumption above, the tracking error signal is de-
scribed in the Laplace domain by:

E (s) =

n∑
k=1

−Jk
s3

s+ 2ζω0

s2 + 2ζω0 s+ ω2
0

e
−

k∑
j=1

Tj ·s
. (5)

From an inverse Laplace transform of (5) the oscillatory terms are then easily
extracted.

Barre’s approach has two main pitfalls. First, the existence of steps with well-
known amplitude and time locations can only be satisfied in theoretical cases and
for very simple input commands. In practical reality, the jerk signal is often noisy
and hard to describe. Thus, describing the jerk signal as needed by this approach
is practically impossible. Secondly, the approach assumes an exact knowledge of
the system transfer function which is also quite impossible for real applications.

3 The Continuous Wavelet Transform

The continuous wavelet transform (CWT) is the correlation of a time signal with
a dictionary of translated and dilated versions of the analyzing (mother) wavelet
δ. It decomposes a signal into a time-scale representation that elucidates the
transient characteristics of that signal. To fix notation, we recall that for a finite
energy signal f (t) ∈ L2 (R) the continuous wavelet transform is defined by

Wf (b, a) = 〈f, δb,a〉 =
∞∫

−∞

f (t)
1√
a
δ

(
t− b

a

)
dt, (6)

cf. [6] where a and b are the scaling and translation parameters, respectively.
Since the continuous wavelet transform is complete and maintains an energy

conservation, an inverse wavelet transform exists and given by

f (t) =
1

Cψ

∞∫
0

∞∫
−∞

Wf (b, a)
1√
a
δ

(
t− b

a

)
db

da

a2
. (7)
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This inverse formula exists as long as δ satisfies the admissibility condition

Cψ =

∞∫
0

∣∣∣δ̂ (ω)
∣∣∣2

ω
dω < ∞, (8)

which in particular implies that δ̂ (0) = 0, i.e.,
∫
δ = 0.

4 Balanced Impulse Response Wavelet

One feature that makes wavelets attractive for practical use is the possibility to
select the wavelet function δ such that it fits the application at hand. Indeed, in
the literature a number of well-developed wavelet functions can be found which
cover a wide range of applications. For the extraction of vibrational error signals
we tried several wavelet candidates, e.g. Morlet wavelet, Mexican hat wavelet
and impulse response wavelet. All tested wavelets suffer from two main pit-
falls: first, an additional optimization method is always required to optimize the
wavelet shape parameters in order to achieve satisfactory results. Second, most of
the available wavelets are (relatively) symmetric and two-sided wavelets. Thus,
whenever such wavelets are used for reconstructing purposes, additional spurious
oscillating parts will show up in the shape of reconstruction error. Therefore, we
intend to design a new wavelet that overcomes such pitfalls.

Since the oscillatory behavior of an elastic system is characterized by its im-
pulse response, we construct the wavelet function δ from the system impulse
response as a template whose scaled and dilated occurrence we wish to detect
in the given signal. We call such a specific machine adapted wavelet balanced
impulse response wavelet. The impulse response wavelet itself is not new; differ-
ent forms of such a wavelet are available in the literature. The starting point for
building such a wavelet is the impulse response of an underdamped second order
system

h (t) =
ω0√
1− ζ2

e−ζω0t sin (ωdt) , (9)

where ωd = ω0

√
1− ζ2 is the damped natural frequency of the system. Since

the system impulse response usually does not satisfy the admissibility condition,
modifications have to be applied. Junsheng [2], for example, modified the impulse
response via direct mirroring to achieve the admissible wavelet

δ (t) =

⎧⎨⎩ e
− βωct√

1−β2 sin (ωct) , t ≥ 0,

e
βωct√
1−β2 sin (ωct) , t < 0,

(10)

where ωc is the wavelet center frequency and α is a damping or control parameter.
In practice these values are directly related to the damped natural frequency of
the system ωd and the system’s damping ratio ζ which are normally estimated
from an experimental analysis of the dynamic system.
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Fig. 3. Impulse response wavelet in time (left) and frequency (right) domain: with
ωc = 1Hz, β = 0.2

The Fourier transform of the impulse response wavelet is given by

δ̂ (ξ) =
αωc

i
√
1− α2

[
1

β2ω2
c

1−β2 + i (2γξ − ωc)
2
− 1

β2ω2
c

1−β2 + i (2γξ + ωc)
2

]
. (11)

The resulting impulse response wavelet in time and frequency domains is shown
in Fig. 3. By construction, δ is an odd function and thus has zero mean which is
the essential part of the admissibility condition. On the other hand, the reflection
clearly results in a two-sided wavelet that will not reproduce the original system
response which, for example, had no symmetry in the beginning.

Our construction will complete a function with a damped oscillation behav-
ior in R+ by adding a function with controllable support in R− such that the
resulting function satisfies not only the admissibility condition but also pro-
vides a certain amount of smoothness, so that δ and δ̂ both decay sufficiently
fast. Consequently, with a generalized form of the system impulse response h(t)
where the damping ratio ζ is replaced with a general control parameter α as

g(t) = exp
(
−αωc

(
1− α2

)−1/2
t
)
sin (ωct), we define the wavelet function as

δ (t) =

⎧⎨⎩
g(t), t ≥ 0,
f(t), τ ≤ t ≤ 0,
0, t < τ,

(12)

where τ < 0 is a freely chosen parameter that defines the support extension to
the negative axis and controls the time localization properties of the resulting
wavelet. Moreover, f is a function from a finite dimensional space that has to
satisfy the balancing condition∫ 0

τ

f(t) dt = −
∫ ∞

0

g(t)dt =
−1

ωc

(
β2

1−β2 + 1
) , (13)
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as well as for k = 0, . . . , n the smoothness conditions

f (k)(τ) = 0, (14)

and

f (k)(0) = g(k)(0) = ωk
c

∑
j≤(k−1)/2

(−1)k−j−1

(
k

2j + 1

)(
α√

1− α2

)k−2j−1

. (15)

The easiest way to build f is to use polynomial completions. The 2n+2 Hermite
conditions in (14) and (15) always have a unique solution in ε2n+1, thus the
complete problem defined by (13), (14) and (15) can be solved in ε2n+1 if the
solution p of (14) and (15) happens to satisfy the balancing condition of (13).
Otherwise, a solution in ε2n+2 is given by

f = p− q∫ 0
τ
q(t)dt

(∫ 0

τ

p(t)dt+

∫ ∞

0

g(t)dt

)
, q(t) = tn+1 (t− τ)

n+1
,

where q > 0 on (τ, 0), hence,
∫ 0
τ
q(t)dt > 0.

For example, for the case n = 1 the coefficients a0, . . . , a4 of the polynomial
completion are the solutions of the system⎡⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
1 τ τ2 τ3 τ4

0 1 2τ 3τ2 4τ3

−τ −τ2

2
−τ3

3
−τ4

4
−τ5

5

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
a0
a1
a2
a3
a4

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
0
ωc

0
0
−1

ωc

(
β2

1−β2 +1
)

⎤⎥⎥⎥⎥⎥⎦ , (16)

and the Fourier transform of the resulting wavelet is

δ̂ (ξ) =
1

2i

⎛⎝ 1
βωc√
1−β2

+ i (2γξ − ωc)
− 1

βωc√
1−β2

+ i (2γξ + ωc)

⎞⎠
+ a0

i
(
1− e−i2πξτ

)
2γξ

+ a1
1− e−i2πξτ (1− 2iγξτ)

(2γξ)
2

− a2
2i+ e−i2πξτ

(
4γτξ + i

(
4τ2γ2ξ2 − 2

))
(2γξ)

3

− a3
6 + e−i2πξτ

(
12τ2γ2ξ2 − 6 + i

(
8τ3γ3ξ3 − 12τγξ

))
(2γξ)

4

+ a4
24i− ei2πξτ

(
32τ3γ3ξ3 − 48τγξ + i

(
16τ4γ4ξ4 − 48τ2γ2ξ2 + 24

))
(2γξ)

5 ,

which has a (removable) singularity at ξ = 0, since, due to the balancing property

(13) we have δ̂(0) =
∫
δ = 0. Since the practical computation of the wavelet



8 L. Alkafafi, C. Hamm, and T. Sauer

transform requires a sampling of δ̂, we recall that the Fourier transform in this
approach can be explicitly computed as

δ̂(ξ) =

⎛⎝χ[τ,0]

2n+2∑
j=0

aj(·)j
⎞⎠∧

(ξ) +
(
χ[0,∞]e

−βωc(1−β2)
−1/2· sin (ωc·)

)∧
(ξ)

=

2n+2∑
j=0

aj

(
−j!

(i2γξ)j+1
+

e−i2πξτ

(i2γξ)j+1

j∑
l=0

j! (i2γξτ)
l

l!

)
+ (17)

1

2i

⎛⎝ 1
βωc√
1−β2

+ i (2γξ − ωc)
− 1

βωc√
1−β2

+ i (2γξ + ωc)

⎞⎠ .

The first part of this expression is singular at ξ = 0 and therefore hard to sam-
ple in the neighborhood of the origin. The singularity is only removable due
to the choice of the coefficients aj which guarantees that δ̂ is uniformly con-
tinuous. This dependency of the coefficients which requires that the numerator
is precisely zero in order to apply the l’Hôpital rule cannot be maintained in
floating point computations, hence this formula is numerically very unstable in
the neighborhood of the origin. Fortunately, there is a series expansion of the
truncated polynomial which can be used close to the origin.

Lemma 1. For the truncated polynomial function

f = χ[τ,0]

2n+2∑
j=0

aj (·)j ,

we define the convergent series representation as

f̂(ξ) = −
∞∑
k=0

(iτξ)k

k!

2n+2∑
j=0

aj
τ j+1

j + k + 1
. (18)

Proof. We first note that

f̂ (k)(0) =

∫
R

(it)
k
f(t) dt = ik

∫ 0

τ

2n+2∑
j=0

aj t
j+k dt = −(iτ)k

2n+2∑
j=0

aj
τ j+1

j + k + 1
.

Substituting this into the Taylor series

f̂(ξ) =
∞∑
k=0

f̂ (k)(0)

k!
ξk,

which exists since f is compactly supported, hence f̂ ∈ C∞(R), gives (18). The
sum

2n+2∑
j=0

|aj |
|τ |j+1

j + k + 1
,
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is bounded independently of k and the remainder of the series is the series
expansion of eiξτ , hence the series converges absolutely. 	


For small values of |τξ|, the series in (18) converges very fast and so (18) is

suitable and a very stable way for sampling δ̂ close to the origin, while for
large values of |τξ|, (17) is the more appropriate expression to evaluate. This
observation suggests the use of small values of |τ | which is in accordance with
our application of completing a single-sided wavelet without adding too much
support on the negative side. Of course, smaller values of |τ | will lead to larger
coefficients |aj |, and these numbers will diverge for τ → 0.

In addition, Lemma 1 can be used to derive a convenient formula for the
Fourier transform of a spline function, which is easily obtained by shifting each
polynomial piece of the spline to a support interval of the form [τ, 0].

Corollary 1. Let t0 < · · · < tm be a knot sequence and f a piecewise polynomial
of the form

f =
m∑
	=1

χ[t�−1,t�)

n∑
j=0

a	j(·)k.

Then the Fourier transform of f is

f̂(ξ) =

m∑
	=1

et�ξ
∞∑
k=0

(iτ	ξ)
k

k!

2n+2∑
j=0

a	j
τ j+1
	

j + k + 1
, τ	 := t	−1 − t	. (19)

Again, (19) is an alternative to the formula in [7], in particular for frequencies
such that τ	ξ is small.

Returning to our application, we first show the resulting balanced impulse
response wavelet for n = 1 in time and frequency domain in Fig. 4. The wavelet
is indeed a real single-sided one that satisfies the admissibility condition.

To compare this to the behavior of the conventional impulse response wavelet
given by (10), we use a test signal containing two impulse responses of a second
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0.2

0.4

0.6

0.8
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1.2
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∣ ∣ ∣
ψ̂

(ξ
)∣ ∣ ∣

F requency (Hz)

Fig. 4. Balanced impulse response wavelet in time (left) and frequency (right) domain:
with ωc = 1Hz, β = 0.2, τ = −0.5
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order underdamped system with damped natural frequency fd = 25Hz and
damping ratio ζ = 0.1, defined as

g (t) = H (t− 0.2) e
− ζ2πfd√

1−ζ2
(t−0.2)

sin (2γfd (t− 0.2)) (20)

+ H (t− 1) e
− ζ2πfd√

1−ζ2
(t−1)

sin (2γfd (t− 1)) ,

where H (·) is the Heaviside function. For this signal, we consider the two wavelet
transforms with an analyzing frequency of 25Hz and identical center frequency
and damping parameter, ωc = 25Hz and α = 0.1. For comparing the behavior
of the two wavelets in terms of their localization capabilities, it is sufficient to
consider the wavelet transforms with a single analyzing frequency and a noiseless
test signal so that we can highlight only the effects of the choice of wavelet. A
normalized version of the test signal and the modulus of the wavelet coefficients
is shown in Fig. 5. As the results demonstrate, the wavelet from our above
construction outperforms the conventional one in catching the impulse amplitude
envelope and their time locations. Thus, it provides a much better alternative for
applications where accurate detection of impulses amplitude and time location
are needed.
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Fig. 5. Comparison between conventional impulse response wavelet and the new pro-
posed wavelet: with ωc = 25Hz, β = 0.1, τ = −0.5

5 Vibration Extraction Technique

To extract and remove the vibrational part of the tracking error signal we finally
use a method based on forward and inverse wavelet transforms, which makes



Vibrational Error Extraction Method 11

use of the redundant representation of the wavelet transform and its ability to
localize the signal information on the time-scale grid. The use of forward and
backward transforms requires a bit of care, cf. [8,9], but can be performed in an
efficient and stable way. The method extracts the relevant error information by
performing forward and inverse continuous wavelet transforms on the tracking
error signal at a small number of selected scales only and consists of the following
steps:

1. Define the wavelet shape parameters (ωc and α) as the system damped
natural frequency ωd and damping ratio ζ, respectively.

2. Perform a forward wavelet transform on the tracking error signal θ (t). The
analyzing scales should cover a small band around the wavelet center fre-
quency, i.e. ω ∈ [ωc ± υ] where ω is the analyzing frequencies and υ is a
small percentage from the wavelet center frequency, typically in the range of
5%.

3. If necessary, a simple soft thresholding can be applied to the resulting wavelet
coefficients for reducing the noise and highlighting interesting error features.

4. Perform inverse wavelet transform on the thresholded wavelet coefficients to
reconstruct the vibrational part of the error signal.

Fig. 6 shows the extracted vibrations from the tracking error signal shown in
Fig. 2 by means of our method. The results shows the capability of this method
to precisely extract the vibrational behavior from the tracking error signal. Us-
ing the balanced impulse wavelet eliminates the need to optimize any obscure
wavelet shape parameters as the parameters are now adapted exactly to the
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Extracted V ibrations

Fig. 6. Tracking error signal and extracted vibrational error using the proposed
method: with ωc = 25Hz, β = 0.2, τ = −0.5, υ = 5Hz



12 L. Alkafafi, C. Hamm, and T. Sauer

problem. Furthermore, since the constructed wavelet is essentially single-sided,
the effect of extra side oscillations introduced by the reconstruction in the in-
verse wavelet transform is significantly reduced. This can be nicely seen from the
second oscillation in Fig. 6 where the extracted vibration only has one oscillation
prior to the peak of the error signal.
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Abstract. One of the main challenges in Computed Tomography is to
balance the amount of radiation exposure to the patient at the time of
the scan with high image quality. We propose a mathematical model
for adaptive Computed Tomography acquisition whose goal is to reduce
dosage levels while maintaining high image quality at the same time.
The adaptive algorithm iterates between selective limited acquisition
and improved reconstruction, with the goal of applying only the dose
level needed for sufficient image quality. The theoretical foundation of
the algorithm is nonlinear Ridgelet approximation and a discrete form
of Ridgelet analysis is used to compute the selective acquisition steps
that best capture the image edges. We show experimental results where
the adaptive model produces significantly higher image quality, when
compared with known non-adaptive acquisition algorithms, for the same
number of projection lines.

Keywords: Adaptive compressed sensing, Ridgelets.

1 Introduction

In the last decade, several studies have shown that radiation exposure during
Computed Tomography (CT) scanning is a significant factor in raising the to-
tal public risk of cancer deaths [3], [29], [34]. To balance image quality with
these concerns, radiologists use the protocol As Low as Reasonably Achievable
(ALARA). It meant to ensure that “. . . CT dose factors are kept to a point where
risk is minimized for maximum diagnostic benefit..”, where the dose can be de-
termined by the product of the CT tube current and the time the patient has
been exposed to the radiation (see [26] for an overview). Currently, there are sev-
eral state-of-the-art technologies that attempt to achieve dose reduction. There
are the Iterative Reconstruction (IR) methods which are successful in reducing
artifacts, improving resolution and lowering the noise in the reconstructed im-
ages ([10], [35]). More recently, Model Based Iterative Reconstruction (MBIR)
[2], [36] was introduced. It improves upon the IR methods by incorporating ac-
curate system physics models coupled with statistical noise models and prior
models.

However, dosage levels during CT exams are still at the focus of attention and
any new method that can reduce them is considered highly valuable. This paper

M. Floater et al. (Eds.): MMCS 2012, LNCS 8177, pp. 13–33, 2014.
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describes an adaptive acquisition model that theoretically is superior to existing
non-adaptive acquisition methods and allows minimal and optimal dosage lev-
els. The method can be considered a significant generalization of existing two
step adaptive acquisition methods [20], [27] and can potentially use the same
hardware configurations that are capable of changing their geometric configu-
ration and acquisition protocols on-the-fly (see also [33]). For example, in [20],
the authors describe an imaging C-arm system where a low-dose overview (OV)
scan is used to dynamically identify an arbitrary Volume Of Interest (VOI).
The OV and VOI scans are then registered and reconstructed together. In [27],
the authors develop a flexible x-ray micro-CT system, named FaCT, capable of
changing its geometric configuration and acquisition protocol in order to best
suit an object being imaged for a particular diagnostic task. In their system,
a fast, sparse-projection pre-scan is performed, the data are reconstructed, and
the region of interest is identified. Next, a diagnostic-quality scan is performed
where, given the region of interest, the control computer calculates an illumina-
tion window for on-line control of an x-ray source masking aperture to transmit
radiation only through the region of interest throughout the scan trajectory. In
going further, for our adaptive CT approach to work, it is required that the
system will be able to configure on the fly an iterated projection scheme, beyond
the existing predefined uniform parallel or fan beam acquisition patterns.

Observe that adaptive acquisition should not be confused with adaptive recon-
struction. In the latter, the acquisition model is a non-adaptive uniform sampling
scheme, where over a discrete set of pre-determined angles, projections lines are
computed at equal intervals. In this setup, the adaptive elements, if exist, are
part of the post-acquisition reconstruction step.

The outline of the algorithm is as follows: First, the system projects the ob-
ject with an extreme low dose according to a uniform predetermined pattern and
reconstructs an initial low quality image. Next, the system predicts from the re-
constructed low quality image where the significant edges of the true objects are
and projects along them. Then, the system iterates by incorporating the newly
added line projections in order to obtain a refined approximation of the true im-
age. The algorithm continues to iterate between estimation of locations of finer
significant features, adaptive acquisition and reconstruction until a convergence
criterion is met. The goal is to quickly converge until a high quality reconstruc-
tion is achieved with minimal dose. Moreover, by using the mathematical model
of Ridgelets [4], the algorithm has a natural multiresolution capability, where the
significance of edges is analyzed at different scales. We show, in the experimental
results section that this approach yields significantly higher image reconstruc-
tion quality, when compared with known non-adaptive acquisition algorithms,
for the same number of projection lines.

It is important to clarify the following fundamental assumption we make on
the acquired images. To illustrate, let I be a bi-level image, i.e. with pixels that
are either ‘0’ or ‘1’, where the ‘1’ values are sparse. Even on this simple image,
our approach would be rendered useless if the ‘1’ values are scattered in random
locations against the background of zeros. In such a case, as clearly explained in
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[1], adaptive acquisition has absolutely no advantage over non-adaptive meth-
ods (e.g [7], [17]). However, if I is what is called a ‘cartoon’ image, where the ‘1’
values are grouped into ‘nicely’ connected subdomains with piecewise smooth
boundaries, then the situation changes dramatically. Our method relies on the
mathematical theory of [4] which quantifies in the setup of Computed Tomogra-
phy the geometric ‘structure’ of the image and how fast a Ridgelet approximation
converges to the image. Our algorithm, whose goal is to acquire an unknown im-
age, regards the adaptive Ridgelet approximation of this image as the ‘optimal’
benchmark and is designed to match its performance. This approach has strong
ties with the waveform analysis presented in [31], that allowed the authors to
classify singularities and quantify the ‘stability’ of limited angle tomography.
Indeed, although in our work we limit the number of line projections, but do
not limit the angles, the fundamental understanding of the relationship between
a function’s edge singularities and its Radon representation as explained in [31]
is at the core of our algorithm (see Fig. 3 and the accompanying explanation).

The paper is organized as follows: Section 2 overviews necessary mathematical
background. Section 3 describes in detail our adaptive acquisition algorithm.
Experimental results and comparisons with non-adaptive methods are given in
Section 4. In the last section we drew conclusions and discuss future work.

2 Preliminaries

2.1 Fast Algorithms for Total Variation Functionals with ‘Sparse’
Constraints

For a given image I ∈ IRm×m, with pixels values {Ii,j}, we define the gradient
of I by (∇I)i,j = (Ii,j − Ii−1,j , Ii,j − Ii,j−1). The Total Variation (TV) norm of
the image is given by

|I|TV :=

m∑
i,j=2

(|Ii,j − Ii−1,j |+ |Ii,j − Ii,j−1|).

Denote N = m2, and let x ∈ IRN , be a one-dimensional representation of I by
concatenating the rows of I into a single column vector

x = (I1,1, I1,2, . . . , I1,m, . . . , Im,1, ...Im,m)T .

Given an n × N , n << N , sampling matrix A ∈ IRn×N and corresponding ob-
servations vector y ∈ IRn , generated by Ax = y, the so-called TV-minimization
is concerned with solving one of the following optimization problems

min
U

|U |TV s.t. Au = y, min
U

|U |TV + μ ‖Au− y‖22 , (1)

where u ∈ IRN is the one-dimensional representation of U ∈ Rm×m and μ is a
given weight parameter. The right hand side minimization problem is applied
in the presence of noise in the sampling process and the weight μ depends, in
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part, on the expected noise level. This model is difficult to solve directly due to
non-differentiability and non-linearity of the TV term. During the last few years
there has been an explosion of new numeric iterative methods (see the papers in
the “Compressive Sensing Recovery Algorithms” section of [8]).

Although conceptually our method may use such solvers as black boxes, its
unique features allow us to apply critical modifications that not only accelerate
the iterative methods, but also make them feasible in large datasets problems
when N is large. In this work, we implemented a modified version of the TVAL3
solver [23], [37]. Our modified version utilizes the fact that in our special case
the matrix A is highly sparse. This is in complete contrast to the usual setup in
compressed sensing, where the theory typically promotes a dense matrix (usually
of pseudo-random nature). As we shall see in Section 3, in our case the sparsity
is due to the fact that each row of A is associated with an integration over a
digital line in the image and therefore a vector of ‘0’s and ‘1’s. The values ‘1’ are
located in entries associated with the pixels of the digital line and thus each row
in matrix A has ≤

√
2m =

√
2N non-zero entries. We note that even if we use

a more accurate model based interpolation, where the line is given some width
and then the result is a weighted sum of pixels, the matrix A would remain
sparse. This structure allows us to store, to adaptively update a sparse data
structure for A and to implement fast linear algebra operations. This idea is
not new to the CT community. Moreover, for practical clinical data sizes in 3D
helical uniform acquisition, the matrix A can be too large to hold in memory
and must be computed on the fly. Also, its form is carefully determined from
the geometry of the focal spots and detectors [11]. In this work we focus on the
2D model and in future work we plan to investigate whether in the 3D case our
smaller adaptive sampling set can be stored in memory or computed on the fly.

We now explain, for the sake of completeness, our modification of the TVAL3
algorithm. For the constrained optimization problem such as (1), there are a
number of methods that approach the original constrained problem by a se-
quence of unconstrained subproblems. One of them is the Quadratic Penalty
Method [9]. This method puts a quadratic penalty term instead of the con-
straint in the objective function where each penalty term is a square of the
constraint violation with multiplier. However, this method requires to increase
the multipliers to infinity so as to guarantee the convergence, which may cause
the ill-conditioning problem, numerically. Another method concerning the con-
strained optimization problem is the Augmented Lagrangian method [15] (an
augmented Lagrange method has been already used in CT reconstruction [32]).
According to this method, the corresponding Augmented Lagrangian of the left-
hand side minimization in (1), is given by

LA(w, u, v, λ, μ, ω) :=
∑N

s=1

(
‖ws‖1 − 〈vs, (Du)s − ws〉+ βs

2 ‖(Du)s − ws‖22)
)

−〈λt, Au− y〉+ μ
2 ‖Au− y‖22 ,

(2)
where ws, vs ∈ IR2, ‖ws‖1 := |ws (1)| + |ws (2)| , (Du)s := ∇Ui(s),j(s) , 1 ≤
s ≤ N , and the two vectors λ,v, are the Lagrangian multipliers. To solve (2),
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the following Alternating Direction scheme is used: Denote the approximate
minimizers of (2) at the kth inner iteration by w(k) and u(k). Then w(k+1)and
u(k+1) can be attained by solving two separated subproblems. The first is the
‘w-subproblem’:

w(k+1) = argminw LA(w, u
(k)) =∑N

s=1

(
‖ws‖1 −

〈
vs,
(
Du(k)

)
s
− ws

〉
+ βs

2

∥∥(Du(k))
s
− ws

∥∥2
2

)
.

(3)

Note that the ‘w-subproblem’ is separable with respect to each ws, 1 ≤ s ≤ N ,
and has a closed form solution [23]. The second subproblem, also known as the
‘u-subproblem’ is:

u(k+1) = argminu LA(w
(k+1), u) =∑N

s=1

(∥∥∥w(k+1)
s

∥∥∥
1
−
〈
vs, (Du)s − w

(k+1)
s

〉
+ βs

2

∥∥∥(Du)s − w
(k+1)
s

∥∥∥2
2

)
−〈λt, Au− y〉+ μ

2 ‖Au − y‖22 .

(4)

The ‘u-subproblem’ can be solved using a steepest decent method, but since
this might be too costly for large scale problem, an aggressive ‘one-step’ of the
steepest decent can be computed as an iteration (see the details in [23]). After
attaining w(k+1) and u(k+1), the multiplier updating is performed based on the
analysis of [18], [30]

v
(k+1)
s = v

(k)
s − ωs

((
Du(k+1)

)
s
− w

(k+1)
s

)
, 1 ≤ s ≤ N,

λ(k+1) = λ(k) − μ(Au(k+1) − y).

This second update step is exactly an example of where our modification ac-
celerates significantly the TV minimization, by either storing and applying the
matrix A in a sparse form or by computing and applying the sparse rows of A on

the fly. Finally, choose new penalty parameters ω
(k+1)
s ≥ ω

(k)
s and μ(k+1) ≥ μ(k).

The stopping criteria are one of the following:

(i) The quantities

∣∣∣∇LA(w
(k), u(k), v(k), λ(k), μ(k), ω(k))

∣∣∣ , N∑
s=1

∥∥∥(Du(k))
s
− w(k)

s

∥∥∥
2
,
∥∥∥Au(k) − y

∥∥∥
2
,

are sufficiently small.

(ii) The relative change
∥∥u(k+1) − u(k)

∥∥
2
, is sufficiently small.

Inside the main loop of the Alternating Direction scheme, the number of rows in
A is increased by a predetermined fixed constantM at each iteration (see Section
3), where the rows are projection lines determined from Ridgelet analysis of the
approximant of the image.
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2.2 Fundamentals of Ridgelet Theory

Let ζ ∈ L2 (IR) be a wavelet [24]. For the purpose of this paper it is sufficient
that the wavelet function has two properties: compact support and vanishing
moments. The latter implies that for some r ≥ 1,∫

IR

ζ (x)xldx = 0, l = 0, . . . , r − 1.

The classical example for a wavelet function is the Haar wavelet with one van-
ishing moment

ζ (x) :=

⎧⎨⎩
1, 0 ≤ x ≤ 1/2,

−1, 1/2 < x ≤ 1,
0, else.

(5)

A bivariate Ridgelet function [4], [14], is defined by

ζa,b,θ(x1, x2) := a−1/2ζ((x1 cos θ + x2 sin θ − b)/a),

where a, b and θ are the parameters determining the scale, transition and rotation
of the Ridgelet function, respectively (see Fig. 1).

Fig. 1. A Ridgelet function ψa,b,θ(x1, x2)

Given f ∈ L1

(
IR2
)
, its Continuous Ridgelet Transform (CRT) is defined by

CRTf(a, b, θ) :=

∫
IR2

ζa,b,θ(x)f(x)dx. (6)

The continuous Radon transform [19], [28] of a bivariate function f at direction
θ is defined as

Rf (θ, t) :=

∫
IR2

f(x1, x2)δ (x1 cos θ + x2 sin θ − t) dx1dx2, (7)
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where δ is the Dirac function. The Radon and the Ridgelet transforms are related
by

CRTf(a, b, θ) =

∫
IR

ζa,b(t)Rf (θ, t) dt, (8)

where ζa,b(x) := a−1/2ζ((x−b)/a). In applications, this means that the Ridgelet
transform can be computed by the application of the Radon transform at a given
angle, followed by 1D fast wavelet transform.

It is interesting to point out that Ridgelets [4] did not previously find too many
applications in image processing. Their ‘descendants’ Curvelets [5], [6] and Shear-
lets [21], [22], which capture directional information as well, were found to be
more useful due to their better time-frequency localization. In the context of CT
reconstruction, Curvelets have been used as a regularization tool [16]. However,
we find that Ridgelets are the right mathematical tool in the setup of Computed
Tomography, because the acquisition device is not able to capture through its
sampling process, well localized functionals such as Curvelet coefficients.

From approximation theoretical perspective, the mathematical foundation of
our adaptive algorithm follows the framework of characterizing the images by
the appropriate function smoothness spaces and then providing an estimate for
the order of convergence.

Definition 1. [4] For α > 0, and p, q > 0, we say that f ∈ Ṙα
p,q

(
IR2
)
, if

f ∈ L1

(
IR2
)
and

‖f‖Ṙα
p,q

:=

⎛⎝ ∞∑
j=−∞

2j(α+1/2)q

(
1

ξ

∫ π

0

∥∥CRTf (2j , ·, θ)∥∥pp dθ)q/p
⎞⎠1/q

< ∞.

We note that this definition requires certain conditions on the wavelet ζ. It is
sufficient to assume ζ is compactly supported, is in Cr and has r vanishing mo-
ments, with r > max (2/p, α+ 5/2). These conditions ensure that membership
in the smoothness space Ṙα

p,q does not depend on the particular wavelet used

in (6). A typical non trivial example for a function in Ṙα
p,q is a function with a

singularity along a line such as

f (x1, x2) = 1{x1>0} (x1, x2) (2ξ)
−1/2

e−(x
2
1+x2

2)/2.

This function is in the Besov class [12] Bα
1,1 only for α < 1, which means that

it almost has a first derivative in the classical sense. In contrast, this function
is contained in Ṙα

1,1, for any α < 3/2 [4], which implies that it is smoother in
the scale of Ridgelet spaces than in the scale of Classical Besov spaces. This is a
direct consequence of the fact that its singularity has simple lower dimensional
structure.

In this work we assume that the functions we analyze are compactly supported
in a ‘standard’ compact domain such as [−1, 1]

2
and attain the value zero on its

boundary. Indeed, CT images satisfy this requirement (see the examples below).

Therefore, by a simple zero extension argument, a function f ∈ L2

(
[−1, 1]

2
)
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of this nature can also be regarded as a function in L1

(
IR2
)
∩ L2

(
IR2
)
. By

sampling the CRT, one may obtain a discrete Ridgelet Frame system {ζγ} with

a dual system
{
ζ̃γ

}
, for a countable index {γ = (a, b, θ)}, such that for f ∈

L2

(
[−1, 1]2

)
,

f =
∑
γ

〈
f, ζ̃γ

〉
ζγ =

∑
γ

〈f, ζγ〉 ζ̃γ .

Recall, that the frame property guarantees ‘stability’ of the representation, in
the sense that there exist constants 0 < A ≤ B < ∞, such that

A ‖f‖22 ≤
∑
γ

|〈f, ζγ〉|2 ≤ B ‖f‖22 , ∀f ∈ L2

(
[−1, 1]

2
)
.

Let us rearrange the Ridgelet coefficients based on the size of their absolute
values

|〈f, ζγ1〉| ≥ |〈f, ζγ2〉| ≥ · · · ,
and denote the n-term adaptive approximation to f by

fn :=
n∑

i=1

〈f, ζγi〉 ζ̃γi .

Then, we have the Jackson-type estimate [4] for α > 1/2 and 1/τ = α− 1/2,

‖f − fn‖L2([−1,1]2) ≤ cn−α/2 ‖f‖Ṙα
τ,τ

.

Thus, under certain assumptions on the input function, not only is the conver-
gence of the adaptive approximation is ensured, but its rate is also estimated.
The outcome of the theory is that the approximation rate of an adaptive Ridgelet
approximation depends on the smoothness of the function in a given Ridgelet
smoothness space, much in the same manner that adaptive wavelet approxima-
tion is characterized by Besov space smoothness [12].

As we shall see in Section 3, our adaptive acquisition method relies on adap-
tive Ridgelet approximation to predict, at each iteration, the next significant
acquisition set.

3 Adaptive Tomography Acquisition

Before presenting the details of the algorithm, we first provide an instructive
and useful example: Assume we had access to an optimal ‘oracle’. We then ask,
how many line projections are needed as rows in the matrixA, such that the
‘Square’ image of Fig. 2 can be reconstructed with high precision, using the TV
functional (1)?

In fact, equipped with an ‘oracle’, this image can be reconstructed with ex-
tremely high quality, where the matrix A in (1) contains only 8 rows associated
with 8 line projections. Thus, the numbers of samples, satisfies n = 0.000122N ,



A Mathematical Model for Extremely Low Dose Adaptive CT Acquisition 21

Fig. 2. : ‘Square’ image of size 256× 256

which is a tiny fraction of the size of the image N = 256× 256. This is achieved
by selecting the unique four pairs of line projections that are the immediate
neighbors of each of the four lines associated with the edges of the white square.
Fig. 3 shows the locations of the line projections and the reconstructed image.

The moral of this example, which correlates well with the theory reviewed in
Section 2.2, is that during the acquisition process, we should try to adaptively
sample the line projections that are aligned and centered on the edges of the
image. Obviously, the image to be acquired is unknown and we do not have
access to an ‘oracle’. As we shall see in the next subsection, this is exactly where
the multiresolution nature of the Ridgelet model is useful.

Fig. 3. ‘Square’ image: On the left, the acquired 8 line projections (using an ‘ora-
cle’) and on the right, a reconstruction computed from the 8 projections using TV
minimization, PSNR=61.85dB

We now present in detail the steps of the algorithm. After initialization, at
the kth iteration, we have an adaptive sampling matrix A(k) whose last rows
are the new samples obtained at the previous step. We use A(k) to solve a TV
minimization problem and obtain the iterative approximation U (k).

3.1 Initialization

First, we create an initial sampling matrix A(0) by using a relatively very small
uniform set of line projections. The number of line projections is relative to the
image size. For example, in our experimental results, for images of size 256×256,
we measured 8 uniformly spaced line integrals at eight uniformly spaced angles,
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which gives a total of 64 initial measurements that are about 0.1% of the image
size. In Fig. 5(a), we see an illustration of this non-adaptive sampling pattern
for images of size 256× 256. We also initialize the current approximation to the
unknown image I with U (−1) = −∞ (e.g. each entry equal to −108).

3.2 TV Minimization Step

At the beginning of the kth iteration of our algorithm, we are equipped with the
sampling matrix A(k) whose last rows contain a subset of newly acquired samples
and the previous approximation U (k−1) as the initial guess. Therefore, we use
this updated matrix and proceed with a TV minimization step (1) to compute
U (k). Recall that in our setup, the sparse nature of A(k) allows us to achieve
this computation on large images by using a sparse representation of the matrix
A(k). Our modified TVAL algorithm (see Section 2.1) stores A(k) as a MATLAB
sparse matrix of Boolean values, which reduces significantly the memory access
overhead.

Here, we have an option to select a tradeoff between reconstruction qual-
ity and performance. We do not necessarily need to completely solve the TV
minimization problem by iterating an algorithm such as in Section 2.1 until it
converges. Instead, we may apply only a fixed and limited number of iterations of
the TV solver, or terminate the iterations using a less demanding stop criterion
and then proceed to the next step of the Ridgelet analysis. This will speed up the
algorithm, but in some cases, its effect on the next analysis step will imply that
we will need to acquire more line projections for the same reconstruction image
quality. In any case, our adaptive acquisition process terminates at an iteration
of this step if we obtain

∥∥U (k) − U (k−1)
∥∥
2
≤ ε, for some prescribed threshold ε.

3.3 Ridgelet Analysis Step

Now that we have, at the kth iteration, an improved approximation U (k) to I, we
compute a discrete set of its Ridgelet coefficients. Recall, that a Ridgelet trans-
form can be computed by the application of the Radon transform (7) followed
by a wavelet transform, as shown in (8). Since in our application, we only require
Ridgelets for analysis, we do not need to use an invertible transform as in [14],
which simplifies the implementation. In practice, we found out that if we chose
the number of angles to be a quarter of the image length, then our sampling
scheme is sufficiently dense for the purpose of our algorithm, but not too dense
so as to lead to subsequent unnecessary acquisition, as will become clear. Thus,
for an images of size 256×256, the allowable set of projection lines corresponds to
only 64 angles {0, ξ/64, ..., 63ξ/64}, with 256 line projections per direction. For
our experimental results, we computed Ridgelet coefficients using the univariate
discrete Haar wavelet (5). The discretization of angles is related to the scale
parameter of the Ridgelets, so as to avoid subsequent unnecessary acquisition.

Specifically, we calculate the Ridgelet coefficients α
(k)
a,b,θ :=

〈
U (k), ζa,b,θ

〉
, using

the Haar wavelet function ζa,b(x), with a = 2j, j = 0, ..., Jθ, where Jθ depends
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on the angle θ. The discrete sampling of the Ridgelet coefficients is controlled in
the following way:

Angle, 0 ≤ l < 8 Jθ

8lπ/64 3

(8l + 1) π/64 0

(8l + 2) π/64 1

(8l + 3) π/64 0

(8l + 4) π/64 2

(8l + 5) π/64 0

(8l + 6) π/64 1

(8l + 7) π/64 0

3.4 Adaptive Sampling of New Line Projections

Based upon the analysis of the Ridgelet coefficients {α(k)
a,b,θ}, computed at the

previous step, we make our decision on which new line projections are added to
A(k) as new rows to create the matrix A(k+1). Specifically, we chose these line
projections to be associated with the M coefficients with largest absolute values
that have not yet been marked as sampled by the algorithm. In our experiments,
we select M = 0.1n, which is a tenth of the image row size.

The goal of the line projections is to roughly approximate (6) where ζ is the
Haar wavelet. In Fig. 4 we see an illustration of a support of a Haar Ridgelet
function (outer dotted lines) and the associated two line projections (inner lines)
within its support that we compute on the unknown image .

Fig. 4. Line integrals acquired per a significant Ridgelet coefficient: The support of the
Ridgelet lies within the area bounded by the external dotted lines. The inner lines are
the sampled line projections.

Let us look closer at the implication of using only two line projections to
approximate the value of a Haar Ridgelet. Assume that the Ridgelet coefficient

α
(k)
a,b,θ =

〈
U (k), ζa,b,θ

〉
has not been marked as sampled yet, but is significant

enough to be sampled at the current iteration. Let RI (θ, ·) be the Radon trans-
form of the unknown image I at the fixed angle θ. In such a case, the two values
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of the line projections that we acquire are RI (θ, b+ a/4) and RI (θ, b+ 3a/4).
These values should be considered as the approximation

a−1/2 (RI (θ, b+ a/4)−RI (θ, b+ 3a/4)) ≈ CRTI (a, b, θ) .

We summarize the adaptive acquisition algorithm by ‘pseudo-code’:

1. Initialize the approximated image U (−1) with entries corresponding to −∞
(e.g. −108) . Obtain initial small number of line projection samples deter-
mined by a ‘uniform’ sampling matrix A(0).

2. For k = 0, 1, . . . Iterate:
(a) Compute U (k) using A(k) by solving (1).
(b) If

∥∥U (k) − U (k−1)
∥∥
2
≤ ε, go to step 3.

(c) Apply Ridgelet analysis on U (k) to obtain next set of Mnew candidate
projection lines.

(d) Sample the (unknown) image I at the new M projection lines.
(e) Add the new projection lines to the matrix A(k) to create an updated

sampling matrix A(k+1).
3. Output the most updated approximated image U (k).

3.5 Analysis and Examples

In Fig. 5, we see a few iterations of the adaptive acquisition algorithm on the
Ellipse image. We see in (a) the small number of uniform, non-adaptive line
projection measurements that are used for the initialization step. In (b) we see
the reconstructed approximation U (0). In (c), we show the new set of line pro-
jections that were determined by the Ridgelet analysis on U (0), to be the most
significant. The next subfigures show further iterations of newly acquired line
projections associated with the next unsampled M largest Ridgelet coefficients
and then the approximations U (k) produced by solving the TV functional after
adding these new samples as last rows of A(k). Note that the algorithm quickly
identifies the edges of the ellipse and only takes line measurements that are
aligned with them, where more samples are taken along the longer axis first.
Moreover, initially, when the approximation U (k) is still blurry, the algorithm
finds through the Ridgelet analysis that it should first acquire line projections
associated with low resolution Ridgelet coefficients. Only after the approxima-
tion contains sufficiently sharp edges, higher scale Ridgelet coefficients become
significant and the line projections associated with them are acquired. In sum-
mary, the algorithm attempts to acquire only line projections around and aligned
with edge singularities and ordered by scale.

Next, we demonstrate the effectiveness of the estimate for the significant
Ridgelet coefficients of the unknown image. The test is conducted on the well-
known 256×256 CT Zubal Head test image [38]. To this end, we use the standard
Peak Signal to Noise Ratio (PSNR), measured in dB, to quantify an approxima-
tion Ĩ to the image I where the images pixels take values in [0, 1],

PSNR
(
I, Ĩ
)
:= 10 log10

1

1
N

∑
i,j

∣∣∣Ii,j − Ĩi,j

∣∣∣2 . (9)
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Fig. 5. Adaptive acquisition of the Ellipse image: Iterations of newly added projection
lines and approximations U (k)

In Fig. 6, we show a graph with number of line projections used by the adaptive
algorithm and the PSNR obtained. We compare the performance of our adap-
tive algorithm with the performance of a benchmark method that uses Ridgelet
analysis of the actual real image instead of using the Ridgelet analysis performed
on the iterated image. We see that despite of not having the true image available
at the time of acquisition, our algorithm manages to perform almost as well as
an algorithm equipped with an ‘oracle’ that uses the Ridgelet analysis of the
true image. In general, this property of the algorithm depends on the size M of
the set newly sampled projection lines at each iteration. That is, the algorithm
manages to trace and collect more accurately the significant line projections as-
sociated with the largest Ridgelet coefficients of the real image, if it runs in more
iterations, adding each time a small set of new line projections.

We also see (Fig. 7) that the algorithm obtained perfect reconstruction using
3834 line projections. In standard CT acquisition models, 256 line projections
are acquired at 256 orientations, a total of 65,536 line projections. In comparison,
our algorithm achieves perfect reconstruction using about 6% of that total.
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Fig. 6. Results of the adaptive algorithm on the Zubal Head. ATA - performance of
the algorithm. ATA (oracle)- performance of the algorithm equipped with an ‘oracle’
(i.e. Ridgelet analysis of true image). PSNR=100 is actually a graphical cut-off line of
perfect reconstruction (PSNR=∞). NAS - Non Adaptive Equally Spaced acquisition.
NAF - Non Adaptive Uniform Fourier acqusition (See Section 4)

Under the assumption that the algorithm manages to almost accurately iden-
tify the most significant Ridgelet coefficients using only the approximate iterated
image, we may analyze the rate of convergence using the theory discussed in Sec-
tion 2.2. Observe that a function belongs to the Radon ‘smoothness’ space of
Definition 1, with a high value of ‘smoothness’ index α, if it has ‘sparse’ direc-
tional information, which decreases sufficiently fast as a = 2j is smaller. As an
example, consider ‘cartoon’ functions which are piecewise constants over polyg-
onal domains. At a fixed angle θ, the Radon transform Rf (θ, t) is a simple
piecewise linear function of the variable t, with compact support and a bounded
number of discontinuities, depending of the number of segments in the polygonal
boundary. Assume the wavelet ζ has at least two vanishing moments, then for
small values of a in (8), the Ridgelet transform CRTf (a, b, θ) will be non-zero
only in segments of total length ≤ ca, where c is an absolute constant depending
on the choice of ζ and the geometry of the polygonal boundary. Therefore, in the
p-norm, for a = 2j, j < 0, we get an estimate

∥∥CRTf (2j , ·, θ)∥∥pp ≤ c (f, ζ, p) 2j/2.

This implies that f ∈ Ṙα
p,q

(
IR2
)
, for any ‘smoothness’ α > 0. Therefore, from

the Jackson estimate we may conclude that the adaptive algorithm will con-
verge for these simple prototype functions at the rate n−α/2 for any α > 0,
which matches the perfect reconstruction results we obtain for these functions
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Fig. 7. Perfect reconstruction of the Zubal Head from 3834 adaptive line projections

in this work. For more complex images, the convergence analysis is similar, but
more involved. One needs to estimate the Radon smoothness of the function in
order to understand the rate of convergence. This type of analysis of adaptive
methods has been carried out for wavelet image compression by characterizing
images as functions in Besov spaces [13].

4 Experimental Results

In this section we compare our adaptive approach with standard non-adaptive
methods. We show that for a given number of projection lines measured on the
unknown image I, our adaptive method provides a significantly better approx-
imation to I. To this end, given an m × m image, we prescribe a target of n
samples. Denote d = n/m (assuming n mod m = 0). We compare four acquisi-
tion and reconstruction methods:

1. Filtered Back Projection (FBP): For the FBP method we sample 60 × m
line projections (regardless of the target limit), which are m equally spaced
line integrals over the angles 0, ξ/60, ..., 59ξ/60. We then used the MATLAB
implementation (’iradon’) to obtain an approximate image.

2. Non Adaptive Equally Spaced (NAS): We use equally spaced rotations and a
fixed number of line integrals at each angle such that the total number of line
integrals matched the prescribed budget. We then applied TV minimization
to this sampled data. Specifically, m/2 (equally spaced) line projections are
acquired over the angles 0, ξ/2d, 2ξ/2d, ..., (2d− 1)ξ/2d.

3. Non Adaptive Uniform Fourier (NAF): This method is used in [7]. It is
mathematically equivalent to NAS, but produces slightly different results in
digital implementation. In this mode, we uniformly select lines in the Fourier
domain of the image and use Fourier coefficients on these lines as the entries
of the sampling matrix A. Specifically, m Fourier coefficients were taken on
the lines associated with the angles 0, ξ/d, 2ξ/d, ..., (d− 1)ξ/d.
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(a) ATA (b) NAS (c) NAF (d) FBP

Fig. 8. Non-adaptive and adaptive acquisition on the 256 × 256 6-Ellipse image. (a)
ATA. 971 line projections. Perfect reconstruction. (b) NAS. 1024 line projections.
PSNR=29.73 dB. (c) NAF. 1024 line projections. PSNR=21.93 dB. (d) FBP. 5120
line projections. PSNR=19.64 dB.

(a) ATA (b) NAS (c) NAF (d) FBP

Fig. 9. Non-adaptive and adaptive acquisition on the 256 × 256 Shepp-Logan image.
(a) ATA. 1630 line projections. Perfect reconstruction. (b) NAS. 1792 line projections.
PSNR=26.44 dB. (c) NAF. 1792 line projections. PSNR=19.53 dB. (d) FBP. 5120 line
projections. PSNR=18.04 dB.

4. Adaptive Tomography Acquisition (ATA): Our proposed adaptive method.
Line projections were acquired adaptively as described in Section 3.

For the first set of noise-free phantom test images, we used in the iterations the
left-hand side constraint in (1), Au = y, so that our solutions satisfy the sampling
equations exactly. We see below results on well-known tests image. In Fig. 8 we
see that for an equivalent number of line projections, our adaptive algorithm
achieves prefect reconstruction while the uniform limited angle, non-adaptive
acquisition algorithms, equipped with the same TV minimization solver achieve
significantly lower image quality. Similar results are shown in Fig. 9 for the
‘Shepp-Logan’ phantom (see also the graphs in Fig. 10) and for the ‘Zubal Head’
in Fig. 11. We note that currently the running times of the adaptive acquisition
Matlab simulations are about 7-10 times slower than the non-adaptive for the
same number of line projections. This relates to the choice of M , the number
of new line projections introduced at each iteration. So, for a given number of
line projections n, the choice M = 0.1n, yields about 10 iterations, where the
matrix A(k) contains about 0.1kn, k = 1, . . . , 10, rows. Solving these iterations
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Fig. 10. Comparison of the adaptive acquisition algorithm (ATA) vs. the limited angle,
non-adaptive methods of NAS and NAF on the Shepp-Logan image. PSNR=100 is
actually a graphical cut-off line of perfect reconstruction (PSNR=∞).

(a) ATA (b) NAS (c) NAF (d) FBP

Fig. 11. Non-adaptive and adaptive acquisition on the 256 × 256 Zubal-Head. (a)
ATA. 3834 line projections. Perfect reconstruction. (b) NAS. 4096 line projections.
PSNR=31.16 dB. (c) NAF. 4096 line projections. PSNR=33.31 dB. (d) FBP. 5120 line
projections. PSNR=17.67 dB.

is about 5.5 slower than solving the TV-minimization of order n only once. The
rest of the running time of the adaptive method is spent on the Ridgelet analysis
computations that are performed at each iteration.

Next, we show results with simulated low dose as in [10]. For a selected pa-
rameter of incident photon count γI , the simulated detected photon counts γ̃,
were chosen as Poisson distributed random variables with mean equal to γIe

−p,
where p is a noiseless line projection. The simulated noisy projection, p̃, is then
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(a) ATA (b) NAS (c) ATA (d) NAS

Fig. 12. Reconstruction from simulated incident photon counts (a) ATA. γI =
1, 000, 000. 3834 projection lines. PSNR=33.44 dB.(b) NAS. γI = 1, 000, 000. 4096
projection lines. PSNR=29.26 dB. (c) ATA. γI = 250, 000. 1630 projection lines.
PSNR=37.58 dB. (d) NAS. γI = 250, 000. 1792 projection lines. PSNR=25.30 dB.

Fig. 13. Graph plot for Shepp-Logan with different simulated incident photon counts

determined by p̃ = − log (γ̃/γI). This time, in our iterations, we used the right-
hand side constraint in (1), which provides better regularity for noisy data. In
Fig. 12 we see a comparison of adaptive and limited angle (non-adaptive) acqui-
sitions using dose simulations. We see that the image quality of our adaptive is
clearly higher for the same number of line integrals. In Fig. 13, we see a plot of
the reconstructions at various levels of simulated dose levels.
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5 Conclusion and Future Work

In this paper we proposed a mathematical model for adaptive Computed To-
mography acquisition whose theoretical goal is to radically reduce dosage levels.
We presented numerical simulations that demonstrate the potential of the math-
ematical model of adaptive acquisition and compared our results to the state of
the art non adaptive ones.

Our future research will focus on creating more realistic simulations to CT
acquisition. We plan to enhance our algorithm to perform well on more realis-
tic images and model more accurately adaptive low-dose radiation, beyond the
simplistic model of the total number of line projections. The dose in a CT scan
depends on the machine’s flux intensity, with lower flux intensity implying lower
dose, but higher Poisson-type noise in the detected measurements. We also plan
to simulate true 3D scanning and add motion correction.

Lastly, in our work we used a form of the TVAL solver [37], adapted to our
problem. It should be very interesting to test other TV solvers such as [25] and
see if they (or a modified version of them) are better suited to the adaptive
scheme.
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Abstract. In this paper, we present a modified method for the computation of
approximate rational parameterizations of implicitly given canal surfaces. The
designed algorithm, which improves and completes a recent approach from [1],
is mainly suitable for implicit blend surfaces of the canal-surface-type. Its main
advantage is that it produces rational parameterizations of low bidegree (7, 2).
A distinguished feature of our approach is a combination of symbolic and numer-
ical techniques yielding approximate topology-based cubic parameterizations of
contour curves which are then applied to compute an approximate parameteriza-
tion of the given canal surface.

1 Introduction

Blending is one of the most important operations in Computer-Aided (Geometric) De-
sign. The main purpose of this operation is to generate one or more surfaces that create
a smooth joint between the given shapes. Blending surfaces are necessary for rounding
edges and corners of mechanical parts, or for smooth connection of separated objects.
Thanks to its practical importance, blending has become an active research area in re-
cent years. For overview of several blending techniques see e.g. [2,3,4] and references
therein.

The existing approaches to the operation of blending are classified according to the
type of surfaces which are used. In what follows, we would like to focus only on the
implicit blend surfaces, offering a sufficient flexibility for designing blends. Important
contributions for blending by implicitly given surfaces can be found in [5,6,7]. Several
methods for constructing implicit blends were thoroughly investigated in [8,9,10,11].

In this paper, we will deal with the cases when implicit canal surfaces are used for
the construction of a smooth transition between the primary shapes. Canal surfaces are
defined as envelopes of one parameter families of spheres in 3-space, [1,12,13,14,15].
A special subclass of the canal surfaces are Dupin cyclides which can be defined as the
envelopes of all spheres that touch three given spheres, see [16,17,18]. Cyclide blends
between two cones were analysed in [19]. By generalizing the constructions of biarcs
to Laguerre geometry it was presented how to construct blends between general canal
surfaces using double-cyclide surfaces in [20].
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Generating shapes description in NURBS form has become a universal standard in
technical applications since many years. However an exact rational parameterization
does not exist for an arbitrary algebraic surface. Hence, suitable techniques producing
(only) approximate parameterizations are often used to avoid these problems. The main
aim of this paper is to show how to compute an approximate parameterization of the
canal surface S given implicitly by the irreducible polynomial f(x, y, z) obtained as
a result of some blending technique. And as our approach yields ‘only’ approximate
parameterizations, it can also be used for blends not being canal surfaces exactly but
only approximately.

The technique presented in this paper improves the method introduced in [1], where
an efficient algorithm for computing approximate parameterizations of canal surfaces
was presented and studied. A main feature of the designed approach was a combination
of symbolic and numerical techniques yielding approximate topology based parameter-
izations of contour curves, see [21], which are then applied to compute an approximate
parameterization of the given canal surface. In what follows, we will suggest how to
overcome the main drawback of the original method, i.e., a high rational bidegree of the
obtained parameterization. Approximate rational canal surfaces obtained by the modi-
fied method from this paper possess bidegree (7, 2). This is caused by the quality of the
obtained m(t) which is now polynomial and cubic (in the original paper it was rational
of degree 7).

The remainder of this paper is organized as follows. The next section summarizes
several elementary facts concerning the canal surfaces, the critical points of algebraic
curves and approximate parameterization techniques. Section 3 is devoted to the param-
eterization algorithm which produces an approximate parameterization of a given canal
surface. After presenting some examples in Section 4, which illustrate the functionality
of the designed method, we conclude this paper.

2 Preliminaries

A canal surface S is the envelope of the 1-parameter family of spheres whose centers
trace the curve m(t) in R3 and possess the radii r(t), i.e.,

F (t) =
∥∥(x, y, z)� −m(t)

∥∥2 − r(t)2 = 0. (1)

The curvem(t) is called the spine curve and r(t) the radius function of S. The defining
equations for the canal surface S are

F (t) = 0, F ′(t) = 0, (2)

where F ′ is the derivative of F with respect to t. By eliminating the parameter t from
(2) we arrive at the corresponding implicit equation f(x, y, z) = 0 of S. The equa-
tion F ′(t) = 0 describes the plane perpendicular to the derivative vector m′(t). Thus
the canal surface S contains a one parameter set of the so called characteristic circles
F (t) ∩ F ′(t), see Fig. 1. The envelope is real iff the condition ‖m′(t)‖ ≥ ‖r′(t)‖ is
fulfilled.



36 M. Bizzarri and M. Lávička

Fig. 1. A characteristic circle (black) of a canal surface

As proved in [13,14], any canal surface with a rational spine curve and a rational ra-
dius function possesses a rational parameterization. Later, a new method to study canal
surfaces represented by rational or polynomial data using the technique of Pythagorean
hodograph curves in the 4-dimensional Minkowski space was presented in [22,23].
Minimal rational parameterizations of canal surfaces were studied in [15].

The algorithm for computing parameterization of a canal surface S used in this paper
(and also in [1,24]) is based on rotating a curve c(t) of S (different from the characteris-
tic circles) around the tangents of the spine curve m(t). We obtain the parameterization
of S in the form

s(t, u)=m(t) +
(χ(u)+m′(t))υ(c(t)−m(t))υ(χ(u)−m′(t))

(χ(u)+m′(t))υ(χ(u)−m′(t))
, (3)

where χ(u), u ∈ R, is a rational function, the sums χ(u)±m′(t) of scalars and vectors
are considered as quaternions, and υ is the operation of quaternion multiplication

(a+ a) υ (b+ b) = ab− a · b+ ab+ ba+ a× b, (4)

see [25,26] for more details about quaternions. Any rational choice of χ(u) yields the ra-
tional parameterization of a canal surface – for the sake simplicity we choose χ(u) = u
for the low rational degree of s(t, u) in u, and χ(u) = 2u/(1 − u2) for a relatively
uniform distribution of the t-parameter lines.

Let us emphasize that when using the spine curve and another curve for computing
the rational parameterization of S, we have to guarantee that their parameterizations
are closely related. We say that the curve c(t) corresponds in parameter with the given
curve m(t) in the interval I if it holds

c′(t) · (c(t) −m(t)) = 0, for all t ∈ I. (5)

Hence, considering the spine curve m(t) and one curve c(t) on a given canal surface S
which are corresponding in parameter we have ensured that the point c(t0) lies at the
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z

Fig. 2. z-contour curve (blue) together with its normal vectors on a canal surface

characteristic circle of S corresponding to the sphere centered at m(t0) and with the
radius r(t0), for all t0 ∈ I .

Next, we can define by analogy a correspondence in parameter for two arbitrary
curves c1(t) and c2(t) (different from the characteristic circles) on a canal surface S.
We say that c1(t) and c2(t) correspond in parameter in the interval I if the points
c1(t0) and c2(t0) lie on the same characteristic circle of S for all t0 ∈ I . The points
c1(t0) and c2(t0) are then called the associated foot points.

A prominent role among all curves on a given canal surface is played by the so called
contour curves since the computation process becomes considerably simpler as we will
see. An x-, y-, z-contour curve Cx, Cy , Cz of the canal surface S is the curve consisting
of all the points at which the normals of S are orthogonal to the x-, y-, z-axis. Then,
the x-contour curve Cx is determined by

f(x, y, z) =
∂f(x, y, z)

∂x
= 0 (6)

and it is composed of two branches denoted by C+
x and C−

x . Analogously, we can com-
pute the y- and z-contour curves Cy and Cz . Fig. 2 shows a canal surface with a z-
contour curve.

Remark 1. The x-contour curves are given by (6) (and analogous expressions for Cy
and Cz), i.e., we consider them as the complete intersections of two algebraic surfaces.
So we use the methods of algebraic geometry which work over an algebraically closed
field (e.g. the field of complex numbersC). However, problems originating in geometric
modelling work especially over the reals. From this reason, in what follows we will
consider only real branches of the contour curves (which, of course, do not have to exist
for the chosen part of the canal surface). This is a limitation of the designed method.
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One can easily prove the following useful property of contour curves, see Proposition
3.1 in [1]. Consider the spine curve m(t) = (m1(t),m2(t),m3(t))

� and the contour
curves with parameterizations cx(t) = (c1x, c

2
x, c

3
x)

�(t), cy(t) = (c1y, c
2
y, c

3
y)

�(t) and
cz(t) = (c1z, c

2
z , c

3
z)

�(t) (all of them are corresponding in parameter in the interval I).
Then it holds

m1(t) = c1x(t) m2(t) = c2y(t) m3(t) = c3z(t) for all t ∈ I. (7)

In [1] the method for computing approximate parameterizations of implicitly given
canal surface S was introduced. The algorithm starts with computing an approximate
parameterization c+z (t) of one branch of the z-contour curve. The computation of c+z (t)
is based on computing the graph of critical points G(C+

z ) of C+
z and afterwards re-

placing the edges of G(C+
z ) by Ferguson’s cubic guaranteeing C1/G1 continuity, see

[21,27] for more details. This step is formulated as an optimization problem when the
objective function approximates the integral of the squared Euclidean distance of the
constructed approximate curve to the implicitly given contour curve. Next the param-
eterization c−z (t) of the second real branch C−

z of Cz approximately corresponding in
parameter with c+z (t) is analogously computed. From c+z (t) and c−z (t) the approxi-
mate parameterization m(t) of the spine curve M of S is reconstructed. Finally rotat-
ing c+z (t) around the tangents of m(t) yields the parameterization s(u, t) of the canal
surface S, cf. (3).

Although the method from [1] is efficient, its main drawback lies in the fact that it
produces parameterizations with high rational bidegree. This is caused by the quality
of m(t) which is rational of degree 7. In this paper we improve the original technique
such that m(t) will be polynomial and cubic.

3 The Parameterization Algorithm

In this section we design a method yielding the polynomial cubic approximations (cor-
responding in parameter) of contour and spine curves of implicitly given canal surface
S. Then, they will be used for computing an approximate parameterization of S having
the rational degree [7, 4] in t and [2, 2] in u.

The idea of the method is based on the property (7). In particular when the parameter-
izations cx(t) = (c1x, c

2
x, c

3
x)

�(t), cy(t) = (c1y, c
2
y, c

3
y)

�(t) and cz(t) = (c1z , c
2
z, c

3
z)

�(t)
(corresponding in parameter) of contour curves Cx, Cy and Cz are known, then we can
easily arrive at the parameteric description of the spine curve

m(t) =
(
c1x(t), c

2
y(t), c

3
z(t)
)�

. (8)

Thus the problem of computing the approximation m(t) of the spine curve of a given
canal surface is reduced to the problem of computing approximate parameterizations
of the particular branches of contour curves, e.g. C+

x , C+
y and C+

z . Moreover m(t) is
polynomial if c+x (t), c

+
y (t) and c+z (t) are polynomial and it has the degree which is

equal to the maximum of the degrees of c1x(t), c
2
y(t), c

3
z(t).

We proceed analogously as in Section 3.5 in [1]. First we construct the graphs of the
critical points G(Cx), G(Cy) and G(Cz) of the contour curves Cx, Cy and Cz , respec-
tively, such that each graph will contain the critical points of the corresponding contour
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Fig. 3. One branch from each constructed graph of critical points of contour curves

curve and the foot points associated with the critical points of the two other contour
curves as its vertices. The algorithm for constructing the graph of critical points having
in addition some prescribed points as its vertices is described in Procedure 2 in [1].
In what follows it is sufficient to use only one branch from each constructed graph of
critical points – in particular, we will use G(C+

x ), G(C+
y ) and G(C+

z ).
Since the considered contour curves are related to canal surfaces originating in tech-

nical applications (i.e., with non-complicated topology), the individual graphs are the
paths only. Thus, we can consider that G(C+

x ) is composed of the path p1, . . . ,pk,
G(C+

y ) of the path q1, . . . ,qk, and G(C+
z ) of the path r1, . . . , rk and being simultane-

ously satisfied that pi,qi and ri are the associated foot points, see Fig. 3 for a particular
example of the constructed graphs of critical points.

Remark 2. When reducing the graphs G(Cx), G(Cy), G(Cz) to G(C+
x ), G(C+

y ), G(C+
z )

it is convenient to omit from our further considerations the vertices which appeared in
G(Cx), G(Cy), G(Cz) as the foot points associated to the critical points of C−

x , C−
y , C−

z .

Our goal is to replace the edgespi,pi+1 ∈ G(C+
x ), qi,qi+1 ∈ G(C+

y ) and ri, ri+1 ∈
G(C+

z ) by suitable Ferguson’s cubics fi(t), gi(t) and hi(t), respectively, such that fi(t)
is an approximate parameterization of the corresponding segment of C+

x , gi(t) of C+
y ,

hi(t) of C+
z and fi(t), gi(t) and hi(t) approximately correspond in parameter. This step

will be formulated as an optimization process – when interpolating points pi, pi+1 and
normalized tangent vectors tpi , tpi+1 at these points. We set the lengths of the tangent
vectors at pi, pi+1 (input data to interpolation step) as free parameters α1

i and α2
i , i.e.,

fi(t, α
1
i , α

2
i ) = piF0 + pi+1F1 + α1

i tpiF2 + α2
i tpi+1F3, (9)

where Fi are the standard cubic Hermite polynomials. By analogy we consider
gi(t, ω

1
i , ω

2
i ) and hi(t, γ

1
i , γ

2
i ). Now, we need to find such particular values of

α1
i , α

2
i , ω

1
i , ω

2
i , γ

1
i , γ

2
i that the corresponding parameterizations will approximate the

contour curves and simultaneously be approximately corresponding in parameter.
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As a function which measures the deviation of the approximate parameterization
f(t), t ∈ [0, 1] from their exact implicit representation f = g = 0 we use the function
(11) from [1] , i.e.,

Φ(f, g, f) =

∫ 1

0

(
f2(f(t))

‖∇f(f(t))‖2 +
g2(f(t))

‖∇g(f(t)))‖2

)
dt. (10)

For our purposes, we construct

Φ1(α1, α2) = Φ(f, fx, f), Φ2(ω1, ω2) = Φ(f, fy,g), Φ3(γ1, γ2) = Φ(f, fz,h),
(11)

where fx, fy, fz denote the partial derivatives of f with respect to x, y, z, respectively.
In addition, we need a function measuring the deviance of the correspondence in

parameter of the parameterizations f(t), g(t) and h(t). The function responsible for
the deviance of the correspondence in parameter of the curves f(t) and g(t) lying on a
canal surface S defined by the polynomial f(x, y, z) will be taken as the distance of the
intersection points of the normal lines of S at f(t) and g(t) with the bisector plane of
f(t) and g(t), respectively. In particular we start with constructing the normal lines of
S at f(t) and g(t), i.e.,

nf = f + s1∇f(f) and ng = g + s2∇f(g), s1, s2 ∈ R. (12)

The intersection points x1 and x2 of nf and ng with the bisector plane

(f − g) · f + g

2
− (f − g) · x = 0, (13)

where x = (x, y, z)� will be of the form

x1 = f +
(f − g) · (f − g)∇f(f)

2(g− f) · ∇f(f) and x2 = g+
(f − g) · (f − g)∇f(g)

2(f − g) · ∇f(g) . (14)

Hence the objective function measuring the deviance in parameter is as follows

Ψ(f ,g, f) =

∫ 1

0

‖x1 − x2‖2 dt. (15)

Thus we arrive at two further objective functions:

Ψ1(α1, α2, ω1, ω2) = Ψ(f ,g, f), Ψ2(α1, α2, γ1, γ2) = Ψ(f ,h, f). (16)

To sum up, the global objective function will be of the form

Υ (α1
i , α

2
i , ω

1
i , ω

2
i , γ

1
i , γ

2
i ) = w1(Φ1 + Φ2 + Φ3) + w2(Ψ1 + Ψ2) (17)

for some weights wi (in all presented examples in Section 4 we have chosen w1 =
w2 = 1). In order to minimize Υ we used Newton iteration process since it allows us
handle the integral, however any other optimization method could be used instead –
for example it is acceptable to use Newton-Cotes integration formulas to dispose of the
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integral and afterwards minimize the function by an arbitrary optimization method. The
whole method for computing approximate parameterizations of implicitly given canal
surfaces is summarized in Algorithm 1.

Algorithm 1. Approximate parameterization of implicitly defined canal surface

INPUT: Defining polynomial f(x, y, z) of a canal surface S .

1: For each contour curve Cx, Cy and Cz compute its critical points and the foot points associated
to the critical points of two remaining contour curves;

2: Construct graphs G(Cx), G(Cy) and G(Cz) of critical points having the critical and its asso-
ciated foot points as its vertices;

3: Reduce the computed graphs to G(C+
x ), G(C+

y ) and G(C+
z ) only, i.e., consider the graphs

reflecting only one of the two branches for each contour curve. Each graph is composed of
k − 1 edges (k vertices);

4: for each i = 1, . . . , k − 1 do
5: Construct Ferguson’s cubic fi(t, α

1
i , α

2
i ) matching the points pi,pi+1 (the vertices of

the i-th edge of G(C+
x )) and the tangent vectors α1

i tpi , α
2
i tpi+1 (the tangent vectors of

C+
x at pi,pi+1, respectively);

6: Construct Ferguson’s cubic gi(t, β
1
i , β

2
i ) matching the points qi,qi+1 (the vertices of

the i-th edge of G(C+
y )) and the tangent vectors β1

i tqi , β
2
i tqi+1 (the tangent vectors of

C+
y at qi,qi+1, respectively);

7: Construct Ferguson’s cubic hi(t, γ
1
i , γ

2
i ) matching the points ri, ri+1 (the vertices of

the i-th edge of G(C+
z )) and the tangent vectors γ1

i tri , γ
2
i tri+1 (the tangent vectors of

C+
z at ri, ri+1, respectively);

8: Minimize the objective function Υ (α1
i , α

2
i , β

1
i , β

2
i , γ

1
i , γ

2
i ) to get the particular lengths

α1
i , α

2
i , β

1
i , β

2
i , γ

1
i , γ

2
i of the tangent vectors tpi , tpi+1 , tqi , tqi+1 , tri , tri+1 , respec-

tively, and obtain the cubics f(t),g(t) and h(t) approximating the contour curves;
9: Reconstruct the approximation of the spine curve of S in the form mi(t) =

(f1
i (t), g

2
i (t), h

3
i (t))

�, where t ∈ [0, 1];
10: Rotate fi(t) around the tangents of mi(t) using (3). This process yields the approximate

parameterization si(t, u) of the corresponding part of S ;
11: Compute the deviance di of the approximate parameterization si(t, u) from the implicit

equation f(x, y, z) = 0;
12: end for

OUTPUT: The piecewise approximate parameterization s1(t, u), . . . , sk−1(t, u), where
(t, u) ∈ [0, 1]× R such that the pieces si(t, u) have the deviance from f equal to di.

Remark 3. Instead of minimizing the objective function Υ (α1
i , α

2
i , ω

1
i , ω

2
i , γ

1
i , γ

2
i ), one

can firstly compute an approximate parameterization f(t) of C+
x and then construct two

new objective functions considering the other contour curves C+
y and C+

z . Thus, we have
altogether three objective functions, the first one is

Υ1(α1, α2) = Φ(f, fx, f). (18)

Hence after minimizing Υ1(α1, α2) the approximation f(t) = f(t, α1, α2) of C+
x is

computed and we formulate another two objective functions concerning C+
y and C+

z :

Υ2(ω1, ω2) = Φ(f, fy,g) + Ψ(f ,g, f), (19)
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and
Υ3(γ1, γ2) = Φ(f, fz,h) + Ψ(f ,h, f). (20)

The objective functions Υ1, Υ2 and Υ3 can be minimized separately, which is less com-
plicated since we minimize (integrate/evaluate) less complicated functions having only
two variables. On the other hand when computing the “fixed” parameterization f(t) first,
the error is slightly bigger – our tests have shown that the error rises approximately ten
times when using the simplified approach.

The deviance di of the approximately parameterized surface si(t, u) from the im-
plicitly given surface f(x, y, z) = 0 (step 11 in Algorithm 1) can be computed by the
following integral, see (24) in [1]

di =

∫ ∞

−∞

(∫ 1

0

f2(si(t, u))

‖∇f(si(t, u))‖2
dt

)
du. (21)

Remark 4. Algorithm 1 can be easily modified to perform the adaptive refinement sim-
ilarly to the method presented in [1]. It is enough to increase the number of the edges
of the constructed graphs when needed.

The most difficult part of Algorithm 1 consists in step 1. Firstly, the critical points of
the contour curves need to be computed. The x-critical points of the curve C defined by
f = g = 0 can be computed by solving the following system of equations:

f = g =
∂f

∂y
· ∂g
∂z

− ∂f

∂z
· ∂g
∂y

= 0. (22)

The y- and z-critical points of C are computed analogously, see [27,21] for more details.
Secondly, for each critical point the associated foot points have to be computed. Let us
consider that the point p1 ∈ C+

x is known. We shall find points p2 ∈ C−
x , q1,q2 ∈ Cy

and r1, r2 ∈ Cz such that p1,p2,q1,q2, r1, r2 are the associated foot points, i.e., they
lie on the same characteristic circle. Clearly, the associated foot point p2 has the same
x-coordinate p11 as p1. Thus we arrive at the points p1

2, . . . ,p
s
2 by intersecting the curve

Cx with the plane x = p11; in particular we solve the system of non-linear equations

f(x, y, z) =
∂f(x, y, z)

∂x
= x− p11 = 0. (23)

Now, we have to choose the right point p2 = pi
2 from the set of points p1

2, . . . ,p
s
2. For

this we use the fact that the normal lines of S at the points p1 and p2 have to intersect
at the point m such that ‖p1 −m‖ = ‖p2 −m‖.

Thus, we have the points p1 ∈ C+
x and p2 ∈ C−

x , i.e., the points lying on the same
characteristic circle. By cutting the remaining critical curves Cy and Cz by the planes
y = m2 and z = m3 (m = (m1,m2,m3)

� is the intersection point of the normal lines
of S at the points p1 and p2) we arrive at the associated foot points q1,q2 ∈ Cy and
r1, r2 ∈ Cz , respectively. Finally, as in the previous step the “right” points need to be
chosen as the points having the same distance from m as p1 and p2 have and all six lie
in the same plane.
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Remark 5. The only time-consuming parts of the presented algorithm (the same situa-
tion as for the method from [1]) inhere in the following steps: 1) The computation of
the critical points (and the points on the contour curves corresponding to the critical
points) which (in more complicated cases) have to be computed “only” numerically
as the solution of the system of non-linear equations. 2) The optimization process, in
which one has to (numerically) integrate and evaluate relatively complicated functions.
Nevertheless, all presented examples were computed in seconds.

Proposition 1. Algorithm 1 yields a G1 continuous rational parameterization of the
maximal rational degree [7, 4] in t and [2, 2] in u.

Proof. In Algorithm 1, the parameterizations of contour curves are polynomialG1 con-
tinuous parameterizations of degree 3 in t; so is the parameterization of the spine curve,
cf. (7). Hence, using (3) we arrive at a G1 continuous parameterization of the canal
surface having the maximal rational degree [7, 4] in t. The rational degree of the param-
eterization in u depends on the choice of the rational function χ(u); the choice χ(u) = u
leads to the rational degree [2, 2] in u. �

Example 1. Let us consider the following cubic polynomial parameterizations of the
contour curves:

c+x = c−z = (t3, 0, t)� and c−y = (t3, t, 0)�. (24)

Then the parameterization of the spine curve (using (7)) is of the form

m = (t3, t, t)�. (25)

It is easy to certify that formula (5) is fulfilled, i.e., the parameterizations c+x , c−y and c−z
are corresponding in parameter with m (and hence also mutually). Rotating c+x around
the tangents of m (using formula (3)) yields the following rational parameterization of
the corresponding canal surface

s(t, u) =

(
9t7 + t3

(
u2 − 4

)
+ 2tu

9t4 + u2 + 2
,
2
(
9t5 + t

)
9t4 + u2 + 2

,
t
(
u− 3t2

)2
9t4 + u2 + 2

)�

(26)

having bidegree (7, 2).

Remark 6. Let us note that the approximation of a given canal surface is usually needed
in some prescribed region of interest R. To ensure this requirement it is enough to add
to the set of vertices of the graphs G(Cx), G(Cy) and G(Cz) the intersection points of
Cx, Cy and Cz with R and, of course, all the associated foot points.

4 Computed Examples

In this section we present some selected results obtained by applying the algorithm
introduced in the previous section. The first theoretical example starts with the canal
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Fig. 4. Implicitly given canal surface (yellow) together with the bounding planes (blue) from
Example 2

surface given implicitly by the irreducible polynomial which was obtained e.g. by elimi-
nating the parameter from (2). The second practical example presents the method which
justifies the title of this paper, i.e., it shows the construction of an implicit blending sur-
face which is then parameterized as a canal surface using the designed algorithm. We
recall that our algorithm may be used also for the computed blends which look like a
canal surface although they are not exactly surfaces of this type.

Example 2. We parameterize the implicit canal surface S given by the polynomial

f = 16x6+48x4y2+16x4z2 − 160x4z− 32x4− 288x3yz− 288x3y+288x3z+
288x3+48x2y4+32x2y2z2−104x2y2z−280x2y2+144x2yz+1008x2y−
128x2z3 + 480x2z2 − 168x2z − 776x2 − 288xy3z + 360xy3 + 288xy2z +
72xy2−256xyz3+384xyz2+672xyz−1480xy+256xz3−384xz2−672xz+
1048x+16y6+16y4z2+56y4z−59y4+144y3z−180y3+64y2z3+192y2z2−
672y2z + 334y2 + 128yz3 − 192yz2 − 336yz + 524y + 256z4 − 704z3 +
240z2 + 808z − 635

in the region bounded by the planes

p1 : 8x+ 4y − 12z + 57 = 0 and p2 : 8x+ 4y + 4z − 11 = 0. (27)

In particular, we are interested in the part of S in the region fulfilling p1 > 0 and
p2 < 0, see Fig. 4. First, we determine the contour curves, i.e., the curves defined by
f = fx = 0, f = fy = 0 and f = fz = 0. The next step is to compute the critical and
bounding points of those curves, and to each of those points compute the associated
foot points (the points lying on the same characteristic circles and on the other two
contour curves). Then we construct the graph having those computed points as vertices
and choose only one branch from each contour curve. Deleting redundant points (foot
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Fig. 5. The parameterized part of a implicitly given canal surface together with the spine and
contour curves and the bounding, critical and its associated foot points from Example 2

points corresponding to the critical points on the second, not chosen, branches of the
contour curves) yields the graph of critical points. In this particular example the graph
of critical points is composed of the three following paths:

G
(
C+
x

)
=

((
−3, 1,

9

4

)�
,

(
−1, 1,

1

4

)�
, (0, 1, 0)

�
,

(
1, 1,

1

4

)�
)
;

G
(
C+
y

)
=

⎛⎝(−34− 15
√
3
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2
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√
3

52
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Next we compute the parameterizations f(t), g(t) and h(t) of the chosen branches of
the contour curves such that we replace the edges of the corresponding graph of criti-
cal points by Ferguson’s cubics and minimize the objective functions (17). Finally, we
reconstruct the approximation m(t) of the spine curve and by rotation of the one of
the contour curves, e.g. f(t) around the tangents of the spine curve m(t) we obtain an
approximate parameterization of the canal surface in the given region. The parameter-
ized part of the canal surface with the contour and spine curves and the vertices of the
graph of critical points is shown in Fig. 5. The error of the approximation, measured by
integral (21), is less than 6 · 10−5.
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Fig. 6. Implicit blending surface (yellow) between cone and cylinder (blue) from Example 3

Fig. 7. The parameterized part of a blending canal surface together with the spine and contour
curves and the bounding points from Example 3

Example 3. We compute an approximation of the blending surface h = 0 joining
the cone f1 = 4x2 + y2 + 6yz − 4

√
2y + z2 + 4

√
2z − 20 (bounded by the plane

f10 = −y+z+2
√
2) and the cylinder f2 = 2x2+y2+2yz+z2−4 (bounded by the plane
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f20 = −y + z − 3
√
2) by a rational canal surface, see Fig. 6. Using the method from

[9], the blending surface is of the form

h = (1− u)f1f
n+1
20 − uf2f

n+1
10 , (28)

where we used u = 1/4 and n = 2. We can check that the blending surface h = 0 is
a canal surface by method presented in Remark 5.4 in [1]. None of the contour curves
contains the critical points hence the approximate parameterization of the blending sur-
face will be composed of one part only. The parameterized part of the blending canal
surface with the contour and spine curves and the bounding points are shown in Fig. 7.
The error of the approximation measured by (21) is less then 1.6 ·10−2. Let us note that
the error can be easily improved by an adaptive refinement.

Remark 7. We recall that the presented method approximated implicit surfaces from
Examples 2 and 3 with errors about 6 · 10−5 and 1.6 · 10−2, respectively, whereas using
the method from [1] (for the same canal surfaces) yields approximate canal surfaces
with approximation errors 2 · 10−5 and 4 · 10−3, respectively. However, only one next
step of adaptive refinement in the modified method is enough to overcome the errors
given by the approach from [1].

5 Conclusion

In this paper we continued with the work started in [1]. We presented a modification
and improvement of the method for computing approximate parameterizations of canal
surfaces given implicitly. The designed algorithm is based on computing approximate
topology-based parameterizations of spatial curves lying on the given canal surface. The
distinguished feature of the obtained parameterizations is their low rational bidegree.
The technique can be applied mainly to parameterizing implicit blends consisting of
parts of canal (or canal-surface-like) surfaces.
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ment Fund (ERDF), project “NTIS - New Technologies for the Information Society”,
European Centre of Excellence, CZ.1.05/1.1.00/02.0090. We thank to all referees for
their valuable comments, which helped us to improve the paper.

References
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Abstract. Describing the topology of real algebraic curves is a clas-
sical problem in computational algebraic geometry. It is usually based
on algebraic techniques applied directly to the curve equation. We use
the implicit support function representation for this purpose which can in
certain cases considerably simplify this task. We describe possible strate-
gies and demonstrate them on a simple example. We also exploit the
implicit support function for a features-preserving approximation of the
graph topologically equivalent to the curve. This contribution is meant
as a first step towards an algorithm combining classical approaches with
the dual description via the support function.

Keywords: algebraic curve, support function, critical points, approxi-
mation, trigonometric polynomial.

1 Introduction

Solution of many problems in Computer Aided Geometric Design depends on
an approximation of a curve given by an implicitly defined bivariate polyno-
mial with rational coefficients. It is very desirable to visualize the curve in any
required precision, to find the number of components or to test to which compo-
nent a given point belongs. All this information is fully contained in the planar
graph topologically equivalent to the curve and whose vertices are points of the
algebraic curve and edges correspond to regular arcs of the curve.

Known algorithms studying the topology of an algebraic curve have always
two parts. First we find out the critical points and then we connect them appro-
priately. There are two main types of algorithms. The first type uses the same
principle as the Cylindrical Algebraic Decomposition (CAD) algorithm, cf. [5,
page 159]. The other approach is based on a subdivision of the given region.

Cylindrical Algebraic Decomposition based algorithms are usually divided
into three phases: First find the x-coordinates of critical points of C, then for
each xi compute the intersection points Pi,j of C and the vertical line x = xi
and finally for every Pi,j determine the number of branches of C on the left and
right and use this information to connect the points appropriately.

The main problem of these algorithms is the second phase, because the x-co-
ordinates of the critical points are not necessarily rational numbers and therefore
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the polynomials f(xi, y) have non-rational coefficients. There are several meth-
ods to deal with this problem. In [12], Hong computes xy-parallel separating
boxes of critical points with rational endpoints. Then he can count the branches
in Phase 3 as roots of univariate polynomial with rational coefficients. In paper
[7], the authors proposed a preprocessing - linear change of coordinate. The x-
coordinate is transformed so that the curve is in generic position. When the curve
is in generic position, the Sturm-Habicht sequence is used, a suitable general-
ization of polynomial remainder sequence, to derive the y-coordinates of critical
points (Phase 2) as rational functions of their x-coordinate and also to deduce
the multiplicity of the considered critical point. Another solution was given by
paper [16] - they project critical points to three axes x, y and a random one.
From these projections they can recover xy-parallel boxes with rational end-
points which separate the critical points. Paper [6] give the Bitstream Descartes
algorithm (a variant of interval Descartes algorithm) as an efficient algorithm
to isolate roots of a polynomial with non-rational coefficients. In contrast to all
above algorithms, [13] replace the Sturm-Habicht sequence with a Gröbner basis
and rational univariate representation, which ensure that we avoid working with
polynomials with non-rational coefficients even in non-generic position.

The second type of algorithm is based on subdivision. The only certified al-
gorithm (i.e. one which gives the correct output for every input) based on sub-
division is [4]. This algorithm subdivides the region D into regular regions (the
curve is smooth inside) and regions with singular points, which can be made
sufficiently small. The topology inside the regions containing a singular point is
recovered from the information on the boundary using the topological degree.

The main contribution of this paper consists in application of the (implicit)
support function representation to the construction of the graph topologically
equivalent to a given algebraic curve. We also consider the subsequent high pre-
cision approximation of the curve. The support function representation describes
a curve as the envelope of its tangent lines, where the distance between the tan-
gent line and the origin is specified by a function of the unit normal vector. This
representation is one of the classical tools in the field of convex geometry [11].
In this representation offsetting and convolution of curves correspond to sim-
ple algebraic operations of the corresponding support functions. In addition, it
provides a computationally simple way to extract curvature information [8]. Ap-
plications of this representation to problems from Computer Aided Design were
foreseen in the classical paper [15] and developed in several recent publications,
see e.g., [1–3, 9, 10, 14, 17, 18].

The remainder of this paper is organized as follows. Section 2 is devoted to basic
definitions and results related to the (implicit) support function representation
and to the topology of algebraic curves. Section 3 describes how the use of the
implicit support function can contribute to the basic phases of determination of
the topology of planar algebraic curves. Issues related both to the search for critical
points and their connectivity are considered. In Section 4 we show how the support
function representation can be exploited for an efficient approximationof segments
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of the curve connecting the critical points. In Section 5 we summarize our results
in an algorithm and demonstrate it on a simple example.

2 Preliminaries

In this section we first recall the definitions and basic properties of the explicit
and the implicit support functions. We also summarize concepts related to the
determination of the topology of algebraic curves. In both cases we slightly
extend standard approaches toward our goals.

2.1 Implicit Support Function Representation of Algebraic Curves

For an algebraic planar curve C we define its support function h as a (possibly
multivalued) function defined on a subset of the unit circle

h : S1 ⊃ U → R1

by which is any unit normal n = (n1, n2) associated with the distance(s) from
the origin to the corresponding tangent line(s) of the curve.

As proved in [18] we can recover the curve C from h as the envelope of the
system of lines {n · x− h(n) = 0 : n ∈ U}. This envelope is locally parameterized
via the formula

C(n) = h(n)n+∇S1h(n) = h(n)n+ ḣ(n)n⊥ , (1)

where ∇S1 denotes the intrinsic gradient with respect to the unit circle, which is
alternatively expressed using the derivative ḣ(n) with respect to the arc-length
and n⊥ is the clockwise rotation of n about the origin by the angle π

2 .
For an algebraic curve C defined as the zero set of a polynomial f(x, y) = 0

we typically do not obtain an explicit expression of h but rather an implicit one,
which is closely related to the notion of dual curve.

Definition 1. Let C be a curve in projective plane. The dual of C is the Zariski
closure of the set in the dual projective plane consisting of tangent lines of C.

The equation of the dual curve

D(h,n) = 0 (2)

can be computed by eliminating x and y from the following system of equations:

n ·
(
∂f

∂x
,
∂f

∂y

)⊥
= 0

n · (x, y) = h . (3)

Definition 2. The dual equation D(h,n) = 0 together with the algebraic con-
straint n2

1 + n2
2 = 1 is called the implicit definition of the support function h or

simply the implicit support function.
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If the partial derivative ∂D/∂h does not vanish at (n0, h0) then (2) implicitly
defines the support function

n �→ h(n)

in a certain neighborhood of (n0, h0) ∈ R3.
The (implicit) support function is obviously a kind of dual representation

which takes into account the Euclidean metric. It has many nice properties. Let
us recall how it is affected by selected geometric operations, cf. [15, 18]:

(i) translation by a translation vector v ∈ R2

h(n) �→ h̃(n) := h(n) + v · n
D(h,n) = 0 �→ D̃(h̃(n),n) := D(h(n) + v · n,n) = 0 ,

(ii) rotation by an orthogonal matrix A ∈ SO(2)

h(n) �→ h̃(n) := h(An)

D(h(n),n) = 0 �→ D̃(h̃(n),n) := D(h(An),n) = 0 ,

(iii) scaling by a factor λ ∈ R

h(n) �→ h̃(n) := λh(n)

D(h(n),n) = 0 �→ D̃(h̃(n),n) := D(λh(n),n) = 0 ,

(iv) offseting with a distance δ ∈ R

h(n) �→ h̃(n) := h(n) + δ

D(h(n),n) = 0 �→ D̃(h̃(n),n) := D(h(n) + δ,n) = 0 .

Moreover, the support function representation is very suitable for describing
the convolution C3 = C1 υ C2 of curves C1, C2 as this operation corresponds to the
sum of the associated support functions h3 = h1 + h2 and its implicit support
function can be obtained by eliminating h1, h2 from the system of equations

D1(h1,n) = 0, D2(h2,n) = 0 and h3 = h1 + h2 ,

see [18, 14] for more details.
Another very useful property of the support function representation (espe-

cially in connection with G2 Hermite interpolation problem) is that it can be
efficiently used for describing the signed curvature of a given curve, cf. [18], in
the form

κ = − 1

h+ ḧ
. (4)
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2.2 Topology of the Curve

We are given a real planar algebraic curve C = {(x, y) ∈ R2 | f(x, y) = 0} where
f ∈ Q [x, y]. We consider the problem of determining the topology of C. The
topology of C is usually described by a planar graph which can have vertices at
infinity and which is topologically equivalent to the original curve.

Definition 3. Let C be a curve and G be a planar graph (possibly with vertices
at infinity). The curve C and a graph G are topologically equivalent if and only
if they are isotopic as curves of Euclidean space, i.e., there exists a continuous
map H : R2 × [0, 1] → R2, such that

– H(x, t) is a homeomorphism for all t ∈ [0, 1],
– H(x, 0) = id,
– H(C, 1) = G.

Consider a vertical line l moving from the left side (x = −∞) to the right
(x = ∞). At any position there is a finite number of intersections of l and C.
The number of intersections can change only when C has a critical point on this
x-coordinate. To ensure that the graph G is topologically equivalent to C we have
to include all critical points among vertices of G. Namely

Definition 4. Let f(x, y) ∈ Q [x, y] define the real algebraic curve

C = {(x, y) ∈ R2 | f(x, y) = 0} .

The point (a, b) ∈ C is called

– x-critical point if ∂f
∂x = 0, similarly we define y-critical point,

– singular point if ∂f
∂x = ∂f

∂y = 0,

– x-extremal point if ∂f
∂x = 0 and ∂f

∂y �= 0, similarly we define
y-extremal point.

There are several methods to deal with the critical points. Our approach is
related to the general scheme of Cylindrical Algebraic Decomposition (CAD)
based algorithms. These algorithms are usually divided into three phases. In
Phase 1 the x-coordinates of all the critical points of C are found. Using sub-
resultant sequence, the discriminantR(x) of f is computed. Then one determines
the roots ofR(x) and obtain the x-coordinates (xi, 1 ≤ i ≤ n) of all critical points
of C. In Phase 2 for each xi the intersection points Pi,j of C and the vertical line
x = xi are computed. These intersection points have as y-coordinates the roots
of the polynomial f(xi, y). In Phase 3 the number of branches of C over every
interval (xi, xi+1) is determined. It is the number of real roots of f(x′, y) for any
x′ from the given interval. Using this information it is possible to connect the
points appropriately. In [7] a Phase 0 was proposed; a linear change of coordinate.
The plane is sheared so that the curve is in generic position.
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Definition 5. The real algebraic curve C is in generic position if it satisfies the
following conditions:

– the curve C has no vertical asymptotes

– on every vertical line x = α, α ∈ R is at most one critical point

Obviously there are at most
(
c
2

)
non-generic configurations, where c is a number

of critical points. Therefore the change of coordinates is always possible.

3 The Topology of the Curve Using the Implicit Support
Function

In this section we will discuss how the use of the implicit support function
can contribute to the basic phases of determination of the topology of planar
algebraic curves, see Section 2.2. We will handle certain issues related both to
the search for critical points and to their connectivity.

3.1 Critical Points

When the critical points are determined we can profit from the use of the support
function. We devote a paragraph to every type of critical points. As we will see
the support function is particularly useful in the search for cusps, points with
horizontal and vertical tangents and inflections. It can also provide interesting
additional information allowing us to omit self-intersections from the list of crit-
ical points while preserving the accurate curve topology. On the other hand the
determination of boundary points (for a curve studied within a box) is easier on
the primary curve and therefore we omit them here. An efficient global strategy
would therefore be based on a combination of the information about the primary
curve and its support function.

Cusps. From the general theory of algebraic curves (see e.g., [19]) the cusps on
C correspond to inflection points in the dual representation. Cusps are distin-
guished as points having infinite curvature. They can be quite easily determined
from the support function due to (4). If only the implicit support function is
available, a condition for cusps can be formulated as follows.

Proposition 1. Let D(h,n) = 0 be the implicit support function of the curve
C. Then the cusps of C satisfy the following condition:

hD3
h − n2

1(D
2
hDn2n2 +DhhD

2
n2

− 2DhDhn2Dn2)− n1D
2
hDn1+

+ n2
2(D

2
hDn1n1 +DhhD

2
n1

− 2DhDhn1Dn1)− n2D
2
hDn2+ (5)

+ 2n1n2(DhDhn2Dn1 +DhDhn1Dn2 +DhhDn1Dn2 −D2
hDn1n2) = 0 ,

where the subscripts denote corresponding partial derivatives.
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Proof. Using (4) we get the necessary condition for cusps

h(n) + ḧ(n) = 0 . (6)

Let n(s) = (n1(s), n2(s)) be a parametrization of the unit circle by arc-length
s and suppose that we locally have h(n(s)). Using the chain rule we get following
derivatives:

ḣ = hn1 ṅ1 + hn2 ṅ2 = −hn1n2 + hn2n1 (7)

ḧ = hn1n1 ṅ
2
1 + hn1n2 ṅ1ṅ2 + hn1 n̈1 + hn2n2 ṅ

2
2 + hn2n1 ṅ1ṅ2 + hn2 n̈2 =

= hn1n1n
2
2 − hn1n2n2n1 − hn1n1 + hn2n2n

2
1 − hn2n1n1n2 − hn2n2 , (8)

where the dot denotes the derivative with respect to arc length s and the sub-
script denotes the partial derivative. The second equality in (7) and in (8) is
deduced using the equality (ṅ1, ṅ2) = (−n2, n1).

The partial derivatives of h can be deduced from its implicit definition. For
example:

∂

∂n1
D(h(n), n1, n2) = Dn1(h, n1, n2) + hn1Dh(h, n1, n2) = 0 .

And therefore

hn1 = −Dn1(h, n1, n2)

Dh(h, n1, n2)
.

Similarly we can deduce all partial derivatives of h and substitute them into
(8). That equation we substitue into (6) to get a necessary condition (5) for
cusps in variable n. 	


In concrete computations the cusps will be found by simultaneously solving
equation (6) and the fundamental equations (2) and n2

1 + n2
2 − 1 = 0. The

primary points are fully defined by (1).

Extremal Points. Due to the dual nature of the (implicit) support function
representation it is particularly easy to find the extremal points, as shown in the
following

Lemma 1. The x-extremal and y-extremal points have unit normal vectors
(±1, 0) and (0,±1), respectively.

Proof. From the definition it follows that ∂f
∂x = 0 resp. ∂f

∂y = 0. 	


Corollary 1. Let h be the support function implicitly defined by D(h,n) = 0.
The x and y-extremal points are the solutions of the polynomial equations in h

D(h, (1, 0)) = 0 and D(h, (0, 1)) = 0 , (9)

respectively.
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Using the envelope formula (1) we can recover extremal points on the primary
curve C.

Inflection Points. Many algorithms for topologically exact description of al-
gebraic curves do not consider inflection points. In the context of dual repre-
sentations they however occur as natural splitting points. Indeed they simplify
both the topology determination and subsequent approximation of individual
segments.

Inflections are points where the normal vector changes its direction of move-
ment as the point traverses the curve. Althought these can be found from the
primary equation of the curve, this property is easily identified in the sup-
port function representation. Such points are of two types: the cusps and the
t-extremal points of the support function, where t is the parameter on the unit
circle. The first type corresponds to real inflection points, the second is the case
of points at infinity. This leads to the following proposition:

Proposition 2. Let C be an algebraic curve, let t �→ n(t) be a parametrization of
the unit circle and consider the form D(h, t) = 0 of the implicit support function
of C. Then the inflection points of curve C are the t-critical points of the implicit
support function which are neither isolated points nor self-intersections.

We can identify the inflection points by counting the number of points of the
curve on a line a little to the left and on a line a little to the right of the critical
point.

Proposition 3. Let P = (x0, y0) be a point of the curve C, x1, x2 ∈ Q and
I = [x1, x2] be an isolating interval of x0, i.e., I does not contain other x-
coordinate of x-critical point than x0. The x-critical point P is an inflection
point if and only if

�{α ∈ R | f(x1, α) = 0} �= �{α ∈ R | f(x0, α) = 0} or

�{α ∈ R | f(x0, α) = 0} �= �{α ∈ R | f(x2, α) = 0} ,

where � denotes the number of zeros counted with multiplicities.

Proof. We want to exclude self-intersections and isolated points, which are char-
acterized by

�{α ∈ R | f(x1, α) = 0} = �{α ∈ R | f(x0, α) = 0} = �{α ∈ R | f(x2, α) = 0} .

Self-intersections. Self-intersections are important features in standard algo-
rithms for determination of the curve topology. The support function based ap-
proach however allows us to avoid the precise determination of self-intersections.
From the dual point of view the two branches of the intersection are handled
separately, but we can easily obtain geometrical bounds on the curve branches
which certify existence and uniqueness of their intersections.



Exploiting the ISF for a Topologically Accurate Approximation 57

Definition 6. The tangent triangle T (P1, P2) is the triangle bounded by tan-
gents at points P1 and P2 and by the segment P1P2.

Proposition 4. Let Ck be a segment of the algebraic curve C connecting P1, P2

free of cusps, inflections and extremal points. Then Ck lies in the interior of the
tangent triangle T (P1, P2).

Proof. Denote by t1 and t2 the tangent vectors at P1 and P2 respectively. Due
to the fact that C is split at extremal points and cusps, the angle between t1
and t2 is at most π

2 . Therefore the arc does not intersect itself and moreover the
arc does not contain any cusp, because the curve is divided in cusps. Therefore
the arc is smooth and from the implicit function theorem we can suppose that
the explicit formula for given arc is c(t). The vector c′′(t) can change its sign
only at cusps and inflection points and therefore it has a constant sign on the
arc. Without loss of generality we can suppose that it is positive, i.e., the arc is
strictly convex. From the definition of convexity, the arc lies above both tangents
and below the segment P1P2. 	


Due to the previous proposition we can find the self-intersections of the curve
as the non-empty intersections of envelope triangles of all arcs in which the
curve is divided. This method give us the information about which pairs of
arcs intersect and also the approximate positions of the self-intersections in the
intersections of envelope triangles.

Proposition 5. Let C1 and C2 be two simple curve segments. If their bounding
triangles T1 = T (P1, P

′
1) and T2 = T (P2, P

′
2) intersect in the following way:

– The edge P1P
′
1 intersects the edge P2P

′
2,

– P1, P
′
1 /∈ T2 and

– P2, P
′
2 /∈ T1,

then the segments have precisely one intersection and it lies in T1 ∩ T2.

Proof. Existence of the intersection follows from the transversal intersection of
the triangles. The uniqueness is ensured by the convexity of both curve segments
within the bounding tangent triangles. 	


P1

P ′
1

P2

P ′
2

Fig. 1. Two simple curve segments and their tangent triangles. The intersection of
segments lies inside the intersection of tangent triangles.
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3.2 Connectivity of Critical Points

When we have determined the position of the critical points (Phase 1 of a general
CAD based algorithm) we need to connect them appropriately. First we will
study the general situation, when only the implicit formula of the curve is given.
Then we describe the advantages of this approach when the given curve is an
offset curve of a parametric curve.

Connectivity Based on Implicit Support Function. When we have the
implicit support function of the curve, using the implicit function theorem we
have also G2 data at every point and we can profit from them. We describe some
rules which the connected points have to satisfy:

1. The difference of angles of tangents (normals) of two connected points is at
most π

2 .
This is because the curve is split at extremal points, cusps and inflection
points.

2. The sign of the second derivative at given point P determines in which half-
plane given by the tangent line at P are the points connected to P . If the sign
is negative, the points connected to P are in the same halfplane as the normal
vector to C at P , if the sign is positive, they are in the other halfplane.
This rule follows immediately from the definition of convexity.

In many cases these two rules yield the connectivity of the given curve. If
not, it seems that often we are able to determine the topology by subdividing
(possibly several times) the maximal angle in rule 1, i.e, we add extra splitting
points. For example, in the first iteration we add points with normal vector(
± 1√

2
,± 1√

2

)
. These points we can determine similarly to extremal points, see

Section 3.1.

Additional Connectivity Information for Offsets. If this general approach
turns out to be insufficient we can either use one of CAD based algorithms cited
in Section 1 or exploit some additional properties of studied curves. Here we
would like to emphasize that in the case when the curve under examination is an
offset to a given parametric curve, the connectivity is given by the parametriza-
tion. We can proceed in following steps:

1. Determine critical points on the offset curve.
2. Find the corresponding points on the original curve.
3. Connect points on the original curve by decreasing parameter.
4. Apply the same connectivity to the offset curve.

In this way the topology of the parametric curve is transferred to the offset
curve.
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4 Implicit Support Function Based Approximation

The support function representation can be exploited for an efficient approxima-
tion of segments of the curve connecting the critical or inflection points. Com-
pared to approximation in the primary space it can bring several advantages,
which will be discussed in this section.

Because we want to preserve features of the implicitly defined offsets and
convolutions, it is suitable to interpolate the critical points up to the second
order geometric data. Indeed, e.g. the cusps are distinguished by having infinite
curvature. Using the support function representation it is possible to perform
the G2 Hermite interpolation by solving a system of linear equations [3]. The
interpolation of critical points can be combined with an optimization of the
approximation of the connection segments.

4.1 Approximation Space

A suitable space of implicit support functions must be fixed in order to perform
an efficient approximation.

Definition 7. A set A of functions h : S1 → R is called a rational approxima-
tion space if the following conditions hold:

– A is a real linear space of finite dimension.
– A is (as a set) invariant with respect to the rotations of S1.
– The curves with support functions from A are rational.

Any segment of the primary algebraic curve will be approximated by a piece
of a parametric curve with support function h ∈ A. If {ai}ni=1 is a basis of A
then

h(t) =

n∑
i=1

ciai(t) ,

where ci are free coefficients. The parametric segment xi(t) is computed from
h via the envelope formula (1). Let us stress the fact, that in the definition of
approximation space we require that the resulting segments are rational. Their
union, which approximate the whole algebraic curve can therefore be represented
in the NURBS format.

It was shown in [18] that suitable subspaces of trigonometric polynomials
satisfy the three required conditions. In order to obtain a sufficient number of
degrees of freedom for G2 Hermite interpolation we will from now on use the
trigonometric polynomials of degree 3:

A = Span{1, sin t, cos t, sin 2t, cos 2t, sin 3t, cos 3t} . (10)

The main drawback of trigonometric polynomials is that they can not produce
curves with inflections (and interpolate zero curvature). For an accurate (G2)
interpolation of inflections we plan to use other approximation spaces including
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square roots of trigonometric polynomials and more generally implicitly defined
multivalued support functions. Alternatively it is possible to approximate inflec-
tions only with G1 precision.

4.2 G2 Hermite Interpolation and Fixing Degrees of Freedom

G2 Hermite interpolation with trigonometric polynomials is described in detail
in [3]. We will extend this procedure to points with infinite curvature (cusps)
and we will also discuss how to optimize the possible free degrees of freedom.
G2 Hermite interpolation can efficiently be performed on the level of support

function due to following

Proposition 6. Let C be a planar curve with support function h, defined at least
locally in a neighborhood of n0. If g is a function defined also in a neighborhood
of n0 and satisfying

g(n0) = h(n0), ġ(n0) = ḣ(n0), g̈(n0) = ḧ(n0) . (11)

Then the corresponding curve xg obtained via (1) interpolates the position of the
point C(n0), its normal and its curvature.

Proof. Due to (1)

C(n0) = h(n0)n0 + ḣ(n0)n
⊥
0 = g(n0)n0 + ġ(n0)n

⊥
0 = xg(n0) .

The two curves have also the common normal n0 at their common point. Finally
they have also the same curvature

κ = − 1

h(n0) + ḧ(n0)
= − 1

g(n0) + g̈(n0)

due to (4). 	

A corollary of the previous proposition is that the G2 Hermite interpolation

in the curve space is thus reduced to the C2 interpolation in the approximation
space. The right hand sides of (11) will be obtained from D(h,n) via implicit
differentiation. Interpolation at any point thus imposes three linear conditions
on coefficients ci. More precisely, for g(t) =

∑7
i=1 ciai(t), an element of the

approximation space (10), the conditions (11) has the following form

7∑
i=1

ciai(t) = h(n0),

7∑
i=1

cia
′
i(t) = ḣ(n0),

7∑
i=1

cia
′′
i (t) = ḧ(n0) , (12)

where t = arctan
(

n01

n02

)
. Matching the support function up to the second deriva-

tive also reproduces the cusps, which correspond to the case h(n0) + ḧ(n0) = 0.
This case, which is singular in the primary curve space, is completely regular
from the point of view of the support function.

The interpolation of cusps and inflections is very important both for obtain-
ing a low approximation error and for estimating the approximation error. In this
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case the error evaluates simply as the maximal error of the support function on
the given interval.

Proposition 7. Let h, g be two support functions defined on the interval U =
[n0,n1], such that

g(ni) = h(ni), ġ(ni) = ḣ(ni), i ∈ 0, 1 .

Suppose, that the corresponding curves xh, xg are cusp-free on U . Then their
Hausdorff distance corresponds to the error in support functions.

||xh − xg||H = ||h− g||∞ . (13)

Proof. Due to boundary conditions and absence of singular points (cusps), the
Hausdorff distance is realized by a common normal line to both curves. The
distance of the points on this line is equal to the absolute value of the difference
of the support functions. For a more formal proof see [18, Proposition 14]. 	


The approximation space can have a higher dimension than 6 and the remain-
ing degrees of freedom can be used for minimizing the segment error. The two
possible strategies are based on interpolation of some additional data and on
minimizing some integral measure, respectively.

As we are using an approximation space (10) of dimension 7, after satisfying
(12) for both boundary points, we are left one additional free parameter. In the
following example we will use this parameter for interpolation of the support
function value at the mid-normal

g(t′) =
7∑

i=1

ciai(t
′) = h

(
n0 + n1

2

)
, for t′ = arctan

n01 + n11

n02 + n12
(14)

or alternatively to minimize the L2 norm of the difference of supports. In this
case every ci is a function of the free parameter e used to minimize the quantity

||h(t)− g(t, e)||∞ . (15)

5 Algorithm and Example

In this section we summarize the previous results in an algorithm for topo-
logically precise approximation of algebraic curves. We also demonstrate this
algorithm on an example.

5.1 Algorithm Description

Algorithm 1 summarizes the process of determining the topology of an algebraic
curve and the subsequent approximation of the curve.
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Algorithm 1. Topologically accurate approximation of an algebraic curve

Input: Real algebraic curve C given as a zero set of a bivariate polynomial with rational
coefficients f(x, y) ∈ Q[x, y]

Output: Topologically accurate approximation of the curve C.
1: Determine the support function h of C.
2: Determine the cusps, extremal and inflection points in the implicit support function

representation.
3: Find corresponding points on the primary curve.
4: Connect points.
5: Determine the self-intersections.
6: Approximate the support function of the segments by trigonometric polynomials.
7: Use envelope formula to find the approximation of C.

In step 1 the implicit definitionD(h,n) = 0 of the support function is obtained
by eliminating the variables x, y from (3). In the next step we determine the cusps
- equation (5), the extremal points - equations (9) and the inflection points using
Proposition 3. We get corresponding points in Step 3 from the envelope formula
(1). Then we try to connect the points found in Step 3 using rules from Section
3.2. If this method fails we use a standard CAD based algorithm or additional
information, e.g., the curve could be an offset of a known parametric curve, etc.
As we have the connectivity of these points we can in Step 5 recover the self-
intersections as the intersections of tangent triangles as shown in Proposition 5.
The two steps - the approximation is described in Section 4.2.

5.2 Example

In order to demonstrate all features mentioned above, we will use them on the
example of the offset at distance − 9

10 to the ellipse given as the zero set of the
bivariate polynomial f(x, y) = x2 + 4y2 − 4 and oriented by its outer normal.

Eliminating x and y from the system of equations (3)

x2 + 4y2 = 4 ,

−8yn1 + 2xn2 = 0 ,

xn1 + yn2 = h ,

we get the implicit definition of support function of f , D(h,n) = h2−4n2
1−n2

2 =
0. The implicit support function of the offset at distance − 9

10 is therefore easily
evaluated as

D(h,n) =

(
h− 9

10

)2

− 4n2
1 − n2

2 = 0 .

The condition for cusps given by equation (5) becomes

h− 30(n2
1 − n2

2)(10h− 9)2 + 9000n2
1n

2
2

(10h− 9)3
= 0
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Table 1. Cusps (C) and extremal points (E) of the offset curve at distance − 9
10

to the
ellipse x2 + 4y2 − 4 = 0

type h h′ h′′ n corresponding point

P1 E − 11
10

0 3
2

(1, 0) (− 11
10
, 0)

P2 C −0.7441 0.9039 0.7441 (0.7535, 0.6575) (−1.155, 0.1918)
P3 E − 1

10
0 −3 (0,−1) (0, 1

10
)

P4 C −0.7441 −0.9039 0.7441 (−0.7535, 0.6575) (1.155, 0.1918)
P5 E − 11

10
0 3

2
(−1, 0) ( 11

10
, 0)

P6 C −0.7441 0.9039 0.7441 (−0.7535,−0.6575) (1.155,−0.1918)
P7 E − 1

10
0 −3 (0, 1) (0,− 1

10
)

P8 C −0.7441 −0.9039 0.7441 (0.7535,−0.6575) (−1.155,−0.1918)

and has the 4 solutions listed in Table 1. We determine the extremal points by
solving the equations(

h− 9
10

)2 − 1 = 0 and
(
h− 9

10

)2 − 4 = 0 .

These are also in Table 1.
These 8 points P1, P2, . . . , P8 divide the curve into 8 segments. The connec-

tivity is found using rules from Section 3.2. We need only the rule 2, the value
of h′′ at P1 is positive and therefore it have to be connected to points on the
left from it - there are only two points P2, P8. Similarly P5 is connected to P4

and P6. The value of h′′ at P3 is negative and therefore it is connected to points
below it, i.e. P2, P4. And the same argument is used to connect P7 to P6 and
P8. The connectivity is on Fig. 2, left.

P6 P8

P2P4

P5

P7

P1

P3

�2 �1 0 1 2

�1

0

1

�2 �1 0 1 2

�1

0

1

Fig. 2. Left: The graph topologically equivalent to the offset at distance − 9
10

to the
ellipse x2+4y2 − 4 = 0. Right: Its approximation by a spline curve composed of 8 arcs
of trigonometric polynomials of degree 3.
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For simplicity we use the approximation space of dimension 6

A = Span{sin t, cos t, sin 2t, cos 2t, sin 3t, cos 3t} .

Solving the system of linear equation (11) we interpolate every arc of the offset
by an arc of trigonometric polynomial of degree 3. The resulting spline is on Fig.
2, right.

Table 2 shows the approximation error and its improvement (ratio of two
consecutive errors). The error was obtained by sampling the Hausdorff distance,
which is, due to Proposition 7, the maximal difference between the support func-
tions. From the table it seems that the improvement of the error converge to 64,
i.e., the approximation order is 6. The graphs of error for first few interpolation
degrees are shown in Fig. 3.

Table 2. Errors of the interpolation of offset at distance − 9
10

to the ellipse x2+4y2−4 =
0 by trigonometric spline coming as a solution of (11).

parts error improvement

8 2.43023 · 10−3

16 4.42354 · 10−5 54.93871
32 1.26347 · 10−6 35.01110
64 3.66130 · 10−8 34.50865
128 6.68349 · 10−10 54.78136
256 1.08374 · 10−11 61.67045
512 1.71052 · 10−13 63.35748
1024 2.64063 · 10−15 64.77699
2048 4.16170 · 10−17 63.45069
4096 6.48248 · 10−19 64.19919

When we use the approximation space (10) of dimension 7 and use the last
degree of freedom to interpolate the support function at mid-normal (condition
(14)), the approximation error for 8 segments will decrease cca. 10 times (from
2.43023 ·10−3 to 2.12534 ·10−4). The graph of the approximation error is in Fig.
4, left.

We get very similar result when the degree of freedom is used to minimize
the L2 norm of the difference of the support functions, see (15). The optimal
values of the parameters are e1 = e4 = e5 = e8 = 2.9805 and e2 = e3 =
e6 = e7 = −18.6308, where the index denotes the number of the segment. The
approximation error is 2.03011 · 10−4 and the graph is shown in Fig. 4, right.

Every arc of the offset curve is enclosed in the tangent triangle due to Propo-
sition 4. Therefore the curve yields a self-intersection only if there is a pair of
triangles which have an intersection in way described in Proposition 5. From
Fig. 5 we see that there are only two self-intersections and we also know their
approximate position in the colored polygons. Using all this information we can
construct the topologically equivalent graph to the given curve.



Exploiting the ISF for a Topologically Accurate Approximation 65

�Π �
Π

2
0

Π

2
Π

0.0025

�Π �
Π

2
0

Π

2
Π

0.000045

�Π �
Π

2
0

Π

2
Π

1.3� 10�6

�Π �
Π

2
0

Π

2
Π

3.7� 10�8

Fig. 3. The approximation error for 8, 16, 32 and 64 segments of spline in approxima-
tion space of dimension 6. The points where the error vanishes are the points in which
we interpolate the curve.
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Fig. 4. The graph of the approximation error for 8 segments for different methods of
fixing the degree of freedom: left the interpolation of support function at mid-normal,
right: the minimization of the L2 norm of the difference of the support functions.

Fig. 5. Every piece of the curve lies inside the envelope triangle. The self-intersections
lies inside the intersection of these triangles.
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6 Conclusion

We have suggested a new approach to the problem of determining the topology
of algebraic curves and their approximation. We were systematically using the
implicit support function representation of planar curves which is a kind of dual
representation. We have illustrated several advantages related in particular to
the calculations of cusps, extremal points and inflection points. We also designed
a cusp-preserving approximation scheme for regular curve segments.

In the future, we intend to develop the support function based treatment of
self-intersections (via an iterative bounding of the area they can occur) and of
inflections (in particular their interpolation with suitable multivalued support
functions). We also plan to combine our dual techniques with direct computa-
tions with primary curve in order to obtain a highly efficient algorithm.

Acknowledgement. The first author was supported by the grant of Czech
Science Foundation GACR 201/09/H012 and grants of Charles University Grant
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Abstract. The aim of the paper is to provide a method for approxi-
mating non regular surfaces from a set of scattered data in a faithful
way. The method we propose is effective and particularly well-suited for
recovering geophysical surfaces with faults or drainage patterns. Some
real examples will be presented.

Keywords: Discontinuity detection, fault, geophysical surfaces, gradi-
ent fault, recovering.

1 Introduction

In this paper we discuss the problem of recovering a non regular surface from a
set of scattered data with large size N. By non regular surface, we mean that
the function underlying the data or its gradient are discontinuous along a curve.

This topic is of great interest in many problems as, for instance, geophysical
applications when one needs to describe the topography of seafloor surfaces,
mountain regions and, more in general, the shape of geological entities. In all
these cases the surfaces to be recovered may present faults (discontinuity curves
for the function) and/or gradient faults (discontinuity curves for the gradient).
See for instance [7], [8], [18].

The aim of the paper is to give an effective method to recover geophysical
surfaces with non regular structures. In this case, for instance, we have digital
elevation maps (DEMs) which are obtained by laser measurements (LIDAR).

Therefore, the problem is to approximate an unknown non-regular bivariate
function f(x), x ∈ Ω ⊂ R2 by a sample of scattered and noisy data of size N,
large but not extra large, i.e. N < 216.

Let S denote the sample

S = {(xi, f̃i), i = 1, . . . , N}; (1)

M. Floater et al. (Eds.): MMCS 2012, LNCS 8177, pp. 68–87, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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the point locations X = {xi ∈ Ω ⊂ R2} are scattered in Ω = [0, 1]2, and the
assigned values are such that

f̃i = f(xi) + ei, i = 1, . . . , N, (2)

where

1. ei are i.i.d random variables with expected value E(ei) = 0 and unknown
covariance matrix C = σ2I, being I the identity matrix of order N. We
assume that the noise to signal ratio, σ/‖f‖2, is small.

2. The function f(x) or its gradient ∇f(x) are discontinuous across an un-
known curve Γ of Ω and smooth in any neighborhood of Ω which does not
intersect Γ .

In particular, we refer to:

i) geophysical surfaces with faults generated by tectonic movements that cause
fractures in the ground following piecewise linear paths. For this reason, we
assume that the fault Γ is a continuous piecewise linear curve;

ii) digital elevation maps of mountainous districts with valleys shaped like a
(non symmetric)

∨
. Usually, through the valley a river flows and, obviously,

its drainage pattern is downhill. This means that we need to require mono-
tonicity constraints on the approximation of the river f(Γ ). In this case, it
makes sense to assume that Γ is a C1 curve.

The problem is very complex because discretely defined surfaces, that exhibit
such features, can not be recovered correctly without the knowledge of the dis-
continuity curve position and of the discontinuity type. Moreover it is not enough
to recover Γ faithfully. We need also that the approximation Γ̂ observes the par-
tition of the sample given by Γ, otherwise the recovering will be poor near the
discontinuity curve especially in the case of faults (see Fig. 3). In doing this, as
we shall see later, it is fundamental to exploit the information i) and ii) given
by the geophysical problem.

We need to solve three sub-problems:

1. To detect the position of the discontinuity curve and to say if it is a fault or
a gradient fault (Section 2).

2. To approximate the discontinuity curve (Sections 3.1 and 4.2).
3. To recover the surface and to preserve the irregular structures (Sections 3.2

and 4.3).
Some real examples will be discussed in Section 5.

2 Detection and Classification of the Discontinuity Curve

The importance of detecting the discontinuities curves of a function, is evident
also from the literature where we find several methods on the topic. In particular
there is a wide literature about fault detection, often referred as edge detection
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(see for instance [1], [2], [6], [9],[13], [14], [15], [16], [17]). Many of these methods
are based on wavelets and multiresolution techniques [1], [15], [16], [17] that are
very popular in image processing where we have pixel (gridded) data with very
large samples of size at least 216. On the other hand, we find only some strategy
for detecting discontinuities in the gradient when gridded data are given [12],
[5].

The technique that we use here is presented in [4]. For reader’s convenience,
we recall it shortly. It exploits the fact that when we have a set of exact data

Fn = {(zin,jn , f(zin,jn)) in, jn = 0, . . . , n}, (3)

placed on a grid Gn ⊂ Ω with step-size hn = 1/n

Gn = {zin,jn = (inhn, jnhn), in, jn = 0, . . . , n}, (4)

the centered differences Δn and the isotropic second order differences Δ2
1,n

applied to the data (3)

Δnf(zin,jn) = [Δx,nf(zin,jn), Δy,nf(zin,jn)] (5)

= [f(zin+1,jn)− f(zin−1,jn), f(zin,jn+1)− f(zin,jn−1)], (6)

Δ2
1,nf(zin,jn) =

1∑
l,r=−1

γl,rf(zin+l,jn+r), γ =
1

6

⎛⎝1 4 1
4 −20 4
1 4 1

⎞⎠ , (7)

are able to characterize the grid points zin,jn near the curve Γ. Namely, let Qin,jn

denote the square [(in−1)hn, (in + 1)hn]×[(jn − 1)hn, (jn+1)hn] and Ain,jn the
set of points at which the discontinuity curve intersects the horizontal, vertical
and diagonal directions of the square Qin,jn . For simplicity, we assume that
in any Qin,jn , Γ intersects each direction only one time at most. The possible
intersection points are denoted as

ξo = (ξox, ξoy) = Γ
⋂

zin−1,jnzin+1,jn ,

ξv = (ξvx, ξvy) = Γ
⋂

zin,jn−1zin,jn+1,

ξd1
= (ξd1x, ξd1y) = Γ

⋂
zin−1,jn−1zin+1,jn+1,

ξd2
= (ξd2x, ξd2y) = Γ

⋂
zin−1,jn+1zin+1,jn−1.

We indicate with

jumpxf |ξo
= f(ξ+ox, jnhn)−f(ξ−ox, jnhn), jumpyf |ξv

= f(inhn, ξ
+
vy)−f(inhn, ξ−vy),

and respectively with jumpf |Qin,jn
and jump∇f |Qin,jn

a weighted average of
the possible jumps of f and ∇f along the four directions in the square Qin,jn .
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We have that (see [4]):

1. if Γ intersects (zin−1,jn , zin+1,jn) in ξo

Δx,nf(zin,jn) =

{
jumpxf |ξo

+O(hn), if Γ is a fault
O(hn) if Γ is a gradient fault,

(8)

while

Δx,nf(zin,jn) = O(hn) when Γ
⋂

(zin−1,jn , zin+1,jn) = ∅; (9)

2. if Γ intersects (zin,jn−1, zin,jn+1) in ξv

Δy,nf(zin,jn) =

{
jumpyf |ξv

+O(hn), if Γ is a fault
O(hn), if Γ is a gradient fault

(10)

while

Δy,nf(zin,jn) = O(hn) when Γ
⋂

(zin,jn−1, zin,jn+1) = ∅; (11)

3. if Ain,jn �= ∅ and at least one of its point is an interior point of Qin,jn

Δ2
1,nf(zin,jn) =

{
jumpf |Qin,jn

+ O(hn), if Γ is a fault
jump∇f |Qin,jn

hn +O(h2n), if Γ is a gradient fault,
(12)

otherwise
Δ2

1,nf(zin,jn) = O(h2n). (13)

Now, given a sample of scattered data S of size N, we construct gridded
pseudo-data

SGn = {(zin,jn , ũin,jn), in, jn = 0, . . . , n}. (14)

Namely, we consider a suitable step-size hn = 1/n, the associated grid (4) and
an integer n0 << N.

For each grid point, we indicate with Uin,jn the circular neighborhood centered

at zin,jn containing n0 points xin,jn
k ∈ X, with f̃ in,jn

k the corresponding sample
values, and with μin,jn its radius. We define ũin,jn to be the average

ũin,jn =
1

n0

n0∑
k=1

f̃ in,jn
k . (15)

It is worthwhile to remark that in this way we smooth the noise corrupting the
data; in fact the random variables ũin,jn have expected values

E(ũin,jn) =
1

n0

n0∑
k=1

f(xin,jn
k )

and variances

V ar(ũin,jn) =
σ2

n0
.
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By applying the discrete operators Δn, Δ
2
1,n to (14), we obtain the estimators

Δx,nũin,jn , Δy,nũin,jn , Δ2
1,nũin,jn , in, jn = 1, . . . , n− 1. (16)

In [4], it has been proven that if Γ is a fault, their expected values are

E(Δx,nũin,jn) =

{
Cx

in,jn +O(hn), if Γ
⋂
(zin−1,jn , zin+1,jn) �= ∅

O(hn), if Γ
⋂
(zin−1,jn , zin+1,jn) = ∅, (17)

E(Δy,nũin,jn) =

{
Cy

in,jn
+O(hn), if Γ

⋂
(zin,jn−1, zin,jn+1) �= ∅

O(hn), if Γ
⋂
(zin,jn−1, zin,jn+1) = ∅, (18)

and

E(Δ2
1,nũin,jn) =

{
O(h2n), ifAin,jn = ∅
C1

in,jn +O(hn), if Ain,jn �= ∅ (19)

being Cx
in,jn , C

y
in,jn

, and C1
in,jn constants depending on the discontinuity jumps

of f at some points of Qin,jn .
Instead, if Γ is a gradient fault, we have that

E(Δx,nũin,jn) = O(hn), E(Δy,nũin,jn) = O(hn), (20)

and

E(Δ2
1,nũin,jn) =

{
O(h2n), ifAin,jn = ∅
D1

in,jnhn +O(h2n), if Ain,jn �= ∅, (21)

where D1
in,jn is a constant depending on the discontinuity jumps of ∇f at some

points of Qin,jn .
The variances of (16) are such that

V ar(Δx,nũin,jn) ≤
2σ2

n0
, V ar(Δy,nũin,jn) ≤

2σ2

n0
, (22)

V ar(Δ2
1,nũin,jn) ≤

13σ2

n0
. (23)

We now study the asymptotic behavior of (16). For N → ∞ and n → ∞,
we consider a sequence of nested grids Gn̄ ⊂ · · · ⊂ Gn ⊂ Gn+1 . . . , n = 2in̄,
hn = hn̄/2

i with i = 0, 1, 2, . . . , and the associated sets

Δ̃x,n = {Δx,nũin,jn , in, jn = 1, . . . , n− 1}, (24)

Δ̃y,n = {Δy,nũin,jn , in, jn = 1, . . . , n− 1}, (25)

Δ̃2
1,n = {Δ2

1,nũin,jn , in, jn = 1, . . . , n− 1}. (26)

Fixed a grid Gn̂, we take the ĵn̂th row ( and respectively the în̂th column). Let
ηŷ = (x, ŷ) be a point on the line y = ŷ (and correspondingly let ηx̂ = (x̄, y) be a
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point on the line x = x̂). For n > n̂, the sequence of nested grids Gn determines
on y = ŷ a sequence of nested intervals Iηŷ,n = [zin−1,jn , zin+1,jn ] containing ηŷ

(and correspondingly on x = x̂ a sequence Iηx̂,n = [zin,jn−1, zin,jn+1] containing

ηx̂). We indicate with Δ̃x,n(ηŷ) and Δ̃y,n(ηx̂) the sequences of the centered
differences of ũin,jn associated with Iηŷ,n and Iηx̂,n.

Analogously, fixed a pointη ofΩ,wedenotewithQη,n = [(in−1)hn, (in + 1)hn]
×[(jn − 1)hn, (jn+1)hn] a sequence ofnested squares containingη and we indicate

with Δ̃2
1,n(η) the sequence of the isotropic difference of ũin,jn associated with

Qη,n.
Asymptotically, the following results hold.

Proposition 1. When N → ∞, hn → 0, n0 → ∞ so that
√
Nhn → ∞,

μin,jn → 0, μin,jnn0 → ∞, and hnn0 → ∞, we have that in probability

1. if ηŷ ∈ Γ and Γ is a fault curve

Δ̃x,n(ηŷ)

hn
→ ∞ (27)

while if ηŷ ∈ Γ and Γ is a gradient curve or ηŷ /∈ Γ

Δ̃x,n(ηŷ)

hn
→ Kx

ηŷ
; (28)

2. if ηx̂ ∈ Γ and Γ is a fault curve,

Δ̃y,n(ηx̂)

hn
→ ∞ (29)

while if ηx̂ ∈ Γ and Γ is a gradient curve or ηx̂ /∈ Γ

Δ̃y,n(ηx̂)

hn
→ Ky

ηx̂
(30)

3. if η ∈ Γ and Γ is a fault curve

Δ̃2
1,n(η)

hn
→ ∞; (31)

4. if η ∈ Γ and Γ is a gradient curve

Δ̃2
1,n(η)

hn
→ Cη; (32)

5. if η /∈ Γ

Δ̃2
1,n(η)

hn
→ 0. (33)
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In practice, we work with a given sample and consequently a fixed hn. The
previous results suggest how to perform the detection. First, we look for the
position of the possible fault curve by considering and analyzing the quantities
Δx,nũin,jn/hn and Δy,nũin,jn/hn, in, jn = 1, . . . , n− 1.

Proposition 1 allows us to say that they assume ”big” values at the points
zin,jn near the fault, otherwise they have ”small” values with respect to the
previous ones.

The set of possible fault points (”big values”) can be detected by a classifi-
cation method which separates the two different class of points (”big values”,
”small values”). For instance, this can be done by fixing threshold values de-
pending on the range of Δx,nũin,jn/hn and Δy,nũin,jn/hn.

We have to remark that, in the selected class, we can have also set of points
for which

Δx,nũin,jn

hn
and/or

Δy,nũin,jn ũin,jn

hn
are ”big” because the constants Kx

ηx̂

and/or Ky
ηŷ

are large. These points correspond to high gradients.

Typically, high gradient points lie in a bidimensional region R of Ω and they
do not follow the behavior of a curve of Ω. This allows us to discriminate them.

In Fig. 1, it is shown a function with a fault and a zone of high gradients
(left). On the right, we can see the points that follows a curve and the region
corresponding the the sharp variation of f . Here we have considered a sample
of N = 4900 scattered points. In Fig. 2, we have considered the rapidly varying
data corresponding to the seafloor surface of one of the deepest parts of the
Tonga Trench [8]. On the left, it is shown a view of the Tonga Trench data set
(N = 8113 gridded data) and on the right we can see that the detected points
belong to a region and do not follow a curve. Hence they correspond to high
gradients.
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Fig. 1. N = 4900, hn = 1/40, σ
‖f‖2 ∼ 0.015

We indicate by
Df = {(zfl , ũ

f
l ), l = 1, . . . , nf} (34)

the points of SGn corresponding to the locations zfl detected as fault points. The
unknown curve Γ is classified as fault.
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Fig. 2. Tonga example

In a second step, we look for the gradient fault. We consider the set SGn \Df .

As before, we select from it the points at which
Δ2

1,nũin,jn

hn
takes ”big values”.

We call
Dg = {(zgl , ũ

g
l ), l = 1, . . . , ng} (35)

the points of SGn corresponding to the locations zgl detected as gradient fault
points. The unknown curve Γ is classified as a gradient fault.

In both cases the distances between the detected points and the curve is less
or equal to hn

d(zfl , Γ ) ≤ hn, d(zgl , Γ ) ≤ hn. (36)

3 Recovering a Surface with a Fault

3.1 Approximation of the Fault Line Γ

According to assumption i) of the Introduction, the fault Γ is a C0 piecewise
linear curve.

Let us assume that the fault curve runs from west to east and that it divides
Ω into the disjoint subsets ΩN and ΩS . It also separates the given sample S in
two disjoint sub-samples SN and SS .

Having used the centered differences, the points zfl , l = 1, . . . , nf , detect a
stripe S of Ω where most likely Γ lies.

The construction of the approximation Γ̂ of Γ, starts with a first rough ap-
proximation that will be used to find the slope changes.

We construct a new set of points z�j ∈ S by associating to each zfl the average

with the points zfi whose distance from zfl is less or equal to
√
2hn and, in order

to obtain a behavior more close to the piecewise linear one, we apply again the
average procedure to the new set with a distance less than hn. Let

Z� = {z�j (x�j , y�j ) j = 1, . . . , n�}
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be the so obtained set ordered with respect to x�j and purified by eventual coin-
cident points. The set Z� has a global piecewise linear behavior and we detect
those points z̄i ∈ Z�, i = 1, . . . , m̄, corresponding to slope changes by considering
the locations where the second differences of the Z� elements move away from
zero. A first approximation of Γ is given by the linear spline Γ̂ 1 interpolating
the points of the set

Z̄ = {z�1, z̄1, z̄2 . . . , z̄m̄, z�n	}.

It is of crucial importance that the final approximation Γ̂ respects the sample
classification given by Γ. Namely, we indicate with Ω̂N and Ω̂S the two parts in
which Ω is divided by Γ̂ , and with ŜN and ŜS the sample data having xi ∈ Ω̂N

and xj ∈ Ω̂S . We need that SN ≡ ŜN and SS ≡ ŜS . Otherwise, we have
undesired oscillations in the final recovering as shown on the left of Fig. 3. Here
we have considered the test function (55) of example 1 (Section 5) where we
approximate f by using Γ̂ 1 (on the right) which does not separate the sample
points correctly.
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Fig. 3. Left: Approximation of (55). Right: the approximation Γ̂ 1 of Γ ,+ sample loca-
tions belonging to ΩS

⋂
S, · sample locations belonging to ΩN

⋂
S.

Obviously, a wrong classification can happen in S. Then it is necessary to
establish whether a sample point with xi ∈ S belongs to SS or to SN . For this
purpose, we take the set S1 of the points in S such that the distance d(xi, z

f
l ) ≤

hn for some zfl ∈ Df .
By considering all the possible distances between the elements of S1, and using

standard algorithms of cluster analysis, it is possible to divide S1 in two classes
S1
N and S1

S whose locations xi are in ΩN and ΩS respectively.

Now, by using S1
N and S1

S , we verify whether Γ̂ 1 respects the classifica-
tion, otherwise we recursively modify it segment by segment maintaining the
continuity.
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Fig. 4. Example 1 (Section 5). Left.  : the detected points zfl , diamond: the points of

Z�. Right. – the final approximation Γ̂ , · − the true fault Γ.

In Fig. 4, it is shown the final approximation Γ̂ of Γ. The maximum error and
the root mean least squares error computed on a grid of 200 point are e∞ = 0.046
and e2 = 0.007 respectively.

3.2 Recovering

The approximating surface s̃(x) consists of two approximations

s̃N (x), x ∈ Ω̂N and s̃S(x), x ∈ Ω̂S .

Each of them is constructed by using the data points SN and SS respectively.
It is well-known that radial basis functions are a powerful tool when dealing

with scattered data. Among the possible choices, we have considered the space
spanned by the shifts of the C1 Thin-Plate Spline (TPS)

v2(x) =
1

16ξ
‖x‖2 ln(‖x‖2)

because the surface to be recovered presents a non smooth behavior and because
the TPS is a stable bases and enjoys scale invariance. Moreover, when recovering
non-smooth features, the local approximation error is of the order of the scale
squared.

With this choice, the approximation, in each sub-domain, is given by a convex
linear combination of polyharmonic functions that locally satisfy to the least
squares principle.

We fix a set of centers Y = {yi, i = 1, . . . , N0} placed on a uniform grid of
step-size h̄ = k/

√
N, (typically k = 2, 3.)

We indicate with YN = Y
⋂
ΩN theN0N centers inΩN and with YS = Y

⋂
ΩS

those in ΩS , |YS | = N0S .
For each center yi ∈ YN , we consider the local TPS approximations

s̃Ni (x) =
∑

yj∈Ui

c̃ijv2(x − yj) + p̃i1(x), x ∈ Ui (37)
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where

c̃ij = arg mincj

∑
xl∈Ui

(f̃l −
∑

yj∈Ui

cijv2(xl − yj)− p̃i1(xl))
2. (38)

The local set Ui is such to contain 9 centers of YN and p̃i1(x) satisfies∑
yj∈Ui

c̃ij p̃
i
1(yj) = 0.

The approximation s̃N (x) is given by

s̃N (x) =

N0N∑
i=1

wi(x)s̃
N
i (x), (39)

where wi(x) are interpolatory weights such that
∑N0N

i=1 wi(x) = 1.
In the same way, considering the centers yi ∈ YS , we obtain s̃S(x). The final

approximation is

s̃(x) =

{
s̃N (x), if x ∈ Ω̂N

s̃S(x), if x ∈ Ω̂S .
(40)

4 Recovering of a Surface with a Gradient Fault

As said in Section 1, we mainly refer to digital elevation maps of mountain
regions where we have gradient faults related to river flows behaving. Of course
the procedure can be applied also to surfaces shaped like (non symmetric)

∧
near the gradient fault.

4.1 Morphometric Hierarchy of the Branches of a River

In general the river flow, represented by the curve Γ, can be formed by two or
more branches. The different branches are numbered hierarchically according to
the following scheme. We define the branch order n equal to one if it rises from a
source and equal to n+ 1 if it rises in the confluence of branches of order n. If a
branch of order n meets a branch of order m < n, after the confluence the order
remains n. By this hierarchical definition, it is possible to number the different
branches Γb, of Γ with b = 1, . . . , B (see for instance Fig. 5 on the left) and then

Γ =

B⋃
b=1

Γb.

The confluence points are individuated by visual inspection. This greatly reduces
the possibility of taking wrong points.

Let Rj , j = 1, . . . , J denote the regions of Ω bounded by contiguous branches
of Γ and ordered, for instance, clockwise starting from Γ1 (see Fig. 5 on the
right).
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4.2 Approximation of the Gradient Fault

We consider the points zgl to construct a larger set of points T which mimic
better the behavior of Γ. To this aim, we exploit the information given by the
problem. Our surface has a gradient fault and the region containing it, is shaped
like a (non symmetric)

∨
.

Let us consider a point ξ on Γ and a local ball Bξ centered at ξ which is
divided by Γ in two disjoint parts BN

ξ and BS
ξ . For any x1 ∈ BN

ξ , and x2 ∈ BS
ξ ,

we have that the gradient components at x1 and x2 have opposite signs

∂f

∂x
|x1

∂f

∂x
|x2 < 0 and

∂f

∂y
|x1

∂f

∂y
|x2 < 0,

and the sign of each component of∇f doesn’t change in BN
ξ and BS

ξ respectively.
Then if we take p points ςi with a uniform distribution in Bξ, we have

E

(
1

p

p∑
i=1

sign
∂f

∂x
|ςi

)
= 0, E

(
1

p

p∑
i=1

sign
∂f

∂y
|ςi

)
= 0. (41)

This simple remark, allows us to perform an algorithm to find T .
We consider the points

T = {tj, j = 1, . . . , nT }

of a grid of Ω with step-size h < hn, whose distance from a one point zgl , one at
least, is less than a prescribed H > hn.

We evaluate the signs of the gradient component at the points of T by applying
the usual discretization of the gradient to the set {(tj , s̃c(tj))}nT

j=1, where s̃c(x)
is the Thin-Plate Spline approximation (45) that will be used also in the final
recovering of f.
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Now, for j = 1, . . . , nT , we take the straight line passing through tj with
direction given by −∇s|tj , and on it, the point P(τ) = tj −∇s|tj τ.We associate

to P(τ) a neighborhood IP containing m0 points tji ∈ T and the quantities

1

m0

m0∑
i=1

sign
∂f

∂x

∣∣∣tji , 1

m0

m0∑
i=1

sign
∂f

∂y

∣∣∣tji . (42)

Since the points tji have a uniform distribution in IP and considering (41), we
look for the point P(τ̄ j) such that∣∣∣∣∣ 1m0

m0∑
i=1

sign
∂f

∂x

∣∣∣tji
∣∣∣∣∣ ≤ ε(m0),

∣∣∣∣∣ 1m0

m0∑
i=1

sign
∂f

∂y

∣∣∣tji
∣∣∣∣∣ ≤ ε(m0), (43)

where ε(m0) → 0 when m0 → ∞.

The approximation Γ̂ of Γ is obtained by fitting in the least squares sense the
points T = {P(τ̄ j) ∈ Ω, j = 1, . . . , nT }, by the shifts of a multiquadric basis
having small variable parameter chosen, as suggested in [3], in order to have a
shape preserving curve.

We indicate with Γ̂ the union of the different branches Γ̂b each defined in an
interval Ib

Γ̂ =
B⋃

b=1

Γ̂b. (44)

4.3 Recovering of the Surface

The approximation s̃(x) of f(x) is obtained by a blending of two surfaces s̃c(x)
and s̃v(x)

s̃(x) = (1− w(x))s̃c(x) + w(x)s̃v(x).

s̃c(x) is a C
1 approximation obtained on the whole domain Ω that over-smooths

near Γ̂ , while s̃v(x) is a C
0 function constructed in a sheath G containing Γ̂ that

approximates the behavior of the unknown surface near Γ .
The weight w(x) is constructed in order to localize strongly the recovering

near the gradient fault.

Construction of s̃c(x). The smooth approximation is obtained, as before (Sec-
tion 3.2), considering again the set of centers Y = {yi, i = 1, . . . , N0} placed on
the uniform grid of step-size h̄ in Ω.

For i = 1, . . . , N0 we consider the local approximations

s̃i(x) =
∑

yj∈Ui

c̃ijv2(x− yj) + p̃i1(x), x ∈ Ui

where
c̃ij = arg mincj

∑
xl∈Ui

(f̃l −
∑

yj∈Ui

cijv2(xl − yj)− p̃i1(xl))
2,
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the local set Ui is such to contain 9 centers of Y and p̃i1(x) satisfies∑
yj∈Ui

c̃ij p̃
i
1(yj) = 0.

The smooth approximation is given by

s̃c(x) =

N0∑
i=1

wc
i (x)s̃i(x), (45)

where wc
i (x) are interpolatory weights such that

∑N0

i=1 w
c
i (x) = 1.

s̃c(x) belongs to C
1(Ω) and does not recover correctly the discontinuity while

it provides a good approximation away from Γ.

Construction of s̃v(x). The construction of the C0 approximation s̃v(x) re-
quires to define a region G that we call sheath in which s̃v(x) is defined.

Firstly, by an iterative procedure, we find a uniform partition {tb,i}nb

i=0 on
each interval Ib so that the linear spline sb connecting the corresponding points
on Γ̂b, satisfies

‖sb − Γ̂b‖∞ < δ(N), (46)

where δ(N) is a prefixed tolerance such that δ(N) → 0 and Nδ(N) → ∞ when
N → ∞.

We now consider the line

Γ̃ =

B⋃
b=1

sb, (47)

and we indicate with R̂j , j = 1, . . . , J, the regions bounded by contiguous linear
splines.

Secondly, we find a sheath containing Γ̃ .
We indicate with sb(tb,i)sb(tb,i+1) a generic segment of sb and with μb,i its mea-

sure.We consider the circleCi,b of radius rb,i > μb,i/2 centered at
sb(tb,i)+sb(tb,i+1)

2 .

The linear spline sb cuts Ci,b in two parts: one belonging to the region R̂j and the

other to the region R̂j̄ . We indicate with Cj
i,b the part of Ci,b in R̂j and with C j̄

i,b

the part in R̂j̄ .

Let Gj be the union, with respect to i and b, of all the portions Cj
i,b belonging

to R̂j , i.e

Gj =
⋃
i,b

Cj
i,b, Cj

i,b ⊂ R̂j .

The sheath G is

G =

J⋃
j=1

Gj .

Thirdly, for any circle Ci,b we construct the two linear least squares poly-

nomials p̂ji,b and p̂j̄i,b related to the sample data with locations respectively in
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Cj
i,b and in C j̄

i,b . We impose that they assume the same values on the segment

sb(tb,i)sb(tb,i+1), that is

p̂ji,b(x) = p̂j̄i,b(x) x ∈ sb(tb,i)sb(tb,i+1). (48)

For each Gj , j = 1, . . . , J, we define the function

s̃j,v(x) =
∑
i,b

wv
i,j(x)p̂

j
i,b(x), x ∈ Gj , (49)

where wv
i,j are C1 interpolatory weights with compact support restricted to Gj

and such that
∑

i,b w
v
i,j(x) = 1.

The C0 approximation of f in G is given by

s̃v(x) =

J⋃
j=1

s̃j,v(x). (50)

Let us remak that when the curve f(Γ ) on the surface is a drainage pattern,
f(Γ ) is monotone. Generally, the curve s̃v(Γ̃ ) will not exhibit such behavior.

In fact, as remarked in the fault case, it could happen that, when we compute

the least squares polynomials p̂ji,b ( p̂j̄i,b), we take functional values f̃i that we

should not take because they stay in Cj
i,b (C

j̄
i,b) but by opposite parts with respect

to Γ. This causes small oscillations in s̃v(Γ̃ ) that globally shows a monotone
behavior.

We eliminate the undue oscillations by computing a linear spline subject to
monotonicity constraints.

Namely, for any b = 1, . . . , B, we consider on Ib a new uniform partition
{ζb,i}mb

i=0 where mb = �nb/kb�, kb > 1. On each subinterval [ζb,i, ζb,i+1], we
consider M uniform nodes at which we evaluate sb. We indicate with Ab =
{al, l = 1, . . . ,mbM} such set of values.

We compute s̃v(x) at the points aj . Having fixed the centers {sb(ζb,i)}mb
i=0, we

construct the linear least squares spline Lb(sb(t)), which minimizes∑
al∈Ab

|s̃v(al)− Lb(al)|2 (51)

subject to the monotonicity constraints and to the continuity constraint between
the different branches. Let

Lm =

B⋃
b=1

Lb. (52)

We evaluate Lm at the points sb(ti,b), i = 1, . . . , nb, b = 1, . . . , B and as before

we compute the linear least squares polynomials p̃ji,b subject to the constraints

p̃ji,b(sb(tb,i)) = Lm(sb(tb,i)), i = 1, . . . , nb, b = 1, . . . , B.
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Again, using the same weights used in (49), we compute

s̃mj,v(x) =
∑
i,b

wv
i,j(x)p̃

j
i,b(x), x ∈ Gj , j = 1, . . . , J. (53)

Hence the approximation s̃v is given by

s̃v(x) =
J⋃

j=1

s̃mj,v(x) (54)

which is C0 in G and monotone along Γ̃ .

5 Numerical Results

In this section we start by giving two examples related to faulted surfaces both
taken from [8]. In the former example, the data are taken from a test function
while the latter is relevant to real data. Then we show a real example with gra-
dient faults where the data come from a digital elevation map of a mountainous
region (Piemonte-Italy) with drainage patterns.

5.1 Example 1

We consider N = 1600 scattered points xi with a uniform distribution in Ω =
[0, 1]2, and the sample S where

f(x, y) =
1

(3x− 7
2 )

2 + (3y − 7
2 )

2
+ g(x, y), (55)

and

g(x, y) =

{
0.35 + exp

(
−(3x− 3/2)2 − (3y − 3/2)2

)
, if y ≥ Γ (x)

0, otherwise,

being Γ (x) the piecewise linear function connecting the points (0, 0.2), (0.2, 0.2),
(0.35, 0.225), (0.42, 0.3), (0.48, 0.4), (0.49, 0.53), (0.5, 0.65), (0.65, 0.725), (0.8,
0.75), (1.0, 0.8).

The approximation of Γ (x) has been discussed in Section 3.1 (Fig. 4). In
Fig. 5 we can see the recovered surface that has been computed when choosing
N0 = 16 × 16 centers yj ∈ Y. The errors computed with respect to the sample
data are e2 = 0.0035, and e∞ = 0.0744; instead, for the recovering of Fig. 3 we
have e2 = 0.0514 and e∞ = 1.0757.

5.2 Example 2

This example is based on real data coming from a region of the Pyrénées (France)
[8].

We have considered N = 10000 gridded data. The first approximation Γ̂ 1 of
the fault fullfills the classification of the sample. In Fig. 7 we can see the data
on the left and the recovering on the right. The error with respect to the given
data is e∞ = 0.0029m.
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Fig. 6. Left: the true surface. Right: The approximation.

Fig. 7. Left: The data. Right: The recovered surface

5.3 Example 3

The final example is relevant to a DEM of a mountainous region situated in
Piemonte. We have N = 14080 = 110× 128 gridded data shown in Fig. 8.

Fig. 8. The Piemonte data
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Fig. 9. Circles: the points zgl . Dots: the points of T .

Fig. 10. The final recovering

With the procedure of Section 2 we have detected the fault gradient points
zgl that are shown with circles in Fig. 9. In this figure we can see also the points
(dots) of T obtained as described in Section 4.2.

To construct the approximation s̃c(x), we have taken N0 = 12100 gridded
knots. The final recovering is shown in Fig. 10. The quality of reproduction is
good. This is also confirmed by the errors computed with respect to the given
data. In fact e∞ = 18m and e2 = 0.55m, while the maximum relative error is
E∞ = 0.009m. We have a good approximation also near the drainage curves
where the maximum relative error is 0.029.
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Fig. 11. Zoom of the given data (left) and of the recovering s̃(x) (right)

Fig. 12. Left. Data set sections. Right. Sections of s̃(x).

Fig. 13. Sections of s̃c(x)

To complete the discussion, we show on the left of Fig. 12 three sections of the
data set relevant to the low part of the drainage pattern. On the right, we can
see that the sections approximated by s̃(x) are rendered well. On the contrary,
as expected, the same sections of s̃c(x) exhibit a lack of shape reproduction (Fig.
13).
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12. López de Silanes, M.C., Parra, M.C., Torrens, J.J.: Vertical and oblique fault de-

tection in explicit surfaces. J. Comput. Appl. Math. 140, 559–585 (2002)
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Abstract. Canal surfaces, as envelopes of one-parameter families of
spheres, correspond to curves in Minkowski space. We show that the
continuity properties of a canal surface are inherited from the continuity
properties of the associated curve, i.e., two curves joined with G1 or G2

continuity in Minkowski space correspond to two canal surfaces joined
with the same level of continuity. We also describe an algorithm for mini-
mal bi-degree rational parametrizations of patches on canal surfaces, and
show how this can be used to parametrize piecewise rational corner and
edge blends.

1 Introduction

In Computer Aided Design (CAD) complex shapes are constructed from a small
set of simple primitives. To a large extent, and in particular in the design of
mechanical parts, these primitive shapes are planes, the natural quadrics, and
rolling ball blends between them. The natural quadrics (spheres, and right cir-
cular cylinders and cones) are rational surfaces with rational offsets, however,
a rolling ball blend between two natural quadrics is not necessarily rational. In
current CAD systems they are therefore constructed by approximation in all but
the simplest cases, e.g., where the blend is a patch on a cylinder or torus.

Although shape accuracy is important in current CAD systems there is no
requirement that adjacent surfaces match exactly, so gaps within fine tolerances
are allowed. However, with the introduction of Isogeometric Analysis (IGA) (see,
e.g., [1]) this changes, as in Finite Element Analysis (FEA) adjacent elements
are required to match exactly. As a result of this, there is a renewed interest
in exact rational parametrizations of curves and surfaces. The parametrization
degrees of these exact surfaces will necessarily be higher than for approximative
blends, but this disadvantage is offset by the possibility of constructing water-
tight patchworks of rational surfaces where the limiting curves of two adjacent
patches match exactly. For rolling ball blends, we can then construct an exact
rational parametrization of the blending surface, such that its limiting curves
are contained in the two original surfaces.

Rolling ball blends are patches on canal surfaces, which are defined as en-
velopes of one-parameter families of spheres. Such a family can be described as

M. Floater et al. (Eds.): MMCS 2012, LNCS 8177, pp. 88–111, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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a curve in the 4-dimensional Minkowski space R3,1, where a point (s; r) corre-
sponds to a sphere with centre s and radius r (the sign of the radius determining
the orientation of the sphere). The properties of a canal surface can therefore be
completely defined in terms of the properties of the corresponding curve in R3,1.

In this paper we will examine the differential geometry of canal surfaces. In
particular, we will show that if two curves in Minkowski space meet with G1 or
G2 continuity (extending the differential geometry of curves in R3 to R3,1), the
join of the two canal surface inherits the same degree of continuity.

In a previous paper (see [2]), we have classified and parametrized rational fixed
radius rolling ball blends of pairs of natural quadrics, and established a lower
bound on the bi-degree of their parametrizations. By a slight modification of
the parametrization algorithm, it extends to variable radius rolling ball blends.
Using piecewise rational rolling ball blends of edges and corners, we extend the
range of configurations that can be blended rationally at a relatively low degree,
and give designers an added flexibility in creating rational blends.

We start by deriving the algorithm for minimal bi-degree rational parametriza-
tions of canal surfaces in Section 2. In Section 3 we extend the differential geom-
etry of R3 to R3,1, and in Section 4 we describe properties of canal surfaces in
terms of the properties of the associated curves in R3,1. Finally, in Section 5 we
demonstrate two approaches to corner blends using piecewise rational rolling
ball blends, applying the parametrization algorithm from Section 2 and the
continuity results from the following sections.

2 Rational Parametrizations of Canal Surfaces

A canal surface is defined as the envelope of the family of spheres

f(t) = (s(t); r(t)) ∈ R3,1. (1)

The curve s(t) traced by the centres of the spheres is called the spine curve and
r(t) the radius function of the canal surface. A canal surface has a parametriza-
tion on the form

F (t, u) = s(t) + r(t)N (t, u) (2)

where the isoparametric curve F t(u) for a given t is a circle, known as a char-
acteristic circle. In fact, N t(u) is a circle on the unit sphere. An algorithm for
minimal bi-degree rational parametrizations of N (t, u) can be found in [3]. Thus
if f(t) is rational, we can also construct a rational parametrization of the canal
surface F (t, u) (this is proved in, e.g., Theorem 5.1 of [4]). Furthermore, N (t, u)
is the unit normal vector of the canal surface, so F (t, u) is a rational surface with
a rational unit normal vector field, i.e., it is a Pythagorean Normal (PN) surface.
PN surfaces have rational offsets, so by considering canal surfaces corresponding
to rational curves in R3,1, we obtain a class of rational rolling ball blends that
have some of the advantages of the natural quadrics.

Remark 1. There are non-rational curves in R3,1 whose canal surfaces can be
parametrized rationally. However, for these rational parametrizations the ratio-
nality of the unit normal vector field is no longer automatic.
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2.1 Arcs of Circles on the Unit Sphere

The parametrization of canal surfaces has thus been reduced to the parametriza-
tion of circles on the unit sphere, and the parametrization of rolling ball blends
to the parametrization of the isoparametric arcs of circles N t(u) on the unit
sphere.

In [2], we considered this problem for pipe surfaces, i.e., canal surfaces with
constant radius function. As well as closed expressions for the minimal bidegree
rational parametrizations of the fixed radius blends, in the cases where such a
blend exists, we presented a general parametrization algorithm for patches on
pipe surfaces. Only a slight modification of the algorithm is necessary to extend
it to variable radius blends.

The parametrization algorithm is a simplification of the results presented in
[3], where minimal degree parametrizations are described both for patches and
for the complete canal surface. As mentioned above, the decomposition of the
parametrization has reduced the problem to the parametrization of a specific arc
of circle on the unit sphere. A first naive approach would be to use the inverse
stereographic projection to send the arc of circle to a line segment or an arc of
circle in the plane R2 and then parametrize the image. However, this would result
in a parametrization of a relatively high degree, as in most cases we parametrize
a curve of degree 2 in the plane before projecting it back onto the sphere. This
raises the question of whether we can find a projection that sends arcs of circles
on the unit sphere onto line segments, and which increases the parametrization
degree as little as possible.

The answer is generalized stereographic projection P S . In [5], P S is defined as
a map from RP3 to the unit sphere, and in [3] this is reformulated, by identifying
R4 with C2, as the universal rational parametrization of the unit sphere:

P S (U) =
(
U0U0 + U1U1, 2Re

(
U0U1

)
, 2Im

(
U0U1

)
, U0U0 − U1U1

)T
(3)

whereU=(U0, U1) ∈ C2.This expression is homogeneous:PS (λU)= |λ|2P S (U),
so the generalized stereographic projection can be interpreted as a map from the
complex projective line CP1 to the unit sphere in R3 (after projection into affine
coordinates).

Remark 2. If we restrict the domain of the generalized stereographic projection
to the unit sphere in R4, P S is called the Hopf map.

We consider a line in CP1 as the interpolation of two complex projective points
using a real parameter. Then P S sends a line in CP1 onto a circle on the unit
sphere. More importantly, any circle C on the unit sphere can be lifted onto a
line L in its preimage in CP1 so that P S(L ) = C .

Remark 3. One of the advantages of the generalized stereographic projection is
that unlike the stereographic projection, it does not have a distinguished point
on the sphere where it is not defined. However, the choice of lifting distinguishes
one point. For arcs of circles ending in this point, we need to choose a different
lifting, e.g., by a circular permutation of the coordinates.
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The algorithms in [2] and [3] describe how to lift the endpoints α(t) and β(t)
of an arc of circle on the unit sphere to X(t) and Y (t) in CP1. The lifting of a
point x(t) = (x0(t), x1(t), x2(t), x3(t)) ∈ RP3 is defined as

L(x(t)) =

(
U0, U0

x0(t)− x3(t)

x1(t) + ix2(t)

)
, U0 = gcd (x0(t) + x3(t), x1(t) + ix2(t))

(4)
(see Equation 10 in [3]). They then parametrize a line segment between X(t)
and Y (t) in such a way that the projection of the line segment onto the unit
sphere, using the generalized stereographic projection, is the original arc. As the
generalized stereographic projection is also the universal rational parametriza-
tion of the sphere, if we minimize the parametrization degree of the line in CP1,
its projection on the unit sphere has minimal parametrization degree.

Remark 4. Given two points X,Y ∈ CP1, the line between them is unique
up to a complex scalar λ. The choice of λ determines which arc of circle be-
tween P S(X) and P S(Y ) the line segment is projected onto. As part of the
parametrization algorithm, we therefore have to determine the correct lifting
coefficient λ.

The parametrization of arcs of circles on the unit sphere is summarized in the
following algorithm:

Algorithm 1. An arc of circle on the unit sphere is parametrized by executing
the following steps:

1. Lift the endpoints α(t),β(t) ∈ RP[t]3, i = 1, 2, to X(t),Y (t) ∈ CP1[t].
2. Determine the lifting coefficient λ(t), and factorize λ(t) = λ0(t)λ1(t) as

evenly as possible in order to distribute the increase in degree across X(t)
and Y (t).

3. Parametrize the line segment (1− u)λ0(t)X(t) + uλ1(t)Y (t), u ∈ [0, 1] be-
tween X(t) and Y (t).

4. Project onto the unit sphere using the generalized stereographic projection
P S .

Steps 1, 3, and 4 are identical to the corresponding steps in the algorithm for the
parametrization of pipe surfaces (Alg. 13, [2]). However, while the isoparametric
circles on pipe surfaces correspond to large circles on the unit sphere, this is not
the case for canal surfaces in general. We therefore have to adjust λ accordingly.

The lifting coefficient λ is defined in [3] as the unique solution of a set of
linear equations. In [2] we reduced this to a single equation for the case of pipe
surfaces. We can make similar simplifications for canal surfaces in general.

Lemma 1. The system of linear complex equations determining the lifting co-
efficient λ = λ0λ1 ∈ C[t] has a unique solution up to multiplication by a real
number. If [α(t)] �= − [β(t)], where [α(t)] = (α1/α0, α2/α0, α3/α0) is the pro-
jection from RP3 to R3, then

λ =
(α0 + α3) (ω0 + ω3) (B0 +B3)− (α1 + iα2) (ω1 − iω2) (B0 −B3)

X0Y0
. (5)
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Fig. 1. Rolling ball blends of two cones

Otherwise the two points on the unit sphere are diametrically opposite, i.e.,
α(t) = (α0, α1, α2, α3), β(t) = (−α0, α1, α2, α3), and

λ =
i (α0 + α3) (B0 − B3)− (α1 + iα2) (iB1 +B2)

X0Y0
(6)

Here X0 = gcd (α0 + α3, α1 + iα2), Y0 = gcd (ω0 + ω3, ω1 − iω2), and

B = (B0, B1, B2, B3) = δ(t) (ṙ(t), ṡ1(t), ṡ2(t), ṡ3(t)) (7)

where δ(t) is the common denominator of ṙ(t), ṡ1(t), ṡ2(t), and ṡ3(t).

Remark 5. The arc of circle is contained in the intersection of the unit sphere
with the plane B.x = 0, x = (x0, x1, x2, x3).

Proof. In [3], λ is given as the unique solution of a set of four complex linear
equations. The main challenge in deriving (5) is the size of the expressions, so
we will only give an outline of the calculations here.

Starting from the four complex equations, we consider their real and imaginary
components. We solve two of these real equations for the real and imaginary
parts of λ. We can then show that the remaining equations are equivalent. The
expression for λ is then simplified exploiting the fact that the endpoints [α(t)]
and [β(t)] are contained in the intersection of the plane B.x = 0 with the unit
sphere. Eliminating any real factors, we arrive at (5).

This completes the parametrization algorithm for arcs of circles on the unit
sphere.

2.2 Parametrizing Variable Radius Rolling Ball Blends

The first step in constructing a parametrization of a blend, such as the two
cone-cone blends in Figure 1, is to parametrize the touching curves : the curves
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Fig. 2. Linear family generated by two spheres in oriented contact (left), and the rolling
ball in oriented contact with a cone (right)

the rolling ball trace on the two natural quadrics, i.e., the limiting curves of the
patch on the canal surface. Consider two natural quadrics, and a variable radius
rolling ball blend between them. Let f(t) ∈ R3,1 be the curve in Minkowski
space corresponding to the blend. How we determine the touching curves in the
original surfaces depends on the type of the natural quadric.

To find the touching curve on a sphere, recall that the sphere and the rolling
ball is in oriented contact for any t, i.e., the two spheres are tangent, and their
unit normal vectors coincide at the touching point. Equivalently, the two cor-
responding points p and q ∈ R3,1 are at zero distance, measured using the
Minkowski metric

‖p− q‖ =
√

〈p− q,p− q〉, (8)

where
〈v,v′〉 = v1v

′
1 + v2v

′
2 + v3v

′
3 − v4v

′
4 (9)

is the Minkowski scalar product. We use the notation ( , ) and | | for the Eu-
clidean scalar product and metric, respectively. The Minkowski metric measures
the tangential distance between two oriented spheres. If we consider the linear
family of spheres generated by the sphere and the rolling ball, the touching point
is the member of the family with zero radius. To find the touching curve on the
sphere, it therefore suffices to solve a linear equation, and we find that if f(t)
is rational, the degree of the touching curve on the sphere is the same as the
degree of f(t).

To find the touching curve on a cone or cylinder, recall that they are envelopes
of linear families of spheres. Furthermore, for a given t the rolling ball is in
oriented contact with exactly one sphere in the family (see Figure 2, right).
We find the touching curve by the same procedure as in [2], Lemma 4, (noting
that r is now a function in t), first solving a linear equation to find the tangent
sphere, and then solving a second linear equation to find the touching point.
From the explicit expressions in [2], we see that if f(t) is rational, the degree of
the touching curve is double the degree of f(t).
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The second step in the construction of the parametrization is to determine
the Gaussian images α and β of the two touching curves, i.e., the curves limiting
the patch corresponding to the blend on the unit sphere. The touching curves
T 0(t) and T 1(t) are the isoparametric curves of F (t, u) for u = 0 and u = 1,
and accordingly their Gaussian images are respectively N0(t) and N1(t). This
gives us the expression for α and β:

[α(t)] = N 0(t) =
T 0(t)− s(t)

r(t)
, [β(t)] = N 1(t) =

T 1(t)− s(t)

r(t)
, (10)

where [α(t)] = (α1/α0, α2/α0, α3/α0) is the projection from RP3 to R3.
And finally, after parametrizing the arc of circle between α and β using Al-

gorithm 1, we put together the components of the parametrization using (2):

F (t, u) = s(t) + r(t) [P S ((1− u)λ0X + uλ1Y )] . (11)

Combining these steps, we arrive at the following algorithm for minimal bide-
gree parametrizations of variable radius rolling ball blends:

Algorithm 2. Consider two surfaces, and a canal surface containing a rolling
ball blend between them corresponding to a rational curve f (t) = (s(t); r(t)) ∈
R3,1. The rolling ball blend is parametrized by calculating:

1. The touching curves T 0(t) and T 1(t) of the blend.
2. Their Gaussian images α(t) and β(t).
3. The liftings X(t) and Y (t) ∈ CP1[t].
4. The lifting coefficient λ(t) = λ0(t)λ1(t).
5. The line segment (1− u)λ0(t)X(t) + u λ1(t)Y (t), u ∈ [0, 1].
6. Its generalized stereographic projection onto the unit sphere

N(t, u) = [P S ((1− u)λ0(t)X(t) + u λ1(t)Y (t))] .

7. The parametrization of the blend F (t, u) = s(t) + r(t)N (t, u).

If the degree of the parametrization of the line in CP1 is minimized, this
parametrization of the variable radius rolling ball blend is of minimal bi-degree
(n, 2).

2.3 Rational Blends of the Natural Quadrics

In the previous section, Algorithm 2 was constructed under the assumption that
the canal surface containing the blend is known. Given two surfaces, determin-
ing which curves f(t) ∈ R3,1 correspond to blends between them is a separate
question.

Consider the cones C and C ′ ⊂ R3 corresponding to a lines L and L ′ ⊂ R3,1,
and a rolling ball blend F (t, u) between them. At any point the rolling ball is
in oriented contact with both cones, so the curve f(t) in Minkowski space is
at zero distance to the lines. This means that it is contained in the isotropic
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quadric of the cone C (see [2]), i.e., the hypersurface in R3,1 of points at zero
distance to L , or equivalently the spheres in oriented contact with the cone.
The curve corresponding to a blend between C and C ′ is therefore contained in
the 2-dimensional intersection of their isotropic quadrics: the bisector surface of
L and L ′ in Minkowski space. This surface is toric, so we may apply the results
of e.g. [6] to construct spline curves in the bisector surface in R3,1 corresponding
to rational blends of the two cones.

Another approach is to consider the hyperplane sections of the bisector sur-
face. This is the approach used for fixed radius blends, where the bisector surface
is intersected with the hyperplane x4 = R. In [2], our classification of the con-
figurations of natural quadrics that admit a rational fixed radius blends is based
on the fact that there are exactly two types of surfaces where all hyperplane
sections are rational: rational ruled surfaces and the Steiner surface (see [7]).
Thus for these configurations, any hyperplane section of the bisector surface is
a rational curve that corresponds to a rational blend of the two cones.

In the rest of the paper, we will move on from this question to consider how
we can join curves in Minkowski space, and canal surfaces in R3, with G1 and
G2 continuity. In particular, we want to determine how the curvature properties
at the join of two curves in R3,1 are reflected in the curvature properties at the
join of the corresponding canal surfaces in R3. Our main interest is to construct
piecewise rational canal surfaces with a given degree of continuity at the joins,
but the constructions below are valid as long as the parametrization F (t, u) of
the canal surface is respectively once and twice differentiable at the join for G1

and G2 continuity.

3 Differential Geometry of Curves in R3,1

In the previous section, we described how the parametrization F (t, u) of a
canal surface can be reduced to the parametrization of a circle N(t, u) on the
unit sphere, and how this circle can be parametrized rationally. For the pur-
poses of differential geometry, however, it is convenient to choose a non-rational
parametrization of N(t, u), to avoid the increase in degree from the differentia-
tion of rational expressions. To ensure that F (t, u) is non-degenerate, i.e., that
the envelope of the family of spheres is real, we require that ‖ḟ(t)‖2 > 0.

A convenient parametrization is based on the Frenet frame of the spine curve:

N t(θ) =
ṙ

ν
t+

√
1−
(
ṙ

ν

)2

(cos θn+ sin θ b) (12)

where t, n, and b are the unit tangent, principal normal, and bi-normal vectors
of the spine curve s at t, and ν = |ṡ(t)|. The non-degeneracy condition ensures
that ν > ṙ, so the parametrization is well defined as long as the Frenet frame
exists.

Remark 6. The choice of the Frenet frame is motivated by the existence of the
Frenet equations expressing the derivatives ṫ, ṅ, and ḃ in terms of t, n, and
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Fig. 3. The sphere f t with its tangent cone

b. However, there are curves that do not have well defined Frenet frames in all
points. An alternative choice of frame may, e.g., be rotation minimizing frames,
which have relations with its derivatives similar to the Frenet equations. We
expect that the result would be similar using this frame, however this will be
the subject of further study. For now, the results in the following sections are
valid if the Frenet frames of the two spine curves are well defined and identical
at the join.

The parametrization in (12) can be constructed by recalling that each sphere
f t contributes a characteristic circle F t(θ) to the envelope. Consider the tangent
line of the curve f(t) ∈ R3,1, i.e., the line through f(t) with direction vector ḟ(t).
The envelope of this linear one-parameter family of spheres is the tangent cone
of the canal surface at f t, which is tangent to f t along the characteristic circle.
If φ is the half angle of the tangent cone we find that sinφ = ṙ

ν , which gives us
the above parametrization of N (t, θ) (see Figure 3).

Remark 7. A parametrization similar to (12) has already been used in the inves-
tigation of the analytic and algebraic properties of canal surfaces (see, e.g., [8]),
where the focus have been on canal surfaces whose spine curves are parametrized
by arc length, i.e., where ν = |ṡ(t)| = 1. However, it has been shown that it is
impossible to parametrize a space curve, other than a straight line, by rational
functions of its arc length (see [9]), so for a canal surface with rational spine we
need to consider the general case. Fortunately, this does not significantly increase
the complexity of the resulting expressions.

3.1 G1 Continuity of Curves in R3,1 and Canal Surfaces

By the definition of the envelope, the tangent planes of the sphere f t coincide
with the tangent planes of the canal surface along the characteristic circle. This
gives us a first result relating the continuity of the curve in Minkowski space
with the continuity of the canal surface:
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Theorem 3. If two curves f(t) and g(t) ∈ R3,1 are joined with G1 continuity,
so are the corresponding canal surfaces F (t, u) and G(t, u) ∈ R3.

Proof. G1 continuity is also called tangent continuity. The two curves f (t) and
g(t) ∈ R3,1, are tangent continuous in the point f(t0) = g(t0) if the tangent lines
of f and g coincide at t = t0. Thus the two canal surfaces F (t, u) and G(t, u)
have the same tangent cone and characteristic circle at t = t0. They therefore
have the same unit normal vector field N(t0, u) along the characteristic circle,
i.e., the tangent planes of the two adjacent surfaces coincide: the two canal
surfaces are joined with tangent continuity.

For rolling ball blends, G1 continuity may be considered sufficient, as it is
the level of continuity of the blend with the original surfaces. However, existing
approximate rational blends have internal G2 continuity, so we need at least to
consider if this is achievable with exact piecewise rational blends. Determining
the conditions for a G2 join of canal surfaces will therefore be the main focus of
the rest of this paper.

3.2 G2 Continuity of Curves in R3,1

G2 continuity is also known as curvature continuity. In R3, two curves are joined
with curvature continuity if their osculating circles coincide at the join, i.e.,
if their unit tangent and principal normal vectors t and n, and curvature κ
coincide. This can be extended to curves in R3,1 (see [10]).

The unit tangent vector of a curve s(t) ∈ R3 is defined as

t =
ṡ

|ṡ| . (13)

We generalize this to a curve f(t) in R3,1 using the Minkowski scalar product
to normalize the vector

tm =
ḟ

‖ḟ‖
. (14)

Remark 8. In R3, the only vector with zero length is the vector (0, 0, 0). In
Minkowski space this is no longer the case. We therefore have to be careful when
normalizing vectors. However, the non-degeneracy condition we stated earlier
requires that ‖ḟ‖ > 0, so the Minkowski unit tangent vector is well defined for
curves corresponding to non-degenerate canal surfaces.

To find the unit principal normal vector n of s(t), we derive ṡ = |ṡ|t, using
the Frenet equation ṫ = κ|ṡ|n, and substitute the expression for t in (13). This
gives us

n =
|ṡ|2s̈− (ṡ, s̈)ṡ

κ|ṡ|4 (15)

where, taking the norm on both sides, we find the curvature

κ =
||ṡ|2s̈− (ṡ, s̈)ṡ|

|ṡ|4 . (16)
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Fig. 4. The spine curve s(t) with its Frenet frame and osculating circle (left), and the
canal surface F (t, θ) with its tangent and principal normal cones (right)

Generalizing (15) and (16) to R3,1, we define the unit principal normal vector of
a curve f(t) in Minkowski space in terms of the Minkowski scalar product:

nm =
‖ḟ‖2f̈ − 〈ḟ , f̈ 〉ḟ

κm‖ḟ‖4
, (17)

and its Minkowski curvature

κm =
‖‖ḟ‖2f̈ − (ḟ , f̈)ḟ‖

‖ḟ‖4
. (18)

Figure 4 shows the spine curve s(t) ∈ R3 with its Frenet frame and osculating
circle, and the associated canal surface F (t, θ) with tangent and principal normal
cones generated by its Minkowski tangent and principal normal vectors tm and
nm.

A similar generalization can be constructed for the first and second unit bi-
normal vectors (see [10]).

Remark 9. A point p ∈ R3 can be considered a sphere of zero radius, corre-
sponding to the point (p; 0) ∈ R3,1. Thus a curve s(t) ∈ R3 can be identified
with the curve (s(t); 0) in Minkowski space. For this curve, we then find that
tm = (t; 0), nm = (n; 0), and κ = κm.

Two curves f (t) and g(t) ∈ R3,1 are joined with G2 or curvature continuity
if tm, nm, and κm coincide at the join. We now want to prove the G2 analogue
of Theorem 3, i.e., that if two curves in Minkowski space are joined with G2

continuity, then so are the associated canal surfaces.

4 Differential Geometry of Canal Surfaces

The principal curvatures κ1 and κ2 in a point on a surface in R3 are defined as
the maximum and minimum curvatures of its normal sections. The curvature of



Piecewise Rational Parametrizations of Canal Surfaces 99

a surface is completely defined by κ1, κ2, and its principal curvature directions,
as by Euler’s theorem they determine the curvature of any normal section of
the surface. κ1 and κ2 can be calculated as the eigenvalues, and the principal
curvature directions as the eigenvectors, of the shape operator of the surface.

4.1 The Principal Curvatures of a Canal Surface

The shape operator S of a surface can be expressed in terms of the coefficients of
its first and second fundamental forms. In order to compare principal curvatures,
we therefore start by calculating these. The calculations are straightforward but
large, so we will not show them here. The Maple file containing the details of
the calculations can be obtained by application to the author.

Let f(t) = (s(t); r(t)) be a curve in R3,1. The coefficients of the first funda-
mental form of f(t) are:

E = ν2κ2

(
(Λ1 (1 + rΛ2)−X)

2
+ r2
(
Λ1τ +

ṙ

ν
Y

)2
)

(19)

F = r2νκ2
(
τΛ1 +

ṙ

ν
Y

)
Λ1 (20)

G = r2κ2Λ2
1 (21)

The coefficients of the second fundamental form of f (t) are:

e =

(
r

(
τ

κ

ṙ

ν
− κΛ1Y

)2

+
Λ1 (1 + 2rΛ2)

r
(X − rΛ1Λ2)− r

(
1− Λ2

1Λ
2
2 +

τ 2

κ2

))
ν2κ2

(22)

f = −rκ2νΛ1

(
τΛ1 +

ṙ

ν
Y

)
(23)

g = −rκ2Λ2
1 (24)

where r = r(t), κ and τ are respectively the curvature and torsion of the spine
curve s(t), X = r cos θ and Y = sin θ, and

Λ1 =
1

κ

√
1−
(
ṙ

ν

)2

, Λ2 =
ν̇ṙ − r̈ν(

1−
(
ṙ
ν

)2)
ν3
. (25)

The shape operator S of a surface can be defined in terms of these six coeffi-
cients

S =
1

EG− F 2

(
eG− fF fG− gF
fE − eF gE − fF

)
. (26)

Inserting (19 - 24) and simplifying, we arrive at the shape operator of a canal
surface

S =

( rΛ1Λ2−X
r(Λ1(1+rΛ2)−X)

ντΛ1+ṙY
r(Λ1(1+rΛ2)−X)

0 1
r

)
. (27)
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The shape operator S is triangular, so its eigenvalues are the coefficients along
the diagonal. The principal curvatures of a canal surface are therefore

κ1 =
rΛ1Λ2 −X

r (Λ1 (1 + Λ2r) −X)
, κ2 =

1

r
. (28)

The second principal curvature κ2 is the curvature of the sphere f t, and the
associated curvature line is the characteristic circle. Two canal surfaces joined
with G1 continuity therefore automatically have one coinciding principal curva-
ture and coinciding directions of principal curvature. What remains to be shown,
in order to have G2 continuity, is that the remaining principal curvature κ1 is
the same for the two canal surfaces.

4.2 G2 Continuous Canal Surfaces

To simplify the expressions, we assume that the Frenet frames of the two spine
curves coincide. We then need to solve the equation

rΛ1Λ2 −X

r (Λ1 (1 + Λ2r) −X)
=

rΛ′
1Λ

′
2 −X

r (Λ′
1 (1 + Λ′

2r)−X)
(29)

for any X = r cos θ, i.e., for any θ, as we want to ensure κ1 = κ′1 at any point
along the characteristic circle.

Lemma 2. Two canal surfaces F (t, u) and F ′(t, u) ∈ R3 are joined with G2

continuity if they have the same Λ1 and Λ2.

Proof. Expanding (29), we arrive at

rΛ1Λ
′
1 (Λ2 − Λ′

2) + (Λ1 − Λ′
1)X = 0, ∀X. (30)

Eliminating the two coefficients of the monomials in X proves the lemma, as the
non-degeneracy condition requires Λ1Λ

′
1 �= 0.

By examining Λ1 and Λ2 further, we arrive at the conjectured theorem, relat-
ing the level of continuity of the canal surface to the level of continuity of the
associated curve in Minkowski space

Theorem 4. If two curves f (t) and f ′(t) ∈ R3,1 are joined with G2 continuity,
so are the corresponding canal surfaces F (t, u) and F ′(t, u) ∈ R3.

Proof. G2 continuity of curves in R3,1 is defined by coinciding unit tangent tm,
principal normal nm, and Minkowski curvature κm. We want to demonstrate
that this implies that Λ1 and Λ2 are identical for the two canal surfaces.

The vectors tm and nm span a 2-dimensional plane in R3,1, whose restriction
to the first three coordinates is the plane spanned by t and n ∈ R3. Thus if
the two curves f and f ′ ∈ R3,1 have coinciding tm and nm, their spines s and
s′ ∈ R3 have coinciding t and n.
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If the unit tangent vectors tm coincide at the join, the two canal surfaces have
the same tangent cone, thus

κΛ1 =

√
1−
(
ṙ

ν

)2

= κ′Λ′
1, (31)

as ṙ
ν = sinϕ where ϕ is the half angle of the tangent cone. In the plane spanned by

tm and nm, we find the vector (n;−κΛ2
1Λ2). As n = n′, we get κΛ2

1Λ2 = κ′Λ′2
1 Λ

′
2,

i.e.,
Λ2

κ
=
Λ′
2

κ′
. (32)

The Minkowski curvature can be reformulated as

κm
κ

=

√
1− Λ2

1Λ
2
2

κ2Λ2
1

=

√
1−
(
1−
(
ṙ
ν

)2) Λ2
2

κ2(
1−
(
ṙ
ν

)2) =
κ′m
κ′

(33)

so if κm = κ′m, we get κ = κ′, Λ1 = Λ′
1, and Λ2 = Λ′

2. Applying Lemma 2, this
proves the theorem.

Remark 10. Theorems 3 and 4 confirm the conjecture in Remark 2.1 of [11] for
contact of order 1 and 2, i.e., joins of G1 and G2 continuity.

4.3 G2 Continuity with the End Sphere

In some cases, for example when constructing corner blends (see Section 5.2),
we want a segment of canal surface to be G2 continuous with its end sphere.
The principal curvatures of the sphere are κ1 = κ2 = 1/r, so to calculate the
conditions for G2 continuity with the sphere we need to solve κ1 = 1/r, i.e.,

Λ1

r (Λ1 (1 + rΛ2)−X)
= 0 (34)

Theorem 5. A segment of canal surface is joined with G2 continuity to its end
sphere if either ‖ḟ‖ = 0 or |ṡ| = 0.

Proof. By inserting the expressions for Λ1 and Λ2 in (34), we arrive at a rational
expression with numerator(

ν2 − ṙ2
)
ν = ‖ḟ‖2|ṡ| = 0. (35)

This gives us two cases for G2 continuity.
The first case in the theorem, ‖ḟ‖ = 0, was initially excluded to avoid degen-

eracies in the canal surface. Now consider what happens when we allow this at
the end of the segment of canal surface. The characteristic circle parametrized
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in (12) is reduced to a single point, so we are in fact closing the canal surface,
and the surface is then by construction G2 at the endpoint.

The second case for G2 continuity with the end sphere is ν = 0. Considering
the non-degeneracy condition ν2 > ṙ2, we need to consider the limit value of ṙ/ν
to determine the characteristic circle at the end sphere.

Remark 11. Consider a rational Bézier curve f(t) in R3,1, with control points
{p0, . . . ,pn} (corresponding to control spheres of the canal surface). The associ-
ated canal surface is closed at t = 0 if ‖p0 − p1‖ = 0, i.e., if the two first control
spheres are in oriented contact. The canal surface is joined with its end sphere
at G2 continuity if p0 = p1, i.e., the first control sphere is double.

Corollary 1. Let f (t) and g(t) be two Bézier curves in R3,1 with control points
respectively {p−m, . . . ,p0} and {p0, . . . ,pn}. If

1. p−1, p0, p1 are collinear,
2. p−2, p−1, p0, p1, p2 span a 2-dimensional plane, and
3. p0 is a double control point for both curves,

then the associated canal surfaces F (t, u) and G(t, u) are joined with G2 conti-
nuity.

Proof. If p−1, p0, p1 are collinear, then f(t) and g(t) have the same tangent
line, i.e., the same tm. The control points {p−2,p−1,p0}, and {p0,p1,p2} span
the 2-dimensional tangent/principal normal plane, so if the two planes coincide,
the two curves have the same nm as well. When p0 is a double control point,
the canal surfaces are G2 continuous with the common control sphere along the
same characteristic circle, thus they are G2 continuous with each other.

4.4 The Osculating Cyclide

For a curve s(t) ∈ R3, a geometric interpretation of its curvature κ at a point st
is that its inverse, the radius of curvature rκ = 1

κ , is the radius of the circle best
approximating the curve close to st. This circle, called the osculating circle, lies
in the plane spanned by the unit tangent vector t and the unit principal normal
vector n. This interpretation can be generalized to Minkowski space.

Theorem 6. If at a point f t on a curve f(t) ∈ R3,1 the unit tangent and
principal normal vectors tm and nm are well defined, then there exists a unique
pseudo-Euclidean (PE) circle ct(u) in the 2-dimensional plane spanned by tm
and nm, tangent to the curve at f t, and with the same Minkowski curvature
κm.

Proof. A PE circle in R3,1 is uniquely defined by three finite points (see [12]).
Equivalently, in the plane spanned by tm and nm, a PE circle is uniquely defined
by the point f t, the unit tangent vector tm and the Minkowski curvature κm.
This gives us the uniqueness of the osculating PE circle. Its existence will be
shown by construction later in this section.
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Fig. 5. A canal surface (left) and its osculating cyclide (right)

A Dupin cyclide is the canal surface associated with a PE circle in Minkowski
space. As a curve in R3,1 has a unique osculating PE circle, a canal surface has
a unique osculating cyclide, see Figure 5.

Theorem 7. Along a characteristic circle, a canal surface is G2 continuous with
its osculating cyclide.

Proof. We showed in Theorem 4 that if two curves in R3,1 are joined with G2

continuity, so are the associated canal surfaces. By construction, the osculating
PE circle is G2 continuous with the curve, which proves the theorem.

Thus we can always extend a canal surface with G2 continuity by joining it with
its osculating cyclide.

In Section 4.1 we derived the principal curvatures κ1 and κ2 at a given point
p on a surface. The two spheres with radii 1/κ1 and 1/κ2 in oriented contact
with the surface at p are called its osculating spheres, and give us a geometric
interpretation of the principal curvatures. A definition of a G2 continuous join
of two surfaces is that both tangent planes, osculating spheres, and principal
curvature directions coincide along the join.

For the canal surface corresponding to the curve f(t) = (s(t); r(t)) ∈ R3,1, f t

is the osculating sphere corresponding to the principal curvature κ2 = 1/r(t).
Along the characteristic circle F t(u), the second osculating sphere ĉt(u) is in
oriented contact with f t. It is therefore the member with radius 1/κ1 of the
parabolic family of spheres generated by f t and (F t(u); 0):

vf t + (1− v)(F t(u); 0). (36)

Solving the linear equation vr(t) + 0 = 1/κ1 for v, we find that the osculating
spheres along the characteristic circle F t(u) are parametrized by

ĉt(u) =

(
F t(u)−

1

κ1
N t(u);

1

κ1

)
. (37)
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Expanding F t(u) and N t(u) according to the parametrization in (12), we can
write

ĉt(u) =

(
s+

(
r − 1

κ1

)(
κΛ1 (cos(θ)n+ sin(θ)b)− r′

ν
t

)
;
1

κ1

)
. (38)

Substituting the expression for κ1 from (28), we find that(
r − 1

κ1

)
= −rΛ1/ (rΛ1Λ2 − cos(θ)) . (39)

By reparametrizing ĉt(u) using cos θ = (1−u2)/(1+u2) and sin θ = 2u/(1+u2),
we see that for each t, the curve is quadratic in u. From [13], we know that this
is in fact a PE circle, whose envelope is the Dupin necklace of the canal surface.
However, since we know the explicit rational parametrization of the curve, we
can show this directly.

Theorem 8. The envelope of the family of osculating spheres ĉt(u) is a Dupin
cyclide.

Proof. Dupin cyclides are characterized as the only surfaces which are canal
surfaces with respect to two distinct one-parameter families of spheres. Consid-
ering the curve ĉt(u) ∈ R3,1, we can assume without loss of generality that the
point (s; r) is located at the origin. The canal surface corresponding to ĉt(u) is
a Dupin cyclide iff there exists a second curve ct(u) in R3,1 such that any point
(xt, xn, xb;xr) ∈ ct(u) is at zero distance from ĉt(u) (here the variables xt, xn, xb
correspond to the Frenet frame of the spine and xr to a fourth unit vector for
the radius dimension):

‖ĉt(u)− (xt, xn, xb;xr)‖2 = 0, ∀u. (40)

This is a quartic rational expression in u, so in order to eliminate it for any u,
the five monomial coefficients in the numerator have to be identically zero. Two
of them give the implicit equations of two hyperplanes:

xb = 0,
ṙ

ν
xt − κ Λ2

1Λ2xn − xr = 0. (41)

The remaining equations are equivalent, and gives us the implicit equation of
the curve ct(u) in the 2-dimensional intersection of the two hyperplanes:(

κxt +
ṙΛ2xn
ν

)2

+

(
κmκΛ1xn − 1

κmΛ1

)2

=
1

(κmΛ1)2
(42)

The existence of this second curve proves the theorem.

Corollary 2. The curve ct(u) is the osculating PE circle of the curve f(t), and
its envelope (the Dupin collar) the osculating cyclide of the canal surface.
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Proof. To prove the corollary, we need to show that ct(u) is contained in the
2-dimensional plane spanned by tm and nm, and that its Minkowski curvature
is κm. The curve lies in the intersection of the two hyperplanes in (41), which
both pass through the origin. It therefore suffices to show that tm and nm are
contained in their intersection.

The vector tm is collinear with (t; ṙ/ν) = (1, 0, 0; ṙ/ν). This point satisfies
both equations in (41), so tm is contained in the intersection of the two hyper-
planes.

When we consider the vector nm, we can remove the component collinear with
(t; ṙ/ν). What remains is proportional to (n;−κ Λ2

1Λ2) = (0, 1, 0;−κ Λ2
1Λ2). This

proves that nm is also contained in the intersection of the two hyperplanes, and
as tm and nm are not collinear, they span the 2-dimensional intersection.

The Minkowski curvature of ct(u) is found, e.g., by parametrizing (42) as a
general conic, and then applying (18). We find that its curvature at the origin
is indeed κm.

Remark 12. From the above proof we see that the restriction of the 2-dimensional
plane in R3,1 spanned by tm and nm to the first three coordinates is the plane in
R3 spanned by t and n. And though n is not the restriction of nm, it is uniquely
determined given tm and nm.

The Corollary proves the existence of the osculating PE circle, concluding the
proof of Theorem 6.

4.5 Additional Properties of Canal Surfaces

Knowing the expressions for the two principal curvatures of a canal surface, we
can easily calculate several other properties.

For example, the Gaussian curvature K is defined as

K = κ1κ2 =
Λ1Λ2 − cos θ

r (Λ1 (1 + Λ2r)− r cos θ)
. (43)

We can then easily prove the following theorem:

Theorem 9. The only developable regular canal surfaces are cones and cylin-
ders.

Proof. At regular points, the Gaussian curvature of a developable surface is
identically zero. Inserting the expressions for Λ1 and Λ2 into (43), the numer-
ator is linear in cos θ giving us two expressions to eliminate: ‖ḟ‖2ν2κ = 0 and
‖ḟ‖(ν̇ṙ − r̈ν) = 0, ∀t.

We have assumed ‖ḟ‖ > 0 except at the end of the canal surface, and ν ≡ 0
gives us a canal surface with only one point as its spine. The remaining case
is κ = 0, ∀t, which means that the spine is linear and ν is constant, so ν̇ = 0.
To eliminate the second expression, we therefore need r̈ = 0, i.e., r is linear.
Thus the only developable regular canal surfaces have linear spines and radius
functions: they are cones and cylinders.
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We can also calculate the mean curvature H of the canal surface:

H =
κ1 + κ2

2
=

Λ1

(
1
2 + rΛ2

)
− r cos θ

r (Λ1 (1 + Λ2r) − r cos θ)
. (44)

The first fundamental form determines whether the canal surface has any
local self-intersections, as local self-intersections occur when EG − F 2 = 0. For
a canal surface this gives us a condition on the radius function

|r| <
∣∣∣∣ Λ1

cos θ − Λ1Λ2

∣∣∣∣ , ∀t, θ. (45)

When the radius function is constant, i.e., for pipe surfaces, this is reduced to

|r| < 1

|κ cos θ| , (46)

which should be true for any θ. Since minθ 1/|κ cosθ| = 1/|κ|, the pipe surface
has no local self-intersections if

|r| < 1

|κ| = |rκ|, ∀t. (47)

Theorem 10. As long as its radius is less than the minimal radius of curvature
of the spine, a pipe surface has no local self-intersections.

5 Applications: Piecewise Rational Corner Blends

To demonstrate the applications of the conditions for G1 and G2 continuity of
canal surfaces, we present two constructions of blends of a three sided corner.
The constructions can be generalized to certain n-sided corners, and to corners
whose faces are patches on natural quadrics.

5.1 Sequential Corner Blends

Consider a three sided corner, whose edges are blended by patches on cylinders.
If the radii of the three cylinders are equal, the associated lines in Minkowski
space intersect in a point. Then a patch on the sphere corresponding to the point
of intersection gives us a blend of the corner, which is G1 continuous with the
edge blends (Figure 6, left).

If only two of the radii are equal, we can blend the corner with a patch on a
torus, again with G1 continuity with the edge blend (Figure 6, right). In current
CAD systems, these corner blends are implemented exactly. When the radii
of the three cylinders are all different, however, current CAD systems have to
resort to approximative blends. By constructing the blend sequentially, we can
apply the fixed radius blend parametrization algorithm from [2] to construct a
piecewise rational blend of the corner with internal G1 continuity.
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Fig. 6. Three sided corner blended with a patch on the sphere (left) and torus (right)

In this sequential construction, one of the edges of the corner is distinguished,
and its blend is extended into the corner blend. We start by blending the other
two edges (in Figure 7 we blend the edges with the largest radii). The remaining
edge is then composed of three rational pieces:

1. a line segment: the intersection of the two faces,
2. an arc of circle: the intersection of the largest cylindrical edge blend with

the opposing face, and
3. a segment of a rational quartic curve: the intersection of two cylinders tan-

gent in a single point.

When constructing a blend with fixed radius R, we find its spine by intersect-
ing the R-offsets of the original surfaces. And in this offset corner (Figure 7, left),
the spine of the blend of the remaining edge (including the corner) is similarly
composed of a line segment, an arc of circle, and a segment of a rational quartic.
These three curves are joined with G1 continuity, and the radius function of the
blend is constant, so as a consequence of Theorem 3 the resulting composite
edge-corner blend is also internally G1 continuous.

When constructing the rational parametrization of the blend, we parametrize
each of the components separately according to the closed formulae provided in
[2].

5.2 Spherical Corner Blends

The spherical corner blend is a generalization of the case where the three cylin-
drical edge blends have the same radius. Consider the three curves in R3,1 cor-
responding to the three edge blends of the corner. Only in rare cases will they
intersect in a single point. In the general case, we construct transitional curves
from given points on the edge blend curves, to a common point. This will give
us three transitional edge blends, and if we choose the common point properly,
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Fig. 7. Sequential corner blend

it corresponds to a vertex sphere (Figure 8, right) tangent to all three faces, on
which we determine a three-sided patch closing the composite corner blend.

The spheres tangent to all three faces constitutes a linear one-parameter fam-
ily of spheres, and the associated cone is inscribed in the corner. This gives us
one degree of freedom in the choice of a vertex sphere.

The spine of an edge blend lies in the bisector of the adjoining faces, which
is a plane through the edge. Any rational spine can therefore be parametrized
as a planar rational Bézier curve. The radius of the blend is the distance of the
spine to the two adjoining faces. If we, for simplicity, assume that the vertex
of the corner is in the origin and the unit normal vectors of the three faces are
e1, e2, and e3, then the radius function of the edge blend with spine s of the
face with normal vector ei is s.ei. Thus any rational curve in the bisector plane
will give us a rational edge blend. The construction of edge blends can thus be
reduced to the construction of rational Bézier curves in the bisector plane of
the adjoining faces, and ultimately to the construction of control polygons with
associated weights.

For a spherical corner blend, the construction of a transitional edge blend is
therefore reduced to the construction of a transitional control polygon connecting
the spine curve of the edge blend to the centre of the vertex sphere. Let p0 be
the endpoint of the edge spine curve, pn the centre of the vertex sphere, and
{p1, . . . ,pn−1} the control points in between.

If we want the corner blend to be internally G1 continuous, it is sufficient that
p1 is on the tangent line at the end of the edge spine curve, as the join with the
vertex sphere is G1 continuous by construction.

In order to achieve internal G2 continuity, we have to apply the results from
Sections 4.2 and 4.3. Recalling Remark 11, in order to have a G2 join with the
vertex sphere, we choose pn−1 = pn in order to have a double control point at
the vertex sphere.

In R3,1, the bisector surface of the two hyperplanes corresponding to the two
adjoining faces is a 2-dimensional plane. This constrains any curve corresponding
to a blend to the plane spanned by tm and nm. If the corner blend is internally
G1 continuous, the remaining condition to ensure internal G2 continuity is that
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Fig. 8. Spherical corner blend of a three sided corner

the spines of the edge blend and the transitional edge blend must have the same
curvature κ at p0. For a rational Bézier curve, the curvature at an endpoint is

κ =
w0w2

w2
1

n− 1

n

h

a2
(48)

where wi are the weights, n the degree of the spine curve, a the length of the first
edge of the control polygon, and h the height of the third control point above
the line containing the first edge. Given the curvature of the spine curve of the
edge blend at p0, requiring G2 continuity therefore gives only one additional
constraint in our choice of control polygon and weights.

Summarizing the requirements for a spherical corner blend with internal G2

continuity:

Theorem 11. A spherical corner blend is internally G2 continuous if the con-
trol points {p0, . . . ,pn} and weights {w0, . . . , wn} of the transitional edge blends
satisfy the following conditions:

1. p1 is on the tangent line at the end of the edge spine curve,
2. pn−1 = pn, and

3. κ = w0w2

w2
1

n−1
n

h
a2 where κ is the curvature at the end of the edge spine curve,

a = |p1 − p0|, and h the distance of p2 from the line spanned by p0 and p1.

The transitional edge blends of two adjacent edges meet in at least one point:
the point where the vertex sphere touch their common face, i.e., the corner of the
triangular patch on the vertex sphere. In order to avoid an overlap of adjacent
transitional edge blends at the vertex sphere, we impose an additional condition
on their control polygons. For a three sided corner, the penultimate control point
pn−1 has to be in outside the triangle defined by pn, the origin (the vertex of
the corner), and 2Rei, if the vertex sphere corresponds to the point (pn;R)
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Fig. 9. The Bézier spine curve in the bisector plane (left), and a n-sided spherical
corner blend (right)

and the edge has direction vector ei (Figure 9, left). A similar condition can be
formulated for n-sided corners (Figure 9, right).

6 Conclusions

We have shown that, as envelopes of one-parameter families of spheres, canal
surfaces inherit their geometric continuity properties from the associated curve
in Minkowski space R3,1: if two curves are joined with G1 or G2 continuity, so
are the corresponding canal surfaces. By extending the differential geometry of
curves in R3 to R3,1, we find that if a curve has well defined unit tangent and
principal normal vectors in a point, it has a unique osculating PE circle, and the
corresponding canal surface has a unique osculating cyclide. The osculating PE
circle is G2 continuous with the curve, so the osculating cyclide is G2 continuous
with the canal surface.

Rational curves in R3,1 correspond to rational canal surfaces, which can be
parametrized using Algorithm 2 with a minimal bi-degree (n, 2).

Combining these two independent results we can construct piecewise rational
rolling ball blends of edges and corners of patchworks of planes and natural
quadrics, with internal G1 and G2 continuity.
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Abstract. We show that a nested sequence of Cr macro-element spline
spaces on quasi-uniform triangulations gives rise to hierarchical Riesz
bases of Sobolev spaces Hs(Ω), 1 < s < r+ 3

2
, and Hs

0(Ω), 1 < s < σ+ 3
2
,

s /∈ Z+ 1
2
, as soon as there is a nested sequence of Lagrange interpolation

sets with uniformly local and bounded basis functions, and, in case of
Hs

0(Ω), the nodal interpolation operators associated with the macro-
element spaces are boundary conforming of order σ. In addition, we
provide a brief review of the existing constructions of C1 Largange type
hierarchical bases.

Keywords: Hierarchical bases, Riesz bases, macro-elements, bivariate
splines, Jackson inequality, Bernstein inequality.

1 Introduction

Smooth macro-element spaces are among most practically useful spaces of piece-
wise polynomial splines in two and three space dimensions, see [20]. They are
available on arbitrary polygonal domains and possess stable local bases and
hence full approximation order. Some of them are refinable and therefore suit-
able for the multiresolution analysis [5–7, 9, 11–15, 17, 26, 27], with applications
in particular to multilevel methods in numerical partial differential equations
and surface modelling.

Given a sequence of nested spline spaces S0 ⊂ S1 ⊂ · · · ⊂ Sn ⊂ · · · , and
corresponding nested interpolation sets Ξ0 ⊂ Ξ1 ⊂ · · · ⊂ Ξn ⊂ · · · with La-

grange bases {B(n)
ξ }ξ∈Ξn , hierarchical bases are obtained from the appropriately

re-scaled functions

B
(n)
ξ , ξ ∈ Ξn \ Ξn−1, n = 0, 1, . . . (Ξ−1 := ∅).

The most famous example is given by the piecewise linear basis functions (hat
functions), where the hierarchical basis is used for the multilevel preconditioning
of the discretised second order elliptic equations [31]. The effectiveness of this
method is related to the Riesz basis (or “stability”) property of this hierarchical
basis in the Sobolev spaces Hs(Ω) and Hs

0(Ω), 1 < s < 3
2 . For elliptic equations

of forth order, stability in H2(Ω) and H2
0 (Ω) is needed, and this can be achieved

by C1 hierarchical bases [12] that are Riesz bases in the range 1 < s < 5
2 . In fact,

M. Floater et al. (Eds.): MMCS 2012, LNCS 8177, pp. 112–134, 2014.
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as noted in [21], bases with stability in Hs(Ω) with as large as possible range of s
is advantageous, in particular when an elliptic operator includes parts of different
order. Moreover, a good preconditioning effect is expected when s corresponding
to a given variational problem lies in the central part of the stability interval.

In this paper we study general conditions for the nested sequences of macro-
element spline spaces to give rise to Riesz bases in Hs(Ω) and Hs

0(Ω). The main
results (see Theorem 5) show that the stability range 1 < s < r+ 3

2 in Hs(Ω) is
guaranteed for refinable Cr macro-elements on quasi-uniform triangulations in

R2 if the Lagrange bases {B(n)
ξ }ξ∈Ξn are uniformly local and bounded, and the

nodal bases of the macro-element spaces are also uniformly bounded. Moreover,
the same stability range (up to the half-integer values) is obtained in Hs

0(Ω)
if the macro-element nodal (Hermite) interpolation operators Πn are boundary
conforming of order r in the sense that for any function f vanishing on the
boundary of Ω together with its derivatives up to order r, the interpolants Πnf
have the same property.

The paper is organised as follows. In Section 2 we list some auxiliary results
on K-functionals, interpolation spaces and Sobolev spaces Hs(Ω) and Hs

0(Ω).
Section 3 is devoted to Bernstein and Jackson inequalities for bivariate splines,
including the Bernstein inequality in Hs(Ω) for spline spaces possessing stable
local bases, and error bounds for the macro-element nodal interpolation of func-
tions in Sobolev spaces of integer order. General results on hierarchical bases of
Lagrange type are given in Section 4, whereas C1 macro-element spaces where
such bases are known are reviewed in Section 5. In particular, we verify that the
sequence of nested triangulations suggested in [12] is quasi-uniform.

Throughout we employ the usual notation a � b and a ∼ b to indicate that
the inequality (respectively, the double inequality) includes bounding constants
which are not of interest. The parameters on which these constants may depend
are either explicitly mentioned or clear from the context.

2 Preliminaries

We denote by W k
p (Ω), k ∈ N, 1 ≤ p ≤ ∞, the usual Sobolev spaces on a

bounded Lipschitz domain Ω. The space Ck(Ω) ⊂ W k
∞(Ω) consists of all k times

continuously differentiable functions f on the closure of Ω, with ‖f‖Ck(Ω) =

‖f‖Wk
∞(Ω). The space W k

2 (Ω) is also denoted by Hk(Ω), with H0(Ω) := L2(Ω).
It is a Hilbert space with inner product

〈f, g〉Hk(Ω) = 〈f, g〉L2(Ω) +
∑
|α|=k

〈∂αf
∂xα

,
∂αg

∂xα

〉
L2(Ω)

,

where α = (α1, . . . , αn) ∈ Zn
+ is a multi-index, with |α| := α1 + · · ·+ αn.

Let X and Y ⊂ X be two Hilbert spaces with norms ‖ · ‖X and ‖ · ‖Y =
‖ ·‖X+ | · |Y , respectively, where | · |Y is a seminorm. The K-functional is defined
for each f ∈ X and t > 0 by

KXY (f, t) := inf
g∈Y

‖f − g‖X + t|g|Y ,
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or equivalently (see [22, Remark 4.8]) by the same expression with |g|Y replaced
by ‖g‖Y .

One of the key properties of the K-functional is the following Jackson type
inequality.

Lemma 1. Let S be linear subspace of X. Suppose that for some t > 0,

inf
s∈S

‖g − s‖X ≤ t|g|Y , for all g ∈ Y.

Then for any f ∈ X,
inf
s∈S

‖f − s‖X ≤ KXY (f, t).

Proof. Indeed,

inf
s∈S

‖f − s‖X ≤ inf
g∈Y

inf
s∈S

(‖f − g‖X + ‖g − s‖X) ≤ KXY (f, t)

if the assumption holds. 	


According to the K-method [1], the interpolation space [X,Y ]θ, 0 < θ < 1,
consists of all f ∈ X for which the functional

|f |θ;K =

(∫ ∞

0

(
t−θKXY (f, t)

)2 dt
t

)1/2

(1)

is finite. Given any α > 1, by splitting the domain of integration (0,∞) into the
intervals (α−n−1, α−n), n = 0, 1, . . ., and (1,∞), and using standard properties
of the K-functional, it is easy to show that

|f |θ;K ∼
( ∞∑

n=0

[
αnθKXY (f, α

−n)
]2)1/2

, (2)

where the constants of equivalence depend only on θ and α.
The k-th modulus of smoothness of f ∈ Lp(Ω), 0 < p ≤ ∞, is defined by

ωk(f, t)p = sup
|δ|<t

‖Δk
δf‖Lp(Ωkδ),

where |δ| denotes the Euclidean length of δ ∈ Rn, Ωkδ := {x ∈ Ω : x + jδ ∈
Ω, j = 0, . . . , k}, and

(Δk
δf)(x) :=

k∑
j=0

(k
j

)
(−1)k−jf(x+ jδ), x ∈ Rn,

is the usual difference operator. By [27, Theorem 1], the modulus of smoothness
is equivalent to the K-functional,

ωk(f, t)2 ∼ KL2,Hk(f, tk), t > 0. (3)
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Therefore, in view of Lemma 1, error bounds for functions in Sobolev spaces
immediately lead to Jackson type estimates in terms of the modulus of smooth-
ness.

The Sobolev spaces Hs(Ω) of a fractional order s > 0 can be defined as
interpolation spaces

Hs(Ω) =
[
L2(Ω), Hk(Ω)

]
θ
,

where s = kθ, k integer, 0 < θ < 1. In view of (1) and (3),

|f |Hs(Ω) ∼
( ∫ ∞

0

(t−sωk(f, t)2)
2 dt

t

)1/2
. (4)

Let C∞
c (Ω) be the linear space of all infinitely differentiable functions on Ω

with compact support contained in Ω. We use Hs
0(Ω) to denote the closure of

C∞
c (Ω) in Hs(Ω). It is well known [19] that C∞

c (Ω) is dense in Hs(Ω) if and
only if s ≤ 1

2 . If s >
1
2 and the boundary of Ω is smooth, then Hs

0(Ω) is a proper
subspace of Hs(Ω) given by

Hs
0(Ω) =

{
u ∈ Hs(Ω) :

∂αu

∂xα
= 0 on ∂Ω, for all 0 ≤ |α| < s− 1

2
, α ∈ Zn

}
,

see [19, Theorem 11.5]. Hence, Hs
0(Ω) = Hs(Ω) if s ≤ 1

2 and Hs
0 (Ω) = Hs(Ω)∩

Hs0
0 (Ω), where s0 = �s− 1

2� if s >
1
2 . According to [19, Theorem 11.6] the spaces

Hs
0(Ω) of fractional order s /∈ Z + 1

2 can be obtained from the integer order
spaces Hk

0 (Ω), k > s, by interpolation

Hs
0(Ω) =

[
L2(Ω), Hk

0 (Ω)
]
θ
, θ =

s

k
, s /∈ Z+

1

2
. (5)

For s ∈ Z+ 1
2 adescriptionof the interpolation spacesH

s
00(Ω) :=

[
L2(Ω), Hk

0 (Ω)
]
θ
,

θ = s
k , can be found in [19, Theorem 11.7].

For a domain Ω ⊂ R2 with piecewise smooth boundary in the sense of [16,
p. 34], which includes the case of Lipschitz polygonal domains, the interpolation
property (5) has been shown in [32]. As shown in [16], Hs

0(Ω), s /∈ Z+ 1
2 , in this

case coincides with the space H̃s(Ω) of all those functions f ∈ Hs(Ω) whose
extension to R2 by zero belongs to Hs(R2). See also [2] for (5) in the case of a
bounded Lipschitz domain in any space dimensions and integer s.

3 Bernstein and Jackson Inequalities for Bivariate Splines

We first recall standard definitions from the theory of bivariate piecewise poly-
nomial splines, see [20] for more details.

Let Ω be polygonal domain in R2 and Δ a finite collection of (closed) trian-
gles whose union coincides with Ω. We assume that the intersection of any two
triangles in Δ is empty, or a common vertex, or a common edge of them. Then
Δ is a triangulation of Ω. The length of an edge e of Δ is denoted by |e|. Let
ξ be the set of all edges of Δ. The maximum length of the edges of Δ, denoted
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by h = hΔ = supe∈ξ |e|, is called the diameter or mesh size of Δ. We denote the
smallest angle of the triangles T ∈ Δ by ωΔ, and set

γΔ = min{diamT : T ∈ Δ}/hΔ.

A family of triangulations is called regular if ωΔ ≥ ω > 0 for every Δ in the
family. A regular family is said to be quasi-uniform if γΔ ≥ γ > 0 for every Δ.

For any positive integer d, let Sd(Δ) denote the space of all piecewise polyno-
mials of degree d with respect to Δ. In other words, s ∈ Sd(Δ) if and only if, on
each triangle T ∈ Δ, s agrees with a polynomial in Pd, the space of all bivariate
polynomials of total degree at most d. For any r = 0, 1, . . . , d− 1, let

Sr
d(Δ) := Sd(Δ) ∩ Cr(Ω)

be the space of all piecewise polynomials of degree d and smoothness r with
respect to Δ.

Let {s1, . . . , sN} be a basis for a linear space S ⊂ Sd(Δ). We say that the
basis is m-local if for each i = 1, . . . , N there is a triangle Ti ∈ Δ such that
supp si ⊂ starm(Ti). Here stark(T ) := star(stark−1(T )) for k ≥ 2, where if U is
the union of a cluster of triangles, then star(U) = star1(U) is the union of all
triangles in Δ that have a non-empty intersection with U . A basis is called local
if it is m-local for some m.

Suppose that {λ1, . . . , λN} ⊂ S∗ is the dual basis, that is,

λisj =

{
1, i = j,

0, otherwise.

A basis {s1, . . . , sN} for S ⊂ Sd(Δ) is said to be a stable local basis [8] if for
an integer m and positive constants C1, C2,

(a) {s1, . . . , sN} is m-local,
(b) |λis| ≤ C1‖s‖L∞(starm(Ti)) for all s ∈ S, i = 1, . . . , N , and
(c) ‖si‖L∞(Ω) ≤ C2, i = 1, . . . , N .

Any stable local basis is Lp-stable for all 1 ≤ p ≤ ∞ after appropriate renorming,
that is, for any α = (α1, . . . , αN ) ∈ RN ,

k1C
−1
2

∥∥α∥∥
lp

≤
∥∥∥ N∑

i=1

αi
si

| supp si|1/p
∥∥∥
Lp(Ω)

≤ k2C1

∥∥α∥∥
lp
, 1 ≤ p ≤ ∞,

where k1, k2 are some constants depending only on p, r, d andm, and |M | denotes
the area of a set M ⊂ R2.

3.1 Bernstein Inequality

Functions in subspaces of Sr
d(Δ) possessing a stable local basis satisfy a Bernstein

type inequality in the norm of Hs(Ω) for all 0 < s < r + 3
2 .
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Theorem 1 (Bernstein Inequality). Suppose that S ⊂ Sr
d(Δ) has a stable

local basis {φi}i∈I. Then for any f ∈ S,

‖f‖Hs(Ω) � h−s
Δ ‖f‖L2(Ω), 0 < s < r +

3

2
, (6)

where the bounding constant depends only on s, r, d, ωΔ, γΔ and the parameters
m,C1, C2 of the stable local basis.

Under slightly different assumptions on S, a proof of the Bernstein inequality
can be found in [27], see also [29]. We provide a proof based on the following
lemma.

Lemma 2 ([17, Lemma 2.2]). Let f ∈ Sr
d(Δ). Then f ∈ Hs(Ω) for all s <

r + 3
2 , and

‖f‖Hs(Ω) � h−s
Δ ‖f‖L2(Ω), 0 < s < r +

3

2
, (7)

where the bounding constant depends only on s, r, d, ωΔ, γΔ and the number of
triangles T ∈ Δ in the support of f .

Proof (of Theorem 1). Since {φi}i∈I is a stable local basis, the functions ζi =
| suppφi|−1/2φi, i ∈ I, form an L2-stable basis for S. In particular ‖ζi‖L2(Ω) ≤
M , whereM depends only on the parameters m,C1, C2 of the stable local basis.

Let f =
∑

i∈I ciζi, so that ‖f‖2L2(Ω) ∼
∑

i∈I |ci|2. Choose an integer k > s.

Since the basis {ζi}i∈I is m-local, it is not difficult to see that

Ik(f, δ)
2 �
∑
i∈I

|ci|2Ik(ζi, δ)
2, where Ik(f, δ) := ‖Δk

δf‖L2(Ωkδ), δ ∈ R2.

Hence,

ωk(f, t)
2
2 �
∑
i∈I

|ci|2ωk(ζi, t)
2
2,

and by (4),

|f |2Hs(Ω) �
∑
i∈I

|ci|2
∫ ∞

0

(t−sωk(ζi, t)2)
2 dt

t
∼
∑
i∈I

|ci|2|ζi|2Hs(Ω).

By applying Bernstein inequality (7) to the locally supported functions ζi and
using the L2-stability of the basis {ζi}i∈I , in particular, uniform L2-boundedness
of ζi, we obtain

‖f‖2Hs(Ω) � h−2s
Δ

∑
i∈I

|ci|2‖ζi‖2L2(Ω) � h−2s
Δ

∑
i∈I

|ci|2 � h−2s
Δ ‖f‖2L2(Ω),

which completes the proof. 	
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3.2 Jackson Inequality for Macro-element Spline Spaces

We restrict our attention to the macro-element spaces, see [20, Section 5.10],
because of the availability of boundary conforming interpolation operators that
allow appropriate treatment of subspaces with zero boundary conditions.

Recall that a linear functional λ is called a nodal functional provided λf is
a scalar multiple of the value of f or its (directional) partial derivative at some

point η = η(λ) ∈ R2, that is λf = γ ∂ν+μf
∂σν∂τμ (η), for suitable ν, μ ∈ Z+, η ∈ Ω,

unit vectors σ, τ , and a scaling coefficient γ ∈ R. The number κ(λ) = ν + μ is
called the order of λ.

A collection N = {λi}Ni=1 is called a nodal determining set for a spline space
S ⊂ Sd(Δ) if every s ∈ S is κ(λ) times continuously differentiable at η(λ), and
λs = 0 for all λ ∈ N implies s ≡ 0. N is called a nodal minimal determining set
(NMDS) for S if there is no smaller nodal determining set. In other words, N is
an NMDS if it is a basis for the dual S∗ of S. Let {si}Ni=1 be the basis of S dual
to N , called the nodal basis.

We will work with spaces of splines that are defined on triangulations ΔR =⋃
K∈ΔKR obtained from a given partition Δ of Ω into polygonal cells K by

applying some refinement process to each K ∈ Δ. Examples are provided by
Clough-Tocher and Powell-Sabin splits of the triangles of a triangulation Δ of
Ω. We assume that each K is star-shaped with respect to a disk. We denote by
χK the chunkiness parameter diamK/ρmax of K, where ρmax is the maximum
radius of disks with respect to which K is star-shaped [3, Section 4.3]. Recall
that χK is bounded in terms of the minimum angle of K if K is a triangle. We
set χΔ := maxK∈Δ χK .

For each cell K ∈ Δ, we define

NK = {λ ∈ N : η(λ) ∈ K}.

We call S ⊂ Sd(ΔR) a macro-element space provided there is a NMDS N for S
such that for eachK ∈ Δ, S|K is uniquely determined from the values {λs}λ∈NK .
It is easy to see that the support of a basis function si in a macro-element space is
contained in the union of allK ∈ Δ containing η(λi). For each λi ∈ N , we choose
the scaling coefficient γ to be equal to γi = diam(Ti)

κ(λi), where Ti ∈ ΔR is a
triangle containing η(λi). Note that diam(Ti) ∼ diam(T ′) for any other triangle
T ′ ∈ ΔR sharing a vertex with Ti, with the constant of equivalence depending
only on ωΔR , see [20, Section 4.7], and diam(Ti) ∼ diam(K), where Ti ⊂ K ∈ Δ,
and the constant of equivalence depends only on ωΔR and νΔR := maxK∈Δ |KR|.
Then by Markov inequality [20, Theorem 2.32] |λis| ≤ C1‖s‖L∞(Ti) for any
s ∈ S, where C1 depends only on d, κ(S) := maxi κ(λi) and ωΔR . It follows that
{si}Ni=1 is a stable local basis for S with parameters depending only on d, κ(S),
ωΔR and νΔR as soon as ‖si‖L∞(Ω) ≤ C2, i = 1, . . . , N , for some constant C2.

The interpolation operator Π : Cκ(S)(Ω) → S is defined by

Πf =

N∑
i=1

λi(f)si. (8)
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By the duality of the basis functions si, it is clear that Πs = s for all s ∈
S. In particular, Π reproduces polynomials of degree at most k if Pk ⊂ S.
The definition of the macro-element space implies that the local interpolation
operators ΠK : Cκ(S)(K) → S|K ,

ΠKf =
∑

i: η(λi)∈K

λi(f)si

satisfy ΠKf = (Πf)|K for f ∈ Cκ(S)(Ω).
We say that the interpolation operator Π is boundary conforming of order σ

if the homogeneous boundary conditions of order σ are preserved by the inter-
polant, that is, if

∂ν+μf

∂xν∂yμ
= 0 on ∂Ω, for all ν, μ ≥ 0, ν + μ ≤ σ,

implies

Πf ∈ S0,σ := {s ∈ S :
∂ν+μs

∂xν∂yμ
= 0 on ∂Ω, for all ν, μ ≥ 0, ν + μ ≤ σ}.

The proof of the following version of the Jackson inequality follows the scheme
used in [3, Section 4.4], where it is proved for finite elements, thus making an
assumption of affine equivalence of the spaces S|K , K ∈ Δ. In place of affine
equivalence, we only assume that the nodal basis is uniformly bounded, see (9).

Theorem 2 (Jackson Inequality). Let S ⊂ Sr
d(ΔR) be a macro-element space

such that Pk ⊂ S for some 1 ≤ k ≤ d, and κ(S) ≤ k − 1. Assume that its nodal
basis {si}Ni=1 satisfies

‖si‖L∞(Ω) ≤ C2, i = 1, . . . , N. (9)

Then for every f ∈ Hk+1(Ω),

‖f −Πf‖Hν(Ω) ≤ Chk+1−ν
Δ |f |Hk+1(Ω), ν = 0, . . . ,min{r, k}+ 1, (10)

where C depends only on d, ωΔR , νΔR , χΔ and C2.

Proof. Recall that by Sobolev embedding theorem any function f ∈ Hk+1(Ω)
belongs (after possible modification on a set of zero measure) to Ck−1(Ω). This
implies that Πf is well defined for all f ∈ Hk+1(Ω), and f − Πf ∈ Hr+1(Ω)
since Sr

d(ΔR) ⊂ Hr+1(Ω).
Given any K ∈ Δ, we define

K̂ :=

{
x

diam(K)
: x ∈ K

}
.

Then diam K̂ = 1 and hence |K̂| ≤ ξ/4. For any function g defined on K we set
ĝ(y) := g(diam(K)y), y ∈ K̂. The functions

ŝi := ŝi|K , for all i such that λi ∈ NK ,
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form a basis for the spline space ŜK := {ŝ : s ∈ S|K} on K̂, with its dual basis

given by the linear functionals λ̂i(ĝ) := λi(g), g ∈ Ck−1(K). Since diam(Ti) ∼
diam(K), we have

λ̂iĝ = diam(Ti)
ν+μ ∂ν+μg

∂σν∂τμ
(η) ∼ ∂ν+μĝ

∂σν∂τμ
(diam(K)−1η),

and it follows that

|λ̂i(g)| ≤ Ĉ1‖g‖Ck−1(K̂), g ∈ Ck−1(K̂), λi ∈ NK , (11)

where Ĉ1 depends only on ωΔR , νΔR and d. Note that by Sobolev inequality [3,
Section 4.3],

‖g‖Ck−1(K̂) � ‖g‖Hk+1(K̂), g ∈ Hk+1(K̂) ⊂ Ck−1(K̂), (12)

where the bounding constant depends only on k and the chunkiness parameter
χK̂ (= χK).

We define the interpolation operator ΠK̂ : Ck−1(K̂) → ŜK by

ΠK̂g :=
∑

i:λi∈NK

λ̂i(g)ŝi.

By (9) we get

‖ŝi‖L2(K̂) ≤
√
ξ

2
‖ŝi‖L∞(K̂) ≤

√
ξ

2
C2,

which in view of the Bernstein inequality (7) leads to

‖ŝi‖Hr+1(K̂) ≤ Ĉ2, (13)

where Ĉ2 depends only on d, r, ωΔR , |KR| and C2.
The inequalities (11) and (13) imply that the operator ΠK̂ : Ck−1(K̂) →

Hr+1(K̂) is uniformly bounded, i.e.,

‖ΠK̂g‖Hr+1(K̂) ≤ Ĉ3‖g‖Ck−1(K̂), (14)

where the constant Ĉ3 depends only on Ĉ1, Ĉ2, d and |KR|. Indeed, let g ∈
Ck−1(K̂). Then ΠK̂g ∈ ŜK ⊂ W r+1

∞ (K̂) ⊂ Hr+1(K̂). Clearly, |NK | does not
exceed a constant C′ depending only on d and |KR|. In view of (11) and (13),

‖ΠK̂g‖Hr+1(K̂) ≤
∑

i:λi∈NK

|λ̂i(g)| ‖ŝi‖Hr+1(K̂) ≤ C′Ĉ1Ĉ2‖g‖Ck−1(K̂).

We now show that for every K ∈ Δ and g ∈ Hk+1(K),

|g −ΠKg|Hν(K) � diam(K)k+1−ν |g|Hk+1(K), 0 ≤ ν ≤ min{r, k}+ 1, (15)
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where the constant in the bound depends only on d, ωΔR , νΔR , χK and C2.
If g ∈ Hk+1(K), then ĝ ∈ Hk+1(K̂) and, by the Bramble-Hilbert lemma [3,
Section 4.3] there exists a polynomial p ∈ Pk such that

‖ĝ − p‖H�(K̂) � |ĝ|Hk+1(K̂), 0 ≤ $ ≤ k + 1, (16)

where the bounding constant depends only on k and the chunkiness parameter
χK̂ (= χK). Let m = min{r, k}. Since ΠK̂p = p, we have by (14), (12) and (16),

‖ĝ −ΠK̂ ĝ‖Hm+1(K̂) ≤ ‖ĝ − p‖Hm+1(K̂) + ‖ΠK̂(p− ĝ)‖Hm+1(K̂)

� ‖ĝ − p‖Hk+1(K̂) + ‖p− ĝ‖Ck−1(K̂)

� ‖ĝ − p‖Hk+1(K̂) + ‖p− ĝ‖Hk+1(K̂)

� |ĝ|Hk+1(K̂),

and (15) follows since

|g −ΠKg|Hν(K) = diam(K)1−ν |ĝ −ΠK̂ ĝ|Hν(K̂),

|ĝ −ΠK̂ ĝ|Hν(K̂) ≤ ‖ĝ −ΠK̂ ĝ‖Hm+1(K̂), and

|ĝ|Hk+1(K̂) = diam(K)k|g|Hk+1(K).

The estimate (10) follows from (15) because

‖f−Πf‖2Hν(Ω) =
∑
K∈Ω

ν∑
i=0

|f |K −ΠKf |K |2Hi(K), |f |2Hk+1(Ω) =
∑
K∈Ω

|f |K |2Hk+1(K)

and hΔ = maxK∈Δ diam(K). 	


Note that the estimate

inf
g∈S

‖f − g‖Hν(Ω) ≤ Chk+1−ν
Δ |f |Hk+1(Ω), f ∈ Hk+1(Ω),

can be obtained by using quasi-interpolation operators for any spline spaces
S with a stable local basis, see [20] or [10]. Even though Theorem 2 is only
applicable to macro-element spaces, its importance for the results below about
Riesz bases in Hs

0(Ω) is that it leads to the estimate

inf
g∈S0,σ

‖f − g‖Hν(Ω) ≤ Chk+1−ν
Δ |f |Hk+1(Ω), f ∈ Hk+1

0 (Ω), (17)

as soon as the interpolation operator Π is boundary conforming of some order
σ ≤ r, which is normally the case for the macro-elements.

Corollary 1. In addition to the assumptions of Theorem 2 suppose that the
interpolation operator Π is boundary conforming of order σ ≤ r. Then the es-
timate (17) holds for all ν = 0, . . . ,min{r, k} + 1, where C depends only on d,
ωΔR , νΔR , χΔ and C2.
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4 General Theory of Hierarchical Riesz Bases

Recall that a basis {φn}∞n=1 for a Hilbert space H is said to be a Riesz basis if
for any c ∈ $2, ∥∥∥ ∞∑

n=1

cnφn

∥∥∥
H

∼
( ∞∑

n=1

c2n

)1/2
.

Suppose that Sn, n = 0, 1, 2 . . ., is a nested sequence of finite dimensional
subspaces of a Hilbert space H , that is

S0 ⊂ S1 ⊂ . . . ⊂ Sn ⊂ . . . n = 0, 1, 2, . . . . (18)

We assume that ∪∞
n=0Sn is dense in H and set S−1 := {0}. Then every element

f ∈ H can be represented as a convergent series
∑∞

n=0 fn in H with fn ∈ Sn.
For n = 0, 1, 2, . . ., let Pn be a linear projection from Sn onto Sn−1, and let
Wn be the complement space, that is, Pn(Wn) = {0} and Sn = Sn−1 +Wn. In
particular, W0 = S0.

We will use the following general result about construction of Riesz bases for
certain subspaces of H using stable bases of Wn. More standard statements of
this type are usually restricted to the case when the projectors Pn are uniformly
bounded, see e.g. [6].

Theorem 3 ([18]). Assume that for some v > 0 and ρ > 1,

‖Pn+1 · · ·Pmf‖H � ρv(m−n)‖f‖H, f ∈ Sm, (19)

for all m,n = 0, 1, 2, . . . with n < m. Let s > v and let Hs be a linear subspace
of H which itself is a Hilbert space with norm ‖ · ‖Hs satisfying

∥∥f∥∥
Hs

∼ inf
fn∈Sn: f=

∑∞
n=0 fn

( ∞∑
n=0

[
ρns‖fn‖H

]2)1/2
, f ∈ Hs. (20)

Suppose that for each n = 0, 1 . . .,Wn ⊂ Hs and there is a stable basis {φ(n)k }k∈Kn

for Wn in the sense that∥∥∥ ∑
k∈Kn

ckφ
(n)
k

∥∥∥
H

∼
( ∑

k∈Kn

c2k

)1/2
, (21)

with constants of equivalence independent of n. Then
⋃∞

n=0{ρ−nsφ
(n)
k }k∈Kn is a

Riesz basis for Hs.

Assumption (20) of Theorem 3 can often be verified with the help of the
following theorem. Although it can be derived from more general results in e.g. [4,
22] (see also [28]), we provide here a short and self-contained proof based on
arguments similar to those in [27, Theorem 6] and [7, Corollary 5.2].
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Theorem 4. Let H and H ′ ⊂ H be Hilbert spaces with norms ‖·‖H and ‖·‖H′ =
‖ · ‖H + | · |H′ , where | · |H′ is a seminorm. Suppose that for some α > 1 and
0 < λ < 1 nested finite dimensional linear subspaces Sn ⊂ H satisfy the Jackson
inequality

inf
s∈Sn

‖f − s‖H � α−n|f |H′ , f ∈ H ′, n = 0, 1, . . . , (22)

and the Bernstein inequality in the norm ‖ · ‖λ;K of the interpolation space
[H,H ′]λ,

‖s‖λ;K � αnλ‖s‖H , s ∈ Sn. (23)

Then for any 0 < θ < λ,

‖f‖θ;K ∼ inf
fn∈Sn: f=

∑∞
n=0 fn

( ∞∑
n=0

[
αnθ‖fn‖H

]2)1/2
, f ∈ [H,H ′]θ, (24)

where the constants of equivalence depend only on α, the difference λ − θ and
the bounding constants in (22) and (23).

Proof. Recall from (2) that

‖f‖θ;K ∼ ‖f‖ := ‖f‖H +
( ∞∑

n=0

[
αnθKH,H′(f, α−n)

]2)1/2
.

We will show that ‖f‖ ∼ ‖f‖∗, where ‖f‖∗ denotes the right hand side of (24).
We first prove that ‖f‖∗ � ‖f‖. Let f ∈ H . It follows from (22) by Lemma 1

that there exists a sequence of elements fn ∈ Sn such that

‖f − fn‖H � KH,H′(f, α−n), n = 0, 1, . . . .

Then

‖fn − fn−1‖H ≤ ‖fn − f‖H + ‖fn−1 − f‖H � KH,H′(f, α−n), n ≥ 1,

and ‖f0‖H � ‖f‖H+KH,H′(f, 1). If ‖f‖ < ∞, then ‖f−fn‖H → 0 when n → ∞
and hence

f =

∞∑
n=0

(fn − fn−1), f−1 = 0,

where fn − fn−1 ∈ Sn since Sn−1 ⊂ Sn, which implies

‖f‖∗ ≤
( ∞∑

n=0

[
αnθ‖fn − fn−1‖H

]2)1/2 � ‖f‖.

We now proceed to showing the opposite inequality ‖f‖ � ‖f‖∗. Let f =∑∞
n=0 fn with some fn ∈ Sn. By (23) we have for t ∈ [α−(j+1), α−j ],

KH,H′(fn, t)
2 ≤ KH,H′(fn, α

−j)2 � α−2λj |fn|2λ,K � (tαn)2λ‖fn‖2H . (25)
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Let 0 < θ < λ. Then

∞∑
j=0

α2θjKH,H′(f, α−j)2 ≤ 2(A+B),

where

A =

∞∑
j=0

α2jθ

( j∑
n=0

KH,H′(fn, α
−j)

)2

, B =

∞∑
j=0

α2jθ

( ∞∑
n=j+1

KH,H′(fn, α
−j)

)2

.

By (25) and Cauchy-Schwarz inequality,

A �
∞∑
j=0

α2jθ

( j∑
n=0

α(n−j)λ‖fn‖H
)2

=

∞∑
j=0

α2j(θ−λ)

( j∑
n=0

αn(λ−θ)αnθ‖fn‖H
)2

≤
∞∑
j=0

α2j(θ−λ)

j∑
n=0

αn(λ−θ)

j∑
n=0

αn(λ−θ)α2nθ‖fn‖2H .

Since
j∑

n=0

αn(λ−θ) =
α(j+1)(λ−θ) − 1

α(λ−θ) − 1
≤ α(λ−θ)

α(λ−θ) − 1
· αj(λ−θ),

we get

A �
∞∑
j=0

α−j(λ−θ)

j∑
n=0

αn(λ−θ)α2nθ‖fn‖2H = C1

∞∑
n=0

α2nθ‖fn‖2H ,

where C1 =
∑∞

k=0 α
−k(λ−θ) = 1

1−α−(λ−θ) .

The bound KH,H′(fn, α
−j) ≤ ‖fn‖H and the Cauchy-Schwarz inequality im-

ply

B ≤
∞∑
j=0

α2jθ

( ∞∑
n=j+1

‖fn‖H
)2

=

∞∑
j=0

α2jθ

( ∞∑
n=j+1

α
−nθ

2 α
−nθ

2 αnθ‖fn‖H
)2

≤
∞∑
j=0

α2jθ
∞∑

n=j+1

α−nθ
∞∑

n=j+1

α−nθα2nθ‖fn‖2H

=
α−θ

1− α−θ

∞∑
n=1

n−1∑
j=0

α(j−n)θα2nθ‖fn‖2H ≤ C2

∞∑
n=0

α2nθ‖fn‖2H ,

where C2 = α−θ−1

(1−α−θ)(1−α−1)
. Combining the above estimates for A and B yields

‖f‖ � ‖f‖∗. 	


We will use Theorems 3 and 4 with H = L2(Ω) and Hs = Hs(Ω) or Hs
0(Ω),

where Ω ⊂ R2 is an arbitrary polygonal domain, and {Sn}∞n=0 is a nested
sequence of macro-element spline spaces.
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A sequence of triangulations {Δn}∞n=0 of Ω is said to be nested if each Δn+1

is a refinement of Δn, that is Δn+1 is obtained from Δn by subdividing the
triangles of Δn. Then obviously Sr

d(Δn+1) ⊂ Sr
d(Δn), so that {Sr

d(Δn)}∞n=0 is
a nested sequence of spaces. However, certain subspaces Sn ⊂ Sr

d(Δn) may also
be nested, see for example [9, 11, 13].

Recall that a sequence of triangulations {Δn}∞n=0 of Ω is regular if the min-
imum angle of all Δn remains bounded below by a positive constant ω > 0
independent of n, and the triangulations Δn are quasi-uniform in the sense that
there exist constants ρ > 1 and c1, c2 > 0 independent of n such that

c1ρ
−n ≤ diamT ≤ c2ρ

−n, T ∈ Δn. (26)

Parameter ρ will be called the refinement factor of {Δn}∞n=0.
Recall that a finite set Ξ ⊂ Ω is said to be a Lagrange interpolation set for a

finite dimensional linear space S of functions on Ω if #Ξ = dimS and for each
ξ ∈ Ξ there is a unique function Bξ ∈ S satisfying Bξ(η) = δξ,η for all ξ, η ∈ Ξ,
where δξ,η = 1 if ξ = η and δξ,η = 0 otherwise. The set

{
Bξ

}
ξ∈Ξ

is a basis for S

called the Lagrange basis.
A sequence of Lagrange interpolation sets {Ξn}∞n=0 for the corresponding

spaces Sn is said to be nested if

Ξ0 ⊂ Ξ1 ⊂ . . . ⊂ Ξn ⊂ . . . . (27)

We are ready to formulate the main result of the paper.

Theorem 5. Let {Sn}∞n=0 be a nested sequence of spaces Sn ⊂ Sr
d(Δn), r ≥ 0,

with respect to a regular nested sequence of triangulations {Δn}∞n=0 of a polygo-
nal domain Ω ⊂ R2, with refinement factor ρ > 1, and let {Ξn}∞n=0 be a nested
sequence of Lagrange interpolation sets for the spaces Sn, with the corresponding

Lagrange basis
{
B

(n)
ξ

}
ξ∈Ξn

for Sn. Assume that the bases
{
B

(n)
ξ

}
ξ∈Ξn

are uni-

formly local and bounded, that is they are m-local and satisfy ‖B(n)
ξ ‖L∞(Ω) ≤ M ,

ξ ∈ Ξn, for some m,M independent of n.
(a) Assume that the spaces Sn satisfy the Jackson inequality

inf
g∈Sn

‖f − g‖L2(Ω) � ρ−n(k+1)|f |Hk+1(Ω), f ∈ Hk+1(Ω), (28)

For some k ∈ N with r < k ≤ d. Then for any s ∈ (1, r + 3
2 ) the set

Bs :=
∞⋃
n=0

{
ρn(1−s)B

(n)
ξ

}
ξ∈Ξn\Ξn−1

is a Riesz basis for Hs(Ω).
(b) Moreover, if the spaces Sn, n = 0, 1, . . ., satisfy the homogeneous boundary

conditions of order σ ≤ r, that is

∂ν+μg

∂xν∂yμ
= 0 on ∂Ω, for all ν, μ ≥ 0, ν + μ ≤ σ, g ∈ Sn,
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and (28) holds for all f ∈ Hk+1
0 (Ω) rather than for all f ∈ Hk+1(Ω), then Bs

is a Riesz basis for Hs
0(Ω) if s ∈ (1, σ + 3

2 ) \ (Z+ 1
2 ).

Proof. Under the assumptions of the theorem, the bases
{
B

(n)
ξ

}
ξ∈Ξn

are stable

and local in the sense of the definition in Section 3. Since diam(T ) ∼ ρ−n,

T ∈ Δn, the bases
{
ρnB

(n)
ξ

}
ξ∈Ξn

are L2-stable, which implies

∥∥∥ ∑
ξ∈Ξn

cξB
(n)
ξ

∥∥∥
L2(Ω)

∼ ρ−n
( ∑

ξ∈Ξn

c2ξ

)1/2
, (29)

for any real numbers cξ, with constants of equivalence independent of n.
Let 0 < s < r + 3

2 . We choose a number s̄ such that s < s̄ < r + 3
2 . By

Theorem 1, since the spaces Sn possess stable local bases, we obtain the Bernstein
inequality

‖g‖Hs̄(Ω) � ρns̄‖g‖L2(Ω), g ∈ Sn.

By Theorem 4, applied with α = ρk+1, λ = s̄/(k + 1) < 1 and θ = s/(k + 1),
we see that under the assumptions of part (a) condition (20) of Theorem 3 is
satisfied forH = L2(Ω), H ′ = Hk+1(Ω) and Hs = Hs(Ω) = [L2(Ω), Hk+1(Ω)]θ .
Similarly, under the assumptions of part (b) condition (20) follows from Theorem
4 with H = L2(Ω), H ′ = Hk+1

0 (Ω) and Hs = [L2(Ω), Hk+1
0 (Ω)]θ.

We now verify the other assumptions of Theorem 3. The density of ∪∞
n=0Sn

in H = L2(Ω) follows from the Jackson inequality (28) since both Hk+1(Ω) and
Hk+1

0 (Ω) are dense in L2(Ω). Furthermore, let In : C(Ω) → Sn, n = 0, 1, . . ., be
the Lagrange interpolation operator

Inf :=
∑
ξ∈Ξn

f(ξ)B
(n)
ξ .

We set Pn := In−1|Sn , n ≥ 1, and P0 := 0. Then Pn : Sn → Sn−1 is a
linear projection, and, in view of the nestedness (27) of {Ξn}∞n=0, we have
Pn+1 · · ·Pm = In|Sm for all m > n. Let g ∈ Sm and h := Pn+1 · · ·Pmg. Then

g =
∑

ξ∈Ξm
g(ξ)B

(m)
ξ and h =

∑
ξ∈Ξn

g(ξ)B
(n)
ξ . By (29) and (27) we obtain∥∥h∥∥2

L2(Ω)
� ρ−2n

∑
ξ∈Ξn

|g(ξ)|2 ≤ ρ−2n
∑

ξ∈Ξm

|g(ξ)|2

� ρ2(m−n)‖g‖2L2(Ω),

which implies (19) with H = L2(Ω) and v = 1. Because of (27) the sets{
ρnB

(n)
ξ : ξ ∈ Ξn \ Ξn−1

}
, n = 0, 1, . . . (Ξ−1 = 0)

form L2-stable bases for the complement spaces Wn. Since Wn ⊂ Sn ⊂ Hs(Ω)
for all s < r+ 3

2 by Theorem 1, an application of Theorem 3 with v = 1 completes
the proof of part (a). Under the assumptions of part (b) it is easy to see that
Sn ⊂ H̃s(Ω) = Hs

0(Ω) for all s < σ + 3
2 , s /∈ Z + 1

2 , and Theorem 3 implies
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that Bs is a Riesz basis for [L2(Ω), Hk+1
0 (Ω)]s/(k+1) for all 1 < s < σ + 3

2 . The
statement of part (b) follows in view of the description (5) of these interpolation
spaces in Section 2. 	


Note that in the case r = σ = 0 the condition (20) of Theorem 3 for H =
L2(Ω) and Hs = Hs

0 (Ω), s < 3
2 , can be verified with the help of [25, Corollary 3]

without using interpolation spaces.
The argumentation of Theorem 5 for Ω ⊂ Rd would lead to the Riesz basis

for Hs(Ω) with the expectable range d
2 < s < r + 3

2 . Indeed, (29) then holds

with ρ−
dn
2 replacing ρ−n, and hence Theorem 3 is applicable with v = d

2 .
The standard C0 piecewise linear hierarchical basis [31] is, after appropriate

scaling, a Riesz basis of Hs(Ω) s ∈ (1, 32 ) in two dimensions, see [21]. Clearly,
Theorem 5 applies to this case, where the triangulations Δn are obtained by the
uniform refinement of an initial triangulation of Ω, ρ = 2, Sn is either S0

1(Δn)
(for Hs(Ω)) or its subspace {s ∈ Sn : s|∂Ω = 0} (for Hs

0 (Ω)), and Ξn is either
the set of all vertices of Δn or the set of all interior vertices, respectively. The
Jackson inequality (28) for k = 1 follows from Theorem 2 since S0

1(Δn) are
macro-element spaces with uniformly bounded basis functions, P1 ⊂ S0

1(Δn),
and the interpolation operator Π is boundary confirming of order σ = 0.

In the next section we provide a brief review of the existing constructions of
C1 Lagrange type hierarchical Riesz bases for Sobolev spaces Hs(Ω), s ∈ (1, 52 ),
and Hs

0(Ω), s ∈ (1, 32 ) ∪ (32 ,
5
2 ). Note that C1 hierarchical bases of Hermite type

are also known [5, 26]. They form Riesz bases for Hs(Ω), s ∈ (2, 52 ).

5 C1 Lagrange Hierarchical Riesz Bases for Sobolev
Spaces

Spline spaces Sn ⊂ Sr
d(Δn) and Lagrange interpolation sets Ξn satisfying the

hypotheses of Theorem 5 give rise to hierarchical Riesz bases for Hs(Ω), s ∈
(1, r+ 3

2 ), respectively H
s
0(Ω), s ∈ (1, σ+ 3

2 )\(Z+
1
2 ). However, specific construc-

tions are only available for r = 0, 1. In this section we review such constructions
of the spaces Sn in the case r = 1. We do not describe the corresponding sets
Ξn as they are quite technical, and the interested reader is instead referred to
the original literature.

5.1 Piecewise Cubics on Triangulated Quadrangulations

The first construction of C1 Lagrange hierarchical bases has been suggested in
[12], where the nested spline spaces are the macro element spaces of C1 piece-
wise cubic polynomials on the triangulations (see [20, Section 6.5]) obtained by
adding two diagonals to the quadrilaterals of a checkerboard quadrangulation of
any polygonal domain, which means that all interior vertices of the quadrangu-
lation are of degree 4 and quadrilaterals can be coloured black and white in such a
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way that any two quadrilaterals sharing an edge have opposite colours. The
corresponding nodal basis satisfies (9) with a constant C2 dependent only on
the minimum angle of the triangles T ∈ ΔR and the interpolation operator Π is
boundary conforming of order 1.

Nested spaces are obtained by the triadic refinement of the quadrilaterals
and their subtriangles illustrated in Figures 1 and 2. More precisely, Let Q =
〈v1, v2, v3, v3〉 be a quadrilateral and let p1 = 1/3(2v1 + v2), p2 = 1/3(v1 + 2v2),
p3 = 1/3(2v2 + v3), p4 = 1/3(v2 + 2v3), p5 = 1/3(2v3 + v4), p6 = 1/3(v3 + 2v4),
p7 = 1/3(2v4 + v1), p8 = 1/3(v4 + 2v1), p9 = 1/3(v1 + 2v̄), p10 = 1/3(v2 + 2v̄),
p11 = 1/3(v3 + 2v̄), p12 = 1/3(v4 + 2v̄), where v̄ is the point of intersection
of the diagonals of Q. The refinement is obtained by connecting the points p1
and p8 to p9, p2 and p3 to p10, p4 and p5 to p11, p6 and p7 to p12, and finally
connecting the points p9, p10, p11, p12 together, as shown in Figure 1. Each of the
9 quadrilaterals is subdivided into 4 triangles by its diagonals as in Figure 2.

v1

v2 v3

v4

p1

p2

p3 p4

p5

p6

p7p8

p9

p10 p11

p12

Fig. 1. A triadic refinement ♦Q of a quadrilateral Q

v1

v2
v3

v4

v5

Fig. 2. The triangulation ΔQ of ♦Q
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Given an initial quadrangulation ♦0 of Ω, this method generates a sequence
of successively refined quadrangulations ♦0,♦1, . . . ,♦n, . . . , and triangulations
Δ0, Δ1, . . . , Δn, . . . , and the nested macro-element spaces are Sn = S1

3(Δn).
While the nestedness of the sequence of triangulations {Δn}∞n=0 is obvious, its
regularity, which has not been fully addressed in [12], follows from Proposition 1
below. For the nested sequence of Lagrange interpolation sets {Ξn}∞n=0 described
in [12] all assumptions of Theorem 5 (b) are satisfied, with r = σ = 1, k = 3 and
ρ = 3, which leads to a Riesz basis for Hs

0 (Ω), s ∈ (1, 32 ) ∪ (32 ,
5
2 ).

Proposition 1. Each triangle T ∈ Δn, n ≥ 2, is similar to a triangle in Δ1

with the scaling factor 1
3n−1 .

Proof. Consider the quadrangulation ♦Q of a quadrilateral Q obtained by the
triadic refinement. It is easy to see that the quadrilateral 〈p9, p10, p11, p12〉 is
similar to the parent quadrilateral Q = 〈v1, v2, v3, v4〉, whereas 〈p1, p2, p10, p9〉
is a parallelogram with side length 1

3 of the size of the parent edge 〈v1, v2〉, see
Figure 1. Three other children of Q in similar position are also parallelograms.

Let ΔQ be the triangulation of ♦Q shown in Figure 2. We observe that there
are 8 different types of similar triangles inΔQ as shown in Figure 3. The triangles
of types 1, 2, 3 and 4 are similar to their parent triangles (obtained from Q by
splitting along its diagonals) with the coefficient 1

3 . The triangles of types 5, 6, 7
and 8 will be referred to as “median” triangles because each of them has a side
parallel to the median of its parent triangle and of length 2

3 of that median, as
illustrated in Figure 4, where the section 〈v1, v2, v5〉 of the triangulations ΔQ of
Figure 2 is shown separately.

1

1

11
1

2 2

2

2

2

3

3

3 3 3

44

4

4

4

5555

6

6

6

6

7 7 7 7

8

8

8

8

Fig. 3. Eight types of similar triangles in ΔQ

We now apply the next refinement step and look at the median subtriangle
〈a, b, c〉 of the median triangle in ΔQ as shown in Figure 5. We note that the
dotted line 〈q1, q2〉 is of length 2

3 of the side 〈p1, p9〉 of the parent which is
parallel to the median 〈p1, p2〉 of the grandparent. Hence the median of the
median triangle 〈a, b, c〉 is of length 1

4 × 2
3 × 2

3 = 1
9 of the median 〈m, v5〉 of the

grandparent 〈v1, v2, v5〉. Therefore, the median subtriangle 〈a, b, c〉 is similar to
the grandparent 〈v1, v2, v5〉 with coefficient 1

9 .
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v1

v2

v5
44

4

4

4

8

8

8

8

p1

p2

p9

p10

m

Fig. 4. The triangle 〈v1, v2, v5〉, its median 〈m, v5〉 and 9 children

v1

v2

v5

q1 q2
p1 p9

a

b

c

m

Fig. 5. The triangle 〈a, b, c〉 is similar to the parent 〈v1, v2, v5〉 with coefficients 1
9

Let T ∈ Δn, with n ≥ 2. By applying the above observations recursively, we
have two following cases: 1) T is similar to an ancestor T̃ ∈ Δ1 with coefficient

1
3n−1 . 2) T is similar to an ancestor T̂ ∈ Δ0 with coefficient 1

3n . But T̂ has a

child T̃ ∈ Δ1 which is similar to T̂ with coefficient 1
3 and this implies that T is

similar to T̃ with coefficient 1
3n−1 . 	


5.2 Piecewise Quadratics on Powell-Sabin-6 Splits

C1 piecewise quadratic hierarchical bases are considered in [23]. Here, an ini-
tial checkerboard quadrangulation of Ω is first turned into a triangulation by
adding one diagonal of each quadrilateral, and then each triangle is subdivided
using a Powell-Sabin-6 (PS-6) split. To obtain a nested sequence of triangu-
lations {Δn}∞n=0, a triadic refinement of the PS-6 split [30] is performed, see
Figure 6. The nested spline spaces Sn are the C1 piecewise quadratic Powell-
Sabin macro-elements [20, Section 6.3]. Lagrange interpolation sets Ξn with the
required properties are selected using a scheme which can be seen as a specific
realisation of the interpolation method described in [24]. It is shown in [23] that
this construction leads to a Riesz basis for Hs(Ω), 1 < s < 5

2 , under the as-
sumption that the triangulation sequence {Δn}∞n=0 is regular. Indeed, in this
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case Theorem 5 is applicable with r = σ = 1 and k = 2. We note however
that this assumption does not seem easy to verify unless Δ0 is a uniform tri-
angulation, in which case ρ = 3. It is an open question whether an arbitrary
polygonal domain Ω admits an initial triangulation such that the sequence of
triangulations obtained by the triadic refinement of its PS-6 split is regular.

Fig. 6. The triadic refinement of the PS-6 split: A new vertex is placed at the position
of the interior point in the PS-6 split and two new vertices on each edge.

5.3 Piecewise Quadratics on Mixed PS-6/PS-12 Splits

In our paper [14] we construct C1 piecewise quadratic hierarchical bases on
arbitrary polygonal domains using nested sequences of triangulations and spline
spaces introduced in [17]. Beginning with an arbitrary triangulation Δ0 of Ω, a
nested sequence of triangulations {Δn}∞n=0 is obtained by the standard uniform
refinement, where the middle points of edges are connected to each other. An
edge of Δn is said to be regular if it is shared by two triangles that form a
parallelogram. Clearly, all boundary edges are irregular, but an interior edge
may only be irregular if it overlaps a part of an edge of Δ0. Furthermore, let
Δ∗

n be the triangulation obtained by subdividing each triangle T ∈ Δn using
the Powell-Sabin-6 split if all edges of T are regular, or the Powell-Sabin-12 split
[20, Section 6.4] otherwise. For both PS-6 and PS-12 splits the central vertex is
chosen at the barycentre of the triangle and the edge splitting vertices are at the
midpoints of the edges. Then {Δ∗

n}∞n=0 is also a nested sequence of triangulations,
as illustrated in Figure 7. It is obviously regular, with refinement factor ρ = 2.
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Fig. 7. An example to illustrate that Δ∗
n+1 is a refinement of Δ∗

n

The spline spaces are defined by

Sn =
{
s ∈ S1

2(Δ
∗
n) :

∂s

∂e⊥
∣∣
e
is linear for each irregular edge e of Δn

}
,

where ∂s
∂e⊥ denotes the normal derivative of s on e. It is easy to see that {Sn}∞n=0

are nested macro-element spaces, their interpolation operators are boundary
conforming of order 1, and P2 ⊂ Sn, n = 0, 1, . . .. Let Pn : Sn → Sn−1 be the
orthogonal projector with respect to the inner product defined by

(f, g) =
∑
e∈En

(f, g)e,

where En is the set of all edges of Δn and, for e = 〈v1, v2〉,

(f, g)e :=
1

22n

[
f(v1)g(v1) +

(
f(v1) +

1

4

∂f

∂e
(v1)
)(
g(v1) +

1

4

∂g

∂e
(v1)
)

+ f(v2)g(v2) +
(
f(v2)−

1

4

∂f

∂e
(v2)
)(
g(v2)−

1

4

∂g

∂e
(v2)
)]
.

It is shown in [17] that the projectors Pn satisfy (19) with

v = log2

(2(1 +√
13)

3

)
≈ 1.618,

and thus lead to a construction of Riesz bases in Hs(Ω) for v < s < 5
2 .

In [14] we present a construction of nested Lagrange interpolation sets for Sn

and their subspaces with homogeneous boundary conditions of order 1, which
leads to a Riesz basis for Hs(Ω), s ∈ (1, 52 ) and Hs

0(Ω), s ∈ (1, 32 ) ∪ (32 ,
5
2 ), by

applying Theorem 5 with r = σ = 1, k = 2 and ρ = 2.
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Abstract. High quality deformations of planar and volumetric domains
are central to many computer graphics related problems like modeling,
character animation, and non-rigid registration. Besides common “as-
rigid-as-possible” approaches the class of nearly-isometric deformations
is highly relevant to solve this kind of problems. Recent continuous defor-
mation approaches try to find planar first order nearly-isometric defor-
mations by integrating along approximate Killing vector fields (AKVFs).
In this work we derive a generalized metric energy for deformation vec-
tor fields that has close-to-isometric AKVFs as a special case and addi-
tionally supports close-to-length-preserving, close-to-conformal as well as
close-to-equiareal deformations. Like AKVF-based deformations we min-
imize nonlinear energies to first order using efficient linear optimizations.
Our energy formulation supports nonhomogeneous as well as anisotropic
behavior and we show that it is applicable to both planar and volumetric
domains. We apply energy specific regularization to achieve smoothness
and provide a GPU implementation for interactivity. We compare our
approach to AKVF-based deformations for the planar case and demon-
strate the effectiveness of our method for the 2d and 3d case.

Keywords: Shape Deformation, Isometry, Vector Field.

1 Introduction

Persistent shape deformation is a classic problem in computer graphics and de-
sign. Even though numerous approaches haven been developed in the previous
decades, is is still an important and active area of research. Applications for
planar shape deformations include, e. g., image warping and cartoon animation.
Deformation of 3d shapes is used in classic domains like in engineering for shape
modeling or to create animations in the media industry, but also, e. g., for data
registration in medical applications.

A recent trend is the development of continuous nearly isometric meth-
ods [21,29]. These deformations should preserve distances and, as a result, angles
and area as much as possible. Intuitively, isometry is a good measure for the qual-
ity of a deformation: while the shape should accurately satisfy the constraints
defining the deformation, it should not unnecessarily stretch or bend. Hence,
near-isometric deformations yield intuitive and high quality results.

M. Floater et al. (Eds.): MMCS 2012, LNCS 8177, pp. 135–157, 2014.
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However, this does not come for free! Roughly speaking, high quality near-
isometric deformations come for the price of solving nonlinear problems. This is a
major issue especially for interactive applications, which are typical in computer
graphics and are mandatory for interactive design. There is a competition with
more efficient linear methods (see, e.g., [5]), which are based on simpler, often
approximated differential quantities. It is well known that linear methods fail
to handle isometry: most approaches either cope well with translations or with
rotations – but not with both simultaneously. Also, there is no guarantee that
the deformation does not induce local folds or self-intersections. We arrive at
the conclusion that both, linear and nonlinear methods, have their own right
to co-exist in shape deformation frameworks: the user has the choice between
fast linear methods at the cost of sacrificing quality, and high quality nonlinear
methods that are significantly more expensive to compute.

The user has to pay a certain price – higher computation times or smaller data
sets – and therefore expects benefits from nonlinear methods. These include not
only geometric properties of the deformation but also other important criteria
related to usability. In summary, the computation of near-isometric shape defor-
mations should fulfill a number of requirements, which make their computation
a challenging problem:

– The isometric deformation problem is nonlinear. Nevertheless, computation
must be effective and robust to guarantee a unique global optimum. In ad-
dition, computation must be efficient enough to enable real-time response
to user input.

– Deformations must interpolate constraints, which can be defined for any
point of the shape. Approximate satisfaction of “soft constraints” can be
tolerated only if arbitrarily small tolerances are possible in principle.

– Ideally, the user can – globally and locally – attenuate isometry such that
continuous blends from angle preservation to area preservation are possible.
Anisotropic behavior is an additional design parameter for the user.

– Deformations must be smooth in a sense that the energy or metric error
is distributed smoothly over the shape. In particular, the error must not
concentrate near positional constraints.

– The discrete deformations must be independent of the particular partition
of the shape or the domain. This implies resolution/tessellation invariance.

– Ideally, the formulation of the solution should be same for the 2d and the 3d
case. This alleviates implementation.

So far, we are not aware of any isometry-preserving shape deformation method
that meets all of the above design goals. In this paper, we present a new integral
approach to continuous shape deformation that fulfills all requirements. Our
approach is more general – but not more complicated – than previous methods.
We define a generalized metric energy that has flows as minimizer that determine
near-isometric, near-conformal, and to some extent near-equiareal deformations.
In particular, we show that the recently proposed planar deformations based on
as-Killing-as-possible vector fields (AKVF) [29] constitute a special case of our
energy.



Generalized Metric Energies for Continuous Shape Deformation 137

The derivation of error measures used in our method is neither based on the
popular as-rigid-as-possible (ARAP) approaches nor on the recently used notion
of discrete Killing fields. In contrast to iterative energy optimization required
for ARAP, which converges to local optima only, our method is non-iterative.
Instead, deformation is a time-dependent function, and we optimize for its deriva-
tive w.r.t. time and solve an initial value problem.

Our method can easily be integrated into existing tools. It is applicable to tri-
angle meshes in 2d as well as to tetrahedral meshes in 3d. It shares the common
intuitive user interface where few points are fixed and few points act as handles,
which can be dragged along paths in the domain by the user. In addition, the
user can control metric properties of the deformation: we provide a single scalar
parameter to obtain combinations of near-isometric and near-conformal defor-
mations on a continuous scale. This parameter can be given globally as a single
scalar or locally as a scalar field over the shape. Local anisotropic behavior is
achieved by incorporating varying anisotropic energy norms.

2 Background and Related Work

The deformation of a shape consists of a map from the original shape to the
deformed shape. Isometric maps preserve distances, which is equivalent to si-
multaneously preserving angles (conformal maps) and area (equiareal maps).
For a rigorous introduction of the differential geometry of such maps we refer to
[6]. Related to shape deformation is parametrization of surfaces, i.e., finding a
map between a surface in 3d and a planar domain. Naturally, isometry is a de-
sired property for such maps; a pioneering approach is the construction of most
isometric parametrizations [14]. Liu et al. [24] present hybrid parametrizations
that interpolate locally rigid or local similarity transformations, which is similar
to our generalized framework for continuous deformations. In the following, we
consider only shape deformation methods. For a discussion of parametrization
methods we refer to the survey of Hormann et al. [15]. We restrict our review of
related work to nonlinear deformation methods. For a review of linear methods
and a discussion of differences to nonlinear methods we refer to the survey [5].

A popular approach to isometry preservation is to restrict deformations locally
to rigid transformations, i.e., translation and rotation. (Reflection is undesired.)
This leads to the notion of the well-established as-rigid-as-possible (ARAP)
maps, which where initially introduced for shape interpolation [1] and later ap-
plied for shape deformation [17,31]. Until today, there have emerged numerous
extensions like [3,32,20,8], to mention just a few. ARAP approaches minimize
a nonlinear energy expressing rigidity subject to constraints like fixed and dis-
placed points. The classic approach consists in an iterative algorithm, which
repeatedly estimates local rotations to build the global deformation until con-
vergence. There are also alternative nonlinear deformation energies that enforce
rigidity in form of, e. g., the rest energy of coupled rigid prisms [4]. Independent
of the energy and the particular numerical scheme, the deformation is obtained
as the minimizer of a particular energy in the shape coordinates at a singular
point in time: we refer to such methods as single step methods.
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In contrast, continuous methods evolve the deformation over time: the energy
minimizer at each infinitesimal time step determines the gradient of the defor-
mation, and the final deformation is obtained as the solution of an ordinary
differential equation. From a technical point of view, the iterative solvers for
minimizing nonlinear energies are, roughly speaking, replaced by a numerical
ODE integration method. The latter is a standard numerical problem that is
well-understood and that can be solved efficiently and reliably. In addition, the
mapping to the deformed shape is guaranteed to be locally bijective if the defor-
mation gradient does not vanish, i.e., if the deformation flow does not contain
critical points, and hence the deformations does not show local fold-overs. The
main benefit of the continuous methods, however, consists in the fact that finding
deformation gradients is a linear problem for near-isometric deformations.

Isometry preservation is guaranteed for integration of exact Killing vector
fields, see, e.g., [2]. Kilian et al. [21] approximate Killing vector fields for in-
terpolation in a shape space, which yields deformations of a 2-manifold that is
embedded in 3-space. Note that they compare this isometry preserving approach
to continuous deformations based on the ARAP concept, which yields a related
but different deformation class. Martinez et al. [25] extend their discretization
towards tessellation independence and smoothness. Heeren et al. [13] use physi-
cal discrete shell energies to construct time-discrete geodesics in a different shape
space. Solomon et al. [29] introduce the notion of as-Killing-as-possible (AKVF)
deformations in planar domains. In contrast to the above approaches, they ensure
smoothness by a post-process rather than by a regularization term, and instead
of a standard ODE solver, they use planar holomorphic curves as a predictor to
construct the trajectories. They obtain high quality deformations, which they
compare to various other planar shape deformation methods. In summary, their
results suggest that it is more than worthwhile and often preferable to consider
near-isometric shape deformations.

Funck et al. [11] developed a remarkably different approach to continuous
3d shape deformation, which preserves volume by integration of divergence-free
vector fields. Continuous deformation can also be obtained by fitting continuous
shape manifolds to key frames [7].

There are various alternative methods for planar and volumetric shape de-
formation. One prominent class of methods is based on generalized barycentric
coordinates, e.g., [16,19,23,18,33,34]. Besides isometry here is also a demand for
conformal maps, which are produced by none of the above methods.

3 Continuous Metric Energies

In this section we introduce continuous deformations formally and derive en-
ergy terms that determine isometric and conformal deformations in 2d and 3d.
The section concludes with a generalized formulation of an integral energy that
determines a one-parameter family of continuous deformations, which includes
near-isometric, near-conformal, and close-to-equiareal deformations.
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(a) Near-isometric. (b) Near-conformal.

Fig. 1. 2D Deformation Examples. On the straight strip some vertices were fixed (•)
while some vertices were moved (•) (all models have the same scale). The deformations
are generated by AMAP (8) and ACAP (12) vector fields. Note the approximate length
preservation in (a), and the preservation of angles and the area deviation in (b).

3.1 Continuous Deformations

A continuous deformation is a time-dependent map f : Ω0
d × IR → IRd with

Ω0
d ⊆ IRd, i.e., a time-dependent map from a domain Ω0

d to IRd. We primarily
consider the important dimensions d = 2 and d = 3 in this work but also provide
some generalizations for higher dimensions. Let X0 ⊆ Ω0

d be a point set defining
some initial shape. Then the deformed shape at time t is expressed as the image
f(X0, t). We use the short notation Ωd = f(Ω0

d , t) for the deformed domain at
the current time t, which is clear from the context.

We define the velocity of f as the vector field v(x, t) = d
dt f(x, t). Then f(x, t)

can be reconstructed from v by solving the initial value problem

d

dt
x(t) = v(x, t) with x(0) = X0 .

In the following, we derive conditions on v that lead to near-isometric and
near-conformal maps f . The conditions are characterized as the minimizers of
certain energy terms w.r.t. interpolation constraints on v. Figure 1 shows exam-
ples for deformations that were determined by this kind of vector fields.

3.2 Characteristic Deformations

For a single step (i. e., not time-dependent) deformation f : Ω0
d → IRd with defor-

mation gradient D = ∇f the first fundamental form I of f has the particularly
simple form

I = DTD .

Therefore, the singular values σi of D are square roots of the eigenvalues λi
of I. Then the following equivalent local properties of the deformation map
can be shown (see, e. g., the work of Floater and Hormann in the context of
parameterizations for the case of d = 2 [10]):

1. f is isometric ⇔ I = I ⇔ λi = 1 ⇔ σi = 1, (1)

2. f is conformal ⇔ I = μ I ⇔ λi
λj

= 1 ⇔ σi
σj

= 1, (2)

3. f is equiareal ⇔ det I = 1 ⇔
∏d

i=1 λi = 1 ⇔
∏d

i=1 σi = 1 . (3)
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Note that surface parameterizations can be regarded as deformations between
2d and 3d, and in this work we consider the instantaneous deformation energy.

When deformations are parameterized by time t (i. e., we have continuous
f(x, t) andD(x, t)) these properties can be differentiated in order to obtain defin-
ing conditions on the vector field of the continuous deformation. Specifically, we
apply the matrix algebra described by Minka [27] to obtain matrix derivatives
w. r. t. t. They define the differential dy(x) to be the part of y(x+dx)−y(x) that
is linear in dx. Differentials are obtained by iteratively applying a set of differ-
entiation rules. After transformation into canonical form the matrix derivative
can directly be read off.

3.3 Isometric Energies

Exact isometric deformations that fulfill all user constraints are not always pos-
sible. Therefore, measures for the deviation from isometry are required and we
continue to present two possible models: Killing and metric energies.

Killing Energy. The matrix derivative of the isometry property is obtained by
deducing the differential of (1), which gives

dDTD+DT dD = 0

using the product rule d(AB) = dAB +A dB and dI = 0. This equality has
to hold for every time t of the continuous deformation. Specifically, for t = 0
we have D(x0, 0) = I and by using dD = JT, where J is the Jacobian of the
tangent vector field of f , we obtain

JT + J = 0 (4)

as the condition for f to be isometric expressed in the vector field of the continu-
ous deformation. Equation (4) corresponds to the constraint that exact isometric
deformations are generated by infinitesimal rotations, since the symmetric part
of their Jacobian, which is skew-symmetric then, vanishes.

The L2 deviation of (4) over a domain Ωd

EAkvf(v) =

∫
Ωd

∣∣∣∣JT + J
∣∣∣∣2
F
dx (5)

is called Killing energy with the Frobenius norm ||·||F . It is used by Solomon et
al. [29] for the case d = 2 to define as-Killing-as-possible vector fields v that min-
imize EAkvf and which therefore generate near-isometric planar deformations.
Higher dimensional cases (d > 2) are also well-defined. Note that the Jacobian is
linear in the unknown vector fields v as differentiation is a linear operation, i. e.,
there exists a gradient operator G on Ωd with J = Gv. Therefore, the energy
(5) is quadratic in v and the corresponding variational optimization of (5) leads
to a linear system that can efficiently be solved for the optimal vector field.
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Metric Energy. The classic Killing energy (5) uses the Frobenius norm of (4)
to measure deviation from isometry. We propose a related energy that measures
another form of deviation from isometry that is not based on a L2 deviation of
(4). Informally spoken, our energy directly observes an infinitesimally small line
segment and measures change of length under an infinitesimal integration step
in v. This is done for all possible infinitesimal segments, i.e., we integrate the
(squared) change of length over all possible directions. We call this energy metric
as distance variations are measured explicitly. We start with the derivation of
the 2d case followed by the 3d case.

In order to measure the variation of length under integration in v we consider
a line segment S between points x0 and x1 = x0 + r1 r1 for a unit direction r1
and segment length r1. The flow of S in v is given as x′

0(h) = x0+
∫ h
0 v(x′

0(s))ds

and x′
1(h) = x1 +

∫ h
0
v(x′

1(s))ds. This induces the quadratic length variation

dl(h) = ||x1 − x0||2 − ||x′
1(h)− x′

0(h)||
2
.

Since we are interested in instantaneous variations (i.e., the length variation
of an infinitesimal small line segment during an infinitesimal small integration)
only, we consider the limit

dl0(r1) = lim
h→0, r1→0

dl(h)

r21 h
=

∂3dl(h)

∂r21 ∂h
.

dl0 measures the instantaneous quadratic length variation for the direction r1. We
obtain the pointwise quadratic isometric energy eMetr(x0,v) at x0 by considering

all possible line segment directions given by r1(α) = (cos(α) , sin(α) )T:

eMetr(x0,v) =
1

2ξ

∫ 2π

0

dl0(r1(α))
2 dα . (6)

It can be shown that (6) has the following closed form solution that depends
only on the Jacobian of v1:

eMetr(x0,v) = u2x + v2y +
1

2
(uy + vx)

2 +
1

2
(ux + vy)

2

= c
(∣∣∣∣J+ JT

∣∣∣∣2
F
+ 2 (Tr J)

2
)
. (7)

Here J =
[ ux uy
vx vy

]
denotes the Jacobian of v at x0, Tr · is the trace of a matrix,

and c is a constant factor. The total metric energy of a vector field v on Ω2 is
now given by

EMetr(v) =

∫
Ω2

eMetr(x,v) dx . (8)

We call vector fields that minimize this energy as-metric-as-possible (AMAP)
vector fields. Figure 1(a) shows examples for deformations that were determined
by this kind of vector fields.

1 The derivation of equivalence is lengthy but consists only of basic algebraic trans-
formations and therefore is omitted in the paper. — We provide derivations in form
of Maple scripts for all closed form solutions of integrals in this submission with the
additional material.
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We derive a similar energy for d = 3 dimensions using the same ansatz as
above for d = 2. Again we take the integral over all possible configurations of an
infinitesimal integration step of an infinitesimally small line segment between two
points x0 and x1 = x0+r1 r1. The main difference to the 2d case is that angles in
the plane now have to be replaced by solid angles. For the spherical parametriza-
tion of the unit direction r1(α, ω) = (cos(α) cos(ω) , sin(α) cos(ω) , sin(ω) )

T ∈ IR3

we obtain the pointwise quadratic metric energy as the integral

eMetr3d(x0,v) =
1

4ξ

∫ 2π

0

∫ π
2

−π
2

cos(ω) dl0(r1(α, ω))
2 dω dα , (9)

which again has the closed form solution

eMetr3d(x0,v) = c
(∣∣∣∣J+ JT

∣∣∣∣2
F
+ 2 (Tr J)

2
)
. (10)

Interestingly the factors of (7) and (10) only differ in the constant c, although
their dimensions differ. The total 3d metric energy is then obtained as

EMetr3d(v) =

∫
Ω3

eMetr3d(x,v) dx .

We again call the minimizers of this energy as-metric-as-possible vector fields. In
the following we will use the terms Metr and Metr3d synonymously whenever
the context is clear.

3.4 Conformal Energy

The differential of (2) is given by

dDTD+DT dD = dμ I .

We again evaluate it at t = 0, and by setting dμ = α we obtain

JT + J = α I

as the condition for the continuous deformation f to be conformal. Note that
here α is an additional degree of freedom stating the fact that instantaneous
uniform scaling is conformal for every scaling factor.

We derive a pointwise energy / energy density eConf that measures the L2

deviation of this conformality condition. The construction of the energy holds
for any dimension d from which important two and three-dimensional special
cases can be obtained:

eConf =
∣∣∣∣JT + J− α I

∣∣∣∣2
F

= Tr
((
JT + J− α I

)T(
JT + J− α I

) )
= Tr
((
JT + J

)T(
JT + J

) )
+Tr
(
−2α
(
JT + J

)
+ α2I

)
=
∣∣∣∣JT + J

∣∣∣∣2
F

− 2αTr
(
JT + J

)
+ dα2

=
∣∣∣∣JT + J

∣∣∣∣2
F

− 4αTrJ+ dα2 (11)
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This energy formulation still depends on the scaling factor α. To obtain an
expression that is independent of this parameter we consistently set it to the
value that minimizes the value of the energy. That is, we solve ∇α eConf = 0 for
α, which gives α = 2

d TrJ. Inserting this result into (11) we obtain

eConf =
∣∣∣∣JT + J

∣∣∣∣2
F

− 4

d
(TrJ)

2

for the general d-dimensional pointwise conformal energy in the vector field of
the continuous deformation. The total conformal energy of the vector field is
then given by

EConf(v) =

∫
Ωd

∣∣∣∣JT + J
∣∣∣∣2
F

− 4

d
(TrJ)

2
dx .

Again, this energy is quadratic in the vector field. We call vector fields minimizing
this energy as-conformal-as-possible (ACAP). The important low-dimensional
special cases are

EConf2D(v) =

∫
Ω2

∣∣∣∣JT + J
∣∣∣∣2
F

− 2 (TrJ)
2
dx and (12)

EConf3D(v) =

∫
Ω3

∣∣∣∣JT + J
∣∣∣∣2
F

− 4

3
(TrJ)

2
dx .

See Figure 1(b) for example deformations that were determined by these vector
fields.

3.5 Equiareal Energy

In order to obtain the condition on the vector field for the continuous de-
formation to be equiareal, we differentiate (3) using the differentiation rule
d detA = detA Tr

(
A−1 dA

)
:

d det
(
DTD

)
= 2 (d detD) detD

= 2
(
detD Tr

(
D−1 dD

) )
detD

= Tr
(
2 (detD)

2
D−1 dD

)
(13)

Evaluating (13) at t = 0 and using dD = J the equiareal condition on the vector
field simplifies to

TrJ = 0,

which states that the vector field has to be divergence free as TrJ = ∇ · v. The
corresponding L2 pointwise equiareal energy eEquia = (∇ · v)2 yields the total
equiareal energy

EEquia(v) =

∫
Ωd

(∇ · v)2 dx .
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wq

wr

φMetr

φAkvf

φConf3d

φConf2d

φEquia

Energy wq : wr φ

Metr 2d & 3d 1 : 2 arctan 1
2

Conf 2d 1 : −2 π − arctan 1
2

Conf 3d 1 : − 4
3

π − arctan 4
3

Akvf 2d & 3d 1 : 0 π
2

Equia 2d & 3d 0 : 1 0

Fig. 2. Energy Parameter Domain. The different energies obtained from the general
metric energy Eφ(v) are linear subspaces in the visualized domain of weights wq and
wr, i.e., every pair of weights in a subspace yields the same energy minimizer. However,
energies may not have unique minimizers, like the Equia energy in the limit.

3.6 A Generalized Family of Energies

In the following we relate the near-isometric, near-conformal, and near-equiareal
energies to derive a generalized energy. This is a one-parameter family of energies
that determine smooth blends between the different types of deformation.

We define

q(x) :=
∣∣∣∣∣∣J(x) + J(x)

T
∣∣∣∣∣∣2
F

and r(x) := (Tr J(x))
2
.

Then all energy densities introduced so far can be expressed as linear combi-
nations of q(x) and r(x). Uniform scaling of such an energy does not change
the minimizing vector field. Therefore, we can describe all energies as a one-
parameter family of generalized metric energies depending on φ:

Eφ(v) =

∫
Ω2/3

wq(φ) q(x) + wr(φ) r(x) dx

with the weights wq(φ) := sin(φ) and wr(φ) := cos(φ) having specific ratios. In
2d, φ can vary in the interval ]0, ξ − arctan 1

2 ], while in 3d, φ varies in ]0, ξ −
arctan 4

3 ]. Then the parameter of the isometric energies is given by φ = φAKVF =
π
2 , resp.φ = φMetr = arctan 1

2 , and the minimizers of EφAKVF(v) and EAKVF(v),
resp.EφMetr(v) and EMetr(v) are equal. Furthermore, the conformal energy is
given by φ = φConf2D = ξ − arctan 1

2 in 2d and by φ = φConf3D = ξ − arctan 4
3

in 3d, respectively. The equiareal energy is recovered for φ = φEquia = 0. We
note that volume preservation is not a sufficient condition for uniquely defining
v. However, adding a small amount of q to Eφ (i. e., choosing φ slightly above
zero) gives unique solutions corresponding to near-equiareal deformations.

Figure 2 illustrates different choices of φ. Note that for φ > π
2 , Eφ contains

negative quadratic terms. However, due to the definition of conformal energy
density (11) as a squared matrix norm, it is guaranteed that Eφ is non-negative
as long as φ ≤ ξ − arctan 1

2 (2d) and φ ≤ ξ − arctan 4
3 (3d), and that a unique

minimizer exists.

Anisotropic Energies. The energy formulations presented so far are isotropic
as distortions are measured in every direction in an uniform way. We model
anisotropic behavior by replacing the isotropicFrobenius normwith an anisotropic
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norm ||·||2B defined by a rank-2 tensor field of symmetric positive definite matrices

B: ||A||2B = Tr
(
ATBA

)
. For example, the pointwise energy (11) then becomes

eConf =
∣∣∣∣JT + J− α I

∣∣∣∣2
B

=
∣∣∣∣JT + J

∣∣∣∣2
B
+Tr
(
−2α
(
JTB+BJ

) )
+Tr
(
α2B
)

=
∣∣∣∣JT + J

∣∣∣∣2
B

− 4α Tr(BJ) + γ α2

=
∣∣∣∣JT + J

∣∣∣∣2
B

− 4

γ
(Tr(BJ) )

2
,

where we have set γ = TrB and used the identity Tr(AB) = Tr(BA) together
with the solution of ∇α eConf = 0, which is α = 2

γ Tr(BJ). In the special case

of B = I the isotropic case is recovered as then ||·||B ≡ ||·||F and γ = d.

4 Discrete Setting

Let P = (V , T ,x) be a partition of Ωd (at a particular time t) with vertices
V and cells T (triangles for d = 2 and tetrahedra for d = 3). Furthermore,
let m = |V| denote the number of vertices, and xi ∈ IRd with i ∈ V denote
vertex positions. We express a vector field v as piecewise linear functions on P :
v is given as nodal values vi, i ∈ V ; we write v as the a single column vector

v = (v1
T, . . . ,vm

T)
T ∈ IRdm. Its piecewise constant Jacobian field is given as

matrices Jc on cells c ∈ T .

Energy Minimization. In the discrete setting, Eφ is a quadratic form in

the unknown vector field: Eφ(v) = vTEφ v. The matrix Eφ ∈ IRdm×dm is the
symmetric positive definite sparse matrix defining Eφ. With the Jacobians being
constant on each cell, the coefficients of Eφ are the sum of matrices Ec

φ that
capture the local error Ec

φ on cell c as

Ec
φ(v) =

∫
Ωc

wq(φ) q(x) + wr(φ) r(x) dx

= Vc

(
wq

∣∣∣∣∣∣Jc + Jc
T
∣∣∣∣∣∣2
F
+ wr (Tr Jc)

2

)
= vc

TEc
φ vc .

Here the vector vc ∈ IR6 (d = 2) or resp.vc ∈ IR12 (d = 3) is the concatenation
of velocities of the vertices of c, Jc is the constant Jacobian on c, and Vc is
the volume of the cell, triangle area or tetrahedral volume, which weights the
constant expressions during integration over the discrete domain P .

We use interpolation constraints on the flow v. This means that the user
prescribes trajectories γk(t) that define the flow of some vertices k ∈ V . This
yields conditions vk(t) = d

dtγk(t) as the flow along the trajectories is defined
by their tangents. Not that this includes the special case of “fixed” vertices for
which the trajectory is a constant domain point with vk(t) ≡ 0.

The vector field v̂ minimizing the energy is given as the solution to the linear
system ∇Eφ(v) = 0 subject to these constraints. In Section 5 we discuss how to
setup Eφ and solve the arising linear systems efficiently.
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Fig. 3. Smoothness Energy. In 2d (left) and 3d (right) minimizers of the generalized
metric energy are discontinuous near user constraints (fixed • and handle • vertices)
leading to the highlighted local discontinuous deformations (small images show metric
distortions, see Section 6). The smoothness energy term yields smooth vector fields and
therefore smooth deformations. Note that both interior (left) and boundary vertices
(right) can be constrained.

Enforcing Smoothness. The derived energies do not enforce smoothness of
the solution. This means that even though we obtain a minimizer the residual
energy is not distributed smoothly over the domain. In particular, this leads to
high concentration of metric error near constrained vertices. Lipman observes
this effect for finite ARAP deformations [22]. This problem was also already
discussed by Solomon et al. [29]. Their solution consists in a post-process: they
solve an additional linear system that diffuses the error to construct smooth
vector fields. This consequences: firstly, an additional solving step is required, and
secondly, the previously defined constraints can only be satisfied approximately.
During time-integration, this approach can leads to significant drift from the user
defined trajectories. Moreover, we show that the total resulting deformation error
increases unnecessarily (see Section 6).

We take a different approach based on regularization. We define smoothness
as the local first order energy variation. This way local deformation errors vary
smoothly and do not concentrate, e. g., only at the constrained vertices. The local
energy of a cell depends on its constant local Jacobian, i.e., there is variation only
on the cell boundaries. Let ci, cj ∈ T be two neighboring cells with Jacobians
Ji,Jj , and local energy parameters φi, φj , respectively. As Ec

φ depends only on

Jc we obtain the integrated variation Ei,j
S for the pair (ci, cj) as

Ei,j
S (v, φ) = Bi,j

∣∣∣∣∣∣4(Dq
i,j +Dq

i,j
T
)
+ 2 TrDr

i,j I
∣∣∣∣∣∣2
F

with Ds
i,j = wsj Jj − wsi Ji and wsi = ws(φi) for s ∈ {q, r}, and Bi,j denotes

the length of the common edge of adjacent triangles (d = 2) or the area of the
common triangle of adjacent tetrahedra (d = 3). See Appendix A for a derivation.
Note that Ei,j

S is quadratic in v. The total discrete smoothness energy is then
given by the sum over all adjacent cells

ES(v, φ) =
∑

i,j∈T adjacent

Ei,j
S (v, φ) .
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GPU
CPU

Repeated sparse sym-
bolic Cholesky solve

ated sparse sym-Repea
c Cholesky solvebolic

Fig. 4. GPU Pipeline. We use the GPU to setup linear systems and perform vector
field integration. The linear systems are solved on the CPU using an efficient sparse
solver. Operations marked (•) are performed in parallel on the GPU.

This energy has the quadratic form ES = vTES v that acts as a regularization
term in a weighted total energy in the deformation vector field

E(v, φ) = Eφ(v) + λES(v, φ) .

Its quadratic form is E(v, φ) = vT (Eφ + λES) v := vTEv. Hence, we compute
a smooth minimizer of Eφ by solving ∇ v̂TE v̂ = 0. We use a factor of λ = 0.1
in all our examples. Figure 3 illustrates the effect of using the regularization
term ES in two and three dimensions. Note that smoothness of the vector field
is preserved for handles in the interior as well as on the boundary of the domain.

Shape Integration. We are left with the problem of solving an ODE numer-
ically: we solve d

dtxi(t) = v̂(xi(t), t) with initial vertex positions xi(0), i ∈ V ,
using a standard ODE solver. For every evaluation of the vector field the energy
minimizing flow v̂ is computed from the current shape configuration.

5 Implementation

Modeling Metaphor. In contrast to finite deformation methods, continuous
deformations require velocities as boundary constraints (cf. [29,21]). There are
various ways to prescribe velocities. In the simplest case they are provided as
zero vectors for fixed vertices. Translations can be modeled by constant velocities,
rotations can be expressed by linear flows. A fairly general and intuitive approach
is the definition of a space-time curve that acts acts as trajectory, i.e., velocity
along the curve is defined as the tangent vector. It is easy to extend this approach
to define a laminar “bundle” of trajectories that are defined by the Frenet frame
of a single curve [12].

In addition to constraints, the user can model nonhomogeneous energies by
changing the scalar parameter φ and the tensor fieldB. This can be done globally
or locally per cell, e.g., by a spatial blend (see Figure 7). From the users point
of view, near-isometric deformations often behave similarly to stiff real materi-
als, while near-conformal deformations often exhibit strong scaling components
towards smaller and larger area.
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GPU Implementation. We use the GPU to accelerate certain steps of our de-
formation algorithm. Figure 4 provides an overview,with matrix dimensions given
for the 2d case. In summary, the setup of the linear system and the integration of
vertices are performed in parallel on the GPU, and the sparse system is solved on
the CPU. First, all triangle gradient operatorsGi are computed in parallel. These
are required to compute the energy terms Eφ and ES . Then the energy gradients
are computed in parallel by exploiting symmetry for each cell and for each pair
of adjacent cells. The results are summed by a parallel segmented reduction op-
eration to give the final linear system. The sparse system is downloaded to CPU
memory, where it is solved using a state- of-the-art sparse Cholesky solver that
uses a precomputed symbolic factorization and an approximate minimum degree
preordering to reduce fill-in [9]. In our experiments this direct system solve is up
to four times faster than solving the linear system on the GPU using an itera-
tive sparse solver. Compared to a pure CPU implementation using the GPU is up
to three times faster. This is because the cost for system setup are significant as
multiple systems need to be solved during integration. Finally, shape integration
along the optimal flow v̂ is performed on the GPU.We use a standard fourth-order
Runge-Kutta integrator with adaptive step size control.

6 Analysis and Results

Energy Comparison. We evaluate the angle and volume quality of deforma-
tions using the following error terms

F 2D
angle =

∑
c∈T2

ρc

(
σ1
c

σ2
c

+
σ2
c

σ1
c

− 2

)
F 3D
angle =

∑
c∈T3

ρc

⎛⎝ ∑
(j,k)∈P3

(
σj
c

σk
c

+
σk
c

σj
c

)
− 6

⎞⎠
F 2D
area =

∑
c∈T2

ρc

(
σ1
cσ

2
c +

1

σ1
cσ

2
c

− 2

)
F 3D
volume =

∑
c∈T3
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(
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2
cσ

3
c +

1

σ1
cσ

2
cσ

3
c

− 2

)
.

These errors are established in the literature (see, e.g., [29]) and are based on
Equations (1-3). Here σj

c is the jth singular value of the Jacobian of the map of
triangle or tetrahedra c, ρc = Vc/

∑
j∈T Vj with triangle area or tetrahedral volume

Vc, and P3 = {(1, 2) , (2, 3) , (3, 1) }. To measure metric errors we introduce the
error terms

F 2D
metric =

∑
c∈T2

ρc

((
σ1
c − 1

)2
+
(
σ2
c − 1

)2 − 1

4

(
σ1
c − σ2

c

)2)
(14)

F 3D
metric =

∑
c∈T3

ρc

⎛⎝ 3∑
j=1

(
σj
c − 1

)2 − 1

5

∑
(j,k)∈P3

(
σj
c − σk

c

)2⎞⎠ (15)

that are the weighted sum of solutions of integrals of the form of (6) and (9).
The difference to the previous derivation of energies is that the integrand is
no pointwise infinitesimal quadratic length variation but the pointwise finite
quadratic length variation induced by the map and integrated along all possible
directions. In the optimal case all error terms are zero.
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Energy F 2D
metric F 2D

angle F 2D
area

Metr 0.0228 0.0216 0.036 0.0692 0.0155 0.0137
Akvf 0.028 0.0273 0.0211 0.0443 0.033 0.028
Conf 0.752 0.0902 0.0001 0.0098 0.978 0.273
Equia 0.0297 0.0489 0.1102 0.1864 5 · 10−6 4 · 10−6

Fig. 5. 2D Energy Evaluation. Two initial models (left) are deformed using the same
boundary constraints for the different energy types. The plots visualize color coded
local errors. The Conf error plots for the frog are downscaled to 75% size. The table
gives total errors for each method and each model (frog left / giraffe right column).

Figure 5 shows error values and error visualizations for two planar deforma-
tions. For the Equia results we used φ = arctan2−9. The Metr energy generat-
ing near-isometric vector fields achieves lowest metric and area distortions at the
cost of change of angle. Deformations based on the Akvf energy show better an-
gle preservation compared to Metr, but they also show greater errors in length
and area variation. Almost no angle distortion is introduced by ACAP vector
fields based on the Conf energy, however, this is at the cost of area errors. The
opposite is true for the Equia deformation that introduces almost no area error
but instead a large angular error. The experiment confirms that the parameter
φ corresponds to balance between metric and area preservation on the one side
and angular preservation on the other side (cf. Figure 2). No deformation can
preserve all properties at the same time.

In Figure 6 we compare our energies (including AKVF) to the original method
in [29] that uses “soft” handle constraints and achieves smoothness by a error
diffusion. Note that the softly constrained vertices drifted significantly. To com-
pensate for this effect and for a fair comparison, the constraints were selected
such that the trajectories of all handles (•) end in the (optimally) fixed soft han-
dles (•) after the same integration time. The two AKVF and the Metr results
look visually similar, however, all three error values indicate that our AKVF
approach using a problem dependent smoothing term achieves deformation of
lower error.

Figure 10 shows frames of the animation of a volumetric mesh. The wings
of the eagle were deformed symmetrically using three-dimensional AMAP and
ACAP deformations as well as with an Equia vector field with φ = arctan 2−9.
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Energy F 2D
metric F

2D
angle F

2D
area

[29] Akvf 0.084 0.075 0.080
Our Akvf 0.048 0.059 0.042
Metr 0.041 0.091 0.018
Conf 0.227 0.001 0.338

Fig. 6. Akvf Comparison. A symmetric strip deformation is used to evaluate our
energies and compare them to the original AKVF formulation [29] that uses no energy
based smoothing and only soft constraints. The color coded images visualize local error
components, which are all scaled equally.

Fig. 7. Left: A nonhomogeneous parameter φ is given as a scalar field in form of a blend
from φMetr on the left side of the frog’s domain to φConf on the right. Deformation
constraints are defined symmetrically on both sides of the model. Right: An isotropic
deformation compared to a deformation of anisotropic material with a locally “stiffer”
axis direction. Equal deformation constraints were applied in both cases together with
φAKVF.

Again, the conformal energy trades volumetric error for angle preservation while
the isometric energy has better length and volume preservation properties at the
expense of angular distortion. Best volume preservation but also most angular
distortions is achieved by the equiareal deformation. This is also reflected in the
error values of the animation steps (I) and (III) given in the table. Note that we
also included the Akvf errors of the same 3d deformation, which is not shown.

Energy Parameter. Figure 7 (left) shows an example where a nonhomoge-
neous parameter φ is prescribed as a scalar field on the domain. In the example
we use a spatial blend from near-isometric (left side) to conformal (right side).
Defining symmetric constraints shows the nonhomogeneous effect of φ.
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Fig. 8. 2D Deformation Examples. The triangulated models in the box were deformed
using AMAP and ACAP vector fields.

In Figure 7 (right) we demonstrate the effect of using an anisotropic material
compared to an isotropic one. Specifically, we define a region in the center of the
strip that is “stiffer” along one prescribed axis modeled by a corresponding tensor
field B. The material modification leads to two near-
isometric deformations of different characteristics for the
same boundary constraints.

Independence of Tessellation. The discretization of
our energies are integrated measures on the discretized
domain. We expect that the resulting deformations are
independent of the partition, i.e., of the tessellation, as
long as there are enough degrees of freedom available to
represent the constrained deformation. This is confirmed
by all our experiments (see the adjacent Figure for an
example).

Modeling Results. Figure 8 shows initial 2d shapes and two deformed versions
using AMAP and ACAP deformations. The model size ranges from 5k to 11k
vertices and the modeling time was below four minutes in every example. More
2d examples are shown in Figures 1(a), 1(b), and 5. Besides the animation in
Figure 10 we show further tetrahedral deformations in Figure 9. Again we have
the initial shapes together with AMAP and ACAP deformations. The meshes
contain between 1, 500 to 5000 vertices. Again modeling time of an inexperienced
user ranges from a few seconds to a few minutes. None of our tests suffered
from stability issues, not even for extreme deformations. In particular, we didn’t
observe local folds or flips. This is due to the fact that the energy minimizing
vector field generally does not vanish.

Timings. The following tables lists timings of our approach for the smallest and
largest models, 2d and 3d, respectively. We measured the time for the initial fac-
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Fig. 9. 3D Deformation Examples. The tetrahedral models in the box were deformed
using AMAP and ACAP vector fields to give the shown results.

torization of the linear system (t1), system setup time (t2), and time to solve the
system (t3), and the total time T to perform ten consecutive integration steps.

Model (|T | , |V|) t1(ms) t2(ms) t3(ms) T (s)

Toucan (5.6k, 9.6k) 230 6 40 1.9
Cat (11k, 18k) 642 13 68 3.8

Octopus (1.5k, 5k) 168 19 51 2.9
Teapot (5k, 16k) 424 31 118 6.3

Compared to a sole CPU im-
plementation our parallel system
setup using the GPU is up to
three times faster even though
the system has to be transferred
to the CPU before solving it.
Timings were measured on an
AMD Phenom II 955 quad-core CPU with 3.2GHz clock speed equipped with a
NVIDIA GTX 560 Ti GPU with 2 GB of memory. Our approach is interactive for
reasonably sized models. However, as is true for most solvers of nonlinear mea-
sures, also has much higher computational costs compared to linear methods.
Please see also the accompanying video.

7 Discussion

Most existent geometrically-motivated approaches either optimize for near-iso-
metric [17,31,21,29] or for near-conformal deformations [33,34]. In contrast to
this our generalization combines both extrema in an integral formulation, and it
can be applied the same way in 2d and in 3d!

The results in Solomon et al. [29] indicate that their AKVF approach yields
deformations of superior quality compared to related methods. It seems that
for many shape deformation tasks near-isometry is the desired property. Our
approach not only is able to reproduce their results but it shows even better
behavior, getting even closer to isometric maps. At the same time our method
is less complex and more efficient as we achieve smoothness by a regularization,
enable true interpolation constraints and use standard ODE solvers.

Our main feature, however, is the ability to control the deformation by the
parameter φ from conformal to equiareal with AKVF and our definition of near-
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(I) (II) (III) (IV)

(I)/(III) Metr Conf Akvf Equia

F 3D
metric 0.061 0.069 0.172 0.072 0.083 0.091 0.386 0.211

F 3D
angle 0.356 0.421 0.022 0.027 0.305 0.357 2.357 1.367

F 3D
volume 0.009 0.007 0.273 0.051 0.028 0.012 9 · 10−4 4 · 10−4

Fig. 10. 3D Eagle Deformation. A tetrahedral model of an eagle (top left, with instan-
taneous vector field) was deformed in an animation of steps I-IV. The closeups show
intermediate steps for different energies. Note the greatest volume of the conformal
deformation.

isometric deformations in between. To the best of our knowledge, this approach
is the first that provides such range of deformations in a single and concise
mathematical framework. Our Metr energies are an alternative way to measure
deviation from isometry. In a direct comparison to AKVF deformations these
new near-isometric energies show a better area preservation at the expense of a
slightly higher angle deviation. We also note that close-to-equiareal deformations
have not been studied thoroughly in the literature. Even though it is well known
that these maps are not uniquely defined, for φ → 0 we get close to this limit,
and even though the condition of system matrices degrades we obtain meaningful
results.

Relation to Linear Elasticity. Our geometrically-motivated energy formu-
lation can be related to physically-based theory of linear elasticity (see, e. g.,
[26]). This formalism assumes that a rest configuration with material coor-
dinates X is deformed by a displacement field u = x − X into a deformed
shape x. The deformation results in an isotropic internal potential deformation
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energy ζ = μ||ε||2F + λ
2 Tr ε2 that depends on a local strain tensor ε, which is

usually defined using the deformation gradient tensor F = ∇X x = H + I with
displacement gradient tensor H = ∇X u. Here μ and λ are the physical Lamé
constants, which are related to stiffness and volume preservation, respectively.
For small displacement gradients the Lagrangian finite strain tensor ε can be
approximated by the linearized small strain tensor

ε :=
1

2

(
FTF− I

)
=

1

2

(
H+HT +HTH

) ||H||F1
≈ 1

2

(
H+HT

)
,

and the linear elasticity energy becomes

ζ =
μ

4

∣∣∣∣H+HT
∣∣∣∣2
F
+
λ

2
TrH2 .

It measures the potential energy of the deformed shape x relative to the rest
configuration X, which is different to our instantaneous deformation energies
that doesn’t use the notion of a rest post. Still, in the limit of instantaneous
deformations, i. e., x → X, we have H → J, i. e., the displacement gradient be-
comes the vector field Jacobian. Both the physical linear elasticity model and our
geometrically motivated energy formulation therefore coincide in this case with
the relation of parameters wq = μ

4 and wr = λ
2 . However, as we don’t need to

consider deformed shapes in different coordinate systems, our instantaneous ap-
proach doesn’t require artificial regularization method like corotational elasticity
[28] to correct artifact of diverging coordinate systems X and x. Additionally,
our instantaneous approach is unconditionally stable and we can therefore ap-
ply standard explicit ODE solvers for integration and require no, e. g., implicit
integration. Moreover, this derivation shows that as-Killing-as-possible deforma-
tions [29] can be regarded as a geometric special case of physically-based linear
elasticity that describes near-isometric materials. Additionally, in this work we
provide the parameters for materials that show near-conformal behavior, which
might not always give physically plausible results.

Limitations and Future Work. Nonlinear methods are expensive. Although
we use a parallelized GPU implementation it is impossible to outperform linear
methods in terms of computation time. This is a general drawback, and the user
must decide if the additional cost is worthwhile. Still, all shown examples were
modeled interactively.

Until now we consider only space deformations. So far, there is no extension
to the explicit deformation of surfaces that are embedded in 3d space. This
is because the vector field Jacobians capture only the tangential components
of the vector field. They do not measure variations normal to the surface. For
the same reason approximate Killing vector fields are, until now, considered
only tangentially for triangle meshes [30]. We believe that this is an interesting
direction for future research direction.

So far we consider only the initial value problem for path constrained de-
formation. It is much harder to solve the boundary value problem to find an
energy minimizing path between two poses, e.g., for interpolation between poses
(cf. [21,13]). We would like to use our generalized energy in such settings.
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We furthermore want to study the application of generalized energies for
parametrization applications to allow locally varying conformal / equiareal pa-
rametrization. Moreover, the eigen-spectrum of the energy might allow a mul-
tiresolution (in the parameter φ) segmentation of shapes.

8 Conclusions

In this paper we introduce a novel generalized metric energy for continuous shape
deformation. We obtain near-isometric and near-conformal deformations by in-
tegration of as-isometric-as-possible and as-conformal-as-possible vector fields.
Our approach works for two and three dimensions, we have applied it for defor-
mations of triangular and tetrahedral meshes. For the discretization of the energy
we have introduced a first order smoothness criterion based on the energy itself
that guarantees vector field differentiability at handle vertices. Our implemen-
tation uses the GPU to achieve interactivity and we support nonhomogeneous
and anisotropic behavior.

A Smoothness Regularization

Given a generalized pointwise energy

eφ := wq

∣∣∣∣J+ JT
∣∣∣∣2
F
+ wr (TrJ)

2

the derivative w.r.t. J is given by
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Given two neighboring cells ci, cj ∈ T with local energy parameters φi, φj , we
enforce smoothness by minimizing the variation of derivatives along a common
edge (n = 2) or face (n = 3) Bi,j = Ωi ∩ Ωj , i. e., we regularize by minimizing
smoothness energies of the form

Ei,j
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with Ds
i,j = wsj Jj − wsi Ji and wsi = ws(φi) for s ∈ {q, r}, and common edge

length or face area Bi,j = |Bi,j |. The integral can be simplified this way as the
Jacobians are constant on each cell.
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Abstract. Given the line integrals of a harmonic function on a finite set
of chords of the unit circle, we consider the problem of fitting these Radon
projections type of data by a harmonic polynomial in the unit disk. In
particular, we focus on the overdetermined case where the amount of
given data is greater than the dimension of the polynomial space. We
prove sufficient conditions for existence and uniqueness of a harmonic
polynomial fitting the data by using least squares method. Combining
with recent results on interpolation with harmonic polynomials, we ob-
tain an algorithm of practical application. We extend our results to fit-
ting of more general mixed data consisting of both Radon projections
and function values. We perform a comparative numerical study of the
least-squares approach with two other reconstruction methods for the
case of noisy data.

Keywords: multivariate interpolation, Radon transform, harmonic
polynomials, least-squares fitting.

1 Introduction

There are many important problems in medicine, geophysics, biology, materials
science, radiology, oceanography, and other sciences, where information about
processes can only be obtained by nondestructive testing methods. Among the
most successful techniques for reconstruction of objects with non-homogeneous
density are tomographic imaging methods. Johann Radon and his results on
the Radon transform [23] later to be named after him laid the mathematical
foundation for this approach.

From the mathematical point of view, the problem is to recover a multivariate
function using information given as line integrals of the unknown function. This
problem has been intensively studied since the 1960s by different approaches
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[17,5,6,7,15,19,20,24,16] and continues to find a lot of applications. Various re-
construction algorithms have been developed: filtered backprojection, iterative
reconstruction, direct methods, etc., and some are based on the inverse Radon
transform (see [21] and the bibliography therein).

Another class of methods for function reconstruction use direct interpolation
by multivariate polynomials [20,14,1,4,11,12,13,10]. Many results along these
lines are due to a research group founded by Prof. Borislav Bojanov which studies
approximation problems using Radon projections type of data (see also [2,3,22]).
A key question in this approach is how to construct a regular set of line segments,
i.e., in what manner to choose chords of the unit circle so that there exists a
unique polynomial of a corresponding degree with preassigned Radon projections
over the configuration of chords.

To improve the approximation accuracy and to reduce the amount of input
data required as well as the computational effort, one could try to incorpo-
rate some characteristic about the function to be recovered into approximation
methods. According to this concept, interpolation of a harmonic function by har-
monic polynomials based on Radon projections was studied in [9], where tools
from symbolic computation were used, and in [8], where an analytical proof in
a more general setting was given.

In the present paper, we continue the investigation of approximating harmonic
functions using Radon projections type of data. In particular, we focus on the
overdetermined case where the amount of data is greater than the dimension of
the polynomial space. We use a least-squares method to determine a harmonic
polynomial which fits the given data.

It turns out that the least-squares fitting problem and the interpolation prob-
lem are closely related. In [12], it was shown for the non-harmonic case that
existence and uniqueness of the least-squares fitting polynomial relies on a reg-
ularity property of a subset of the scheme of chords.

With a similar proof technique, we derive sufficient conditions for existence
and uniqueness of the least-squares harmonic polynomial, making use of recent
results on interpolation with harmonic polynomials. We also consider fitting more
general mixed data consisting of both Radon projections and function values.
A reconstruction algorithm is developed and tested and numerical results are
presented in the last section.

2 Preliminaries and Related Work

Let D ⊂ R2 denote the open unit disk and ∂D the unit circle. By I(θ, t) we
denote a chord of the unit circle at angle θ ∈ [0, 2ξ) and distance t ∈ (−1, 1)
from the origin (see Figure 1). The chord I(θ, t) is parameterized by

s �→ (t cos θ − s sin θ, t sin θ + s cos θ)�, where s ∈ (−
√
1− t2,

√
1− t2).
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Fig. 1. The chord I(θ, t) of the unit circle

Definition 1. Let f(x, y) be a real-valued bivariate function in the unit disk D.
The Radon projection Rθ(f ; t) of f in direction θ is defined by the line integral

Rθ(f ; t) :=

∫
I(θ,t)

f(x) dx =

∫ √
1−t2

−
√
1−t2

f(t cos θ − s sin θ, t sin θ + s cos θ) ds.

Johann Radon [23] showed in 1917 that a differentiable function f is uniquely
determined by the values of its Radon transform,

f �→
{
Rθ(f ; t) : −1 ≤ t ≤ 1, 0 ≤ θ < ξ

}
.

Further works in this area are due to John [18], Solmon [24], and others.

2.1 Interpolation and Fitting by Bivariate Polynomials

A fundamental problem in our investigations is to recover a polynomial using a
finite number of values of its Radon transform. Essentially, this may be viewed
as a bivariate interpolation problem where the usual function values are replaced
by means over chords of the unit circle.

LetΠ2
n =
{∑

i+j≤n aijx
iyj : aij ∈ R

}
denote the space of real bivariate poly-

nomials of total degree at most n. This space has dimension
(
n+2
2

)
. Assume that

a set I =
{
Im = I(θm, tm) : m = 1, . . . ,

(
n+2
2

)}
of chords of ∂D is given. Fur-

thermore, to each chord Im ∈ I a given value γm ∈ R is associated. Then, the
aim is to find a polynomial p ∈ Π2

n such that

Rθm(p, tm) =

∫
Im

p(x) dx = γm ∀Im ∈ I. (1)

If this interpolation problem has a unique solution for every choice of values
Γ =
{
γm, : m = 1, . . . ,

(
n+2
2

)}
, then the scheme I of chords is called regular.

The question of how to construct such regular schemes has been extensively
studied. The first general result was given by Marr [20] in 1974, who proved that
the set of chords connecting n + 2 equally spaced points on the unit circle is
regular for Π2

n. A more general result for Rd and general convex domains was
published by Hakopian [14] in 1982.
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Different families of regular schemes of chords of the unit circle were con-
structed by Bojanov and Georgieva [1], Bojanov and Xu [4], Georgieva and
Ismail [11], Georgieva and Uluchev [12], A mixed regular scheme which incor-
porates Radon projections and function values at points on the unit circle was
proposed by Georgieva, Hofreither, and Uluchev [10].

Georgieva and Uluchev [12] considered a least-squares fitting problem for the
overdetermined case of Radon projections type of data with algebraic polynomi-
als and proved existence and uniqueness of the fitting polynomial. The proof
was based on the above cited previous interpolation results. Moreover, this
least-squares fitting was extended to mixed type data of Radon projections and
function values.

2.2 Interpolation by Harmonic Polynomials

If we know a priori that the function to be interpolated is harmonic, then it
seems natural to work in the space Hn of real bivariate harmonic polynomials of
total degree at most n, which has dimension 2n+ 1. Analogous to (1), we pre-
scribe chords I := {I(θi, ti) : θi ∈ [0, ξ), ti ∈ (−1, 1)}2n+1

i=1 of the unit circle and
associated given values Γ = {γi}2n+1

i=1 , and wish to find a harmonic polynomial
p ∈ Hn such that

Rθi(p, ti) =

∫
I(θi,ti)

p(x) dx = γi, i = 1, . . . , 2n+ 1. (2)

Again we call I regular if the interpolation problem (2) has a unique solution
for all given values Γ . The conditions in (2) can be equivalently rewritten as
a system of linear equations for the coefficients of p. Thus, I is regular if and
only if the matrix of this system is nonsingular. In the following, we present one
family of such regular schemes.

We use the following basis of the space of harmonic polynomials Hn,

h0(x, y) = 1,

h2k−1(x, y) = Re(x+ iy)k, h2k(x, y) = Im(x+ iy)k, k = 1, . . . , n,

with representation in polar coordinates

h0(r, θ) = 1,

h2k−1(r, θ) = rk cos(kθ), h2k(r, θ) = rk sin(kθ), k = 1, . . . , n.

Every harmonic polynomial p of degree less than or equal to n can be expanded
in this basis,

p =

2n∑
k=0

pkhk,

where pk are real coefficients.
The following result, which gives a closed formula for Radon projections of the

basis harmonic polynomials can be considered a harmonic analogue to the famous
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Marr’s formula [20]. A special case of this harmonic version was first derived
using tools from symbolic computation [9]. Later, Georgieva and Hofreither [8]
have given an analytic proof in a more general setting.

Lemma 1. The Radon projections of the basis harmonic polynomials hk, k ∈ N,
are given by

Rθ(h2k−1, t) =

∫
I(θ,t)

h2k−1(x) dx =
2

k + 1

√
1− t2Uk(t) cos(kθ),

Rθ(h2k, t) =

∫
I(θ,t)

h2k(x) dx =
2

k + 1

√
1− t2Uk(t) sin(kθ),

where θ ∈ R, t ∈ (−1, 1) and Uk(t) is the k-th degree Chebyshev polynomial of
second kind.

The above lemma plays a crucial role in proving regularity of a particular
family of schemes I of chords.

Theorem 1 (Existence and uniqueness [9,8]). The interpolation problem
(2) has a unique solution for any set of chords I = {I(θi, ti)}2n+1

i=1 with

0 ≤ θ1 < θ2 < . . . < θ2n+1 < 2ξ

and with constant distances ti = t ∈ (−1, 1) such that t is not a zero of any
Chebyshev polynomial of the second kind U1, . . . , Un.

See Figure 2 for some examples of (regular) schemes which satisfy the condi-
tions of the above theorem, and one which does not and is in fact not regular.

Fig. 2. Top: Some admissible schemes according to Theorem 1. Bottom: A scheme
which does not satisfy the assumptions of Theorem 1 since t = 0 is a root of every
Chebyshev polynomial of odd degree. This scheme is not regular.
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3 Least-squares Fitting

Here we deal with the problem of fitting some given Radon projections of a
harmonic function by a harmonic polynomial in the overdetermined case where
the amount of data is greater than the dimension of the polynomial space. A
least-squares method is used to determine a harmonic polynomial which fits the
given data. The problem of least-squares fitting of Radon projections was first
considered for the case of algebraic polynomials by Marr [20].

3.1 Radon Projections Type of Data

Let a set I :=
{
I(θi, ti) : θi ∈ [0, ξ), ti ∈ (−1, 1)

}N
i=1

of N distinct chords of

the unit circle ∂D, be given, and let Γ :=
{
γi
}N
i=1

be the Radon projections of
a harmonic function u along these chords, i.e.,

Rθi(u, ti) = γi, i = 1, . . . , N.

We regard the set of chords I and the set of values Γ generally as data. Finally,
by Λ :=

{
λi
}N
i=1

we denote a set of positive real numbers which we consider to
be weights related to the corresponding Radon projections.

The least squares fitting problem is formulated as follows.
Given data I and Γ , and weights Λ, find a polynomial p ∈ Hn, N > 2n+ 1,

such that
N∑
i=1

λi
(
Rθi(p, ti)− γi

)2 → min . (3)

Theorem 2. Assume that data I and Γ , and weights Λ are given. Suppose that
there exists a subset J ⊂ {1, 2, . . . , N}, |J | = 2n+ 1, such that the interpolatory
scheme of chords

{
I(θ	, t	)

}
	∈J

is regular. Then there exists a unique harmonic
polynomial p ∈ Hn for which the minimum in (3) is attained.

Proof. Suppose p is a harmonic polynomial of degree at most n. Then p can be
represented in the form

p =
2n∑
k=0

pkhk.

Since the Radon projection for a fixed line segment is a linear functional it follows
that

Rθi(p; ti) =

2n∑
k=0

pkRθi(hk; ti), i = 1, . . . , N.

Hence, the problem (3) is equivalent to the problem

Φ :=

N∑
i=1

λi

(
2n∑
k=0

pkRθi(hk; ti)− γi

)2

→ min,
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where Φ is a function of the coefficients {pk}2nk=0.
Applying the necessary conditions for extrema

∂Φ

∂pj
= 0, j = 0, . . . , 2n,

we obtain the system of linear equations, for j = 0, 1, . . . , 2n,

2n∑
k=0

(
N∑
i=1

λiRθi(hk, ti)Rθi(hj , ti)

)
pk =

N∑
i=1

λiγiRθi(hj , ti), (4)

with respect to the coefficients {pk}2nk=0.
In order to prove that (4) has a unique solution for arbitrary set Γ of Radon

projections we consider the corresponding homogeneous system

2n∑
k=0

(
N∑
i=1

λiRθi(hk, ti)Rθi(hj , ti)

)
qk = 0, j = 0, 1, . . . , 2n. (5)

Using the linearity of the functionals Rθi(·, ti), we get

N∑
i=1

λiRθi

( 2n∑
k=0

qkhk, ti

)
Rθi(hj , ti) = 0, j = 0, 1, . . . , 2n. (6)

Denote

q :=

2n∑
k=0

qkhk.

Let us note that q is a polynomial from Hn. Then (5) may be rewritten as

N∑
i=1

λiRθi(q, ti)Rθi(hj , ti) = 0, j = 0, 1, . . . , 2n.

We now sum all the equations of (6) multiplied by the corresponding qj and
obtain

N∑
i=1

λi
(
Rθi(q, ti)

)2
= 0.

Hence, by the positivity of the weights λi, we have

Rθi(q, ti) = 0, i = 1, . . . , N.

Since there exists a subset J ⊂ {1, 2, . . . , N}, |J | = 2n + 1, such that the in-
terpolatory scheme of chords

{
I(θ	, t	)

}
	∈J

is regular, we conclude that q ≡ 0.
Then

qk = 0, k = 0, 1, . . . , 2n,

i.e., the homogeneous system (5) has only the zero solution.
Therefore the linear system (4) has a unique solution, and the theorem is

proved. 	
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Remark 1. From the proof of Theorem 2, it can be seen that the coefficients
{pk}2nk=0 of the least-squares fitting polynomial p =

∑2n
k=0 pkhk can be found as

the solution of the following system of linear equations,

2n∑
k=0

ajkpk =
N∑
i=1

bjiγi, j = 0, . . . , 2n.

In short, the vector p of coefficients is determined by

Ap = BΓ

with the symmetric and positive definite matrix A = (ajk)
2n
j,k=0 and the rectan-

gular matrix B = (bji)
2n, N
j=0,i=1 having entries

ajk =

N∑
i=1

λiRθi(hk, ti)Rθi(hj , ti), bji = λiRθi(hj , ti).

These matrix entries can be computed using the formulas in Lemma 1 for the
Radon projections of the harmonic basis functions.

3.2 Mixed Type of Data

Now, we shall consider a fitting problem for mixed type of data – both Radon
projections and function values. Namely, let the data I and Γ , and the weights
Λ be given as above in Section 3.1. Additionally we take values U :=

{
uj
}M
j=1

of the harmonic function u at arbitrary points X :=
{
xj

}M
j=1

in the closed unit
disk D, i.e.,

u(xj) = uj , j = 1, . . . ,M.

In particular, the points X can be chosen only on the unit circle ∂D. Let Ω :={
ωj

}M
j=1

be given weights corresponding to the function values.
The least squares fitting problem for mixed type of data is formulated as

follows: given

– the data I and Γ , and corresponding weights Λ;
– function values U at points X and weights Ω;

find a harmonic polynomial p ∈ Hn, N > 2n+ 1, such that

N∑
i=1

λi
(
Rθi(p, ti)− γi

)2
+

M∑
j=1

ωj

(
p(xj)− uj

)2 → min . (7)

Theorem 3. Assume that mixed type of data I, Γ , X, U , and weights Λ, Ω
are given. Suppose that there exists a subset J ⊂ {1, 2, . . . , N}, |J | = 2n + 1,
such that the interpolatory scheme of chords

{
I(θ	, t	)

}
	∈J

is regular. Then there
exists a unique harmonic polynomial p ∈ Hn for which the minimum in (7) is
attained.
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Therefore including a regular interpolatory scheme from Section 2.2 into the
set of chords I assures the uniqueness of the solution to the problem for mixed
data. The proof of the theorem is similar to the proof of Theorem 2 and the coef-
ficients of the least-squares minimizing polynomial can be computed by solving
a linear system similar as in Remark 1.

4 Numerical Examples

4.1 Example 1

We approximate the harmonic function u(x, y) = exp(x) cos(y) by a harmonic
polynomial p ∈ Hn given N = 2(2n+ 1) values of its Radon projections: 2n+ 1
taken along the edges of a regular (2n + 1)-sided convex polygon (Figure 2,
first picture), and 2n+ 1 along random chords. The weights are all set to 1. In
Figure 3, we display the scheme of chords, the function u as well as the error
u − p, where p is the least-squares fitting polynomial of degree n = 7 fitting
information on 30 chords.

4.2 Example 2

We consider a similar problem as in Example 1, but in this case the weights are
set to 1 for the chords forming a regular (2n+ 1)-sided convex polygon, and to
100 for the remaining N − (2n+ 1) random chords.

In Figure 4, we plot the scheme of chords, and the error function u−p, where
the degree of the least-squares fitting polynomial p is n = 7 and the number of
chords is N = 30. No qualitative change in behavior from Example 1 is observed,
and the error is of the same order of magnitude. This can be explained by the fact
that in both examples, the polynomial p is already reasonably close to the best-
approximating polynomial in the space H7. Indeed, adding additional data in
the form of more chords does not significantly decrease the error in this example.

4.3 Example 3

We again approximate the harmonic function u(x, y) = exp(x) cos(y), but con-
sider the case of noisy data. We set up a sequence of chords Im = I(θm, tm)
where the first 15 chords are chosen to form a regular convex polygon inscribed
in the unit circle, and all following chords are chosen with θm ∈ [0, 2ξ) and
tm ∈ (0, 1) sampled from a uniform random distribution over their respective in-
tervals. Over each chord, we compute the exact Radon projection γm =

∫
Im
u dx

and then simulate noisy data γ̃m by adding to γm a random number drawn from
a Gaussian distribution with mean 0 and standard deviation ε = 10−2.

Using this input data, we compare three reconstruction algorithms.

– First, the least squares method described in the present paper with degree
n = 7 and a variable number of additional chords drawn from {Im}. We also
compare the case where the first 2n+1 chords are weighted with 10 and the
remaining with 1 to the case where all chords are weighted uniformly.
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Fig. 3. Example 1, uniform weights, n = 7, N = 30: the scheme of chords, function u,
error u− p

Fig. 4. Example 2, variable weights, n = 7, N = 30: the scheme of chords, error u− p

– Second, we use the basic harmonic interpolation approach described in Sec-
tion 2.2. For this, we choose a number M ∈ N, take the first 15M chords from
{Im}, and set up the interpolation problem (2) with interpolation degree
n = 7M . Note that there is no theoretic justification for the interpolation
problem to be uniquely solvable, but this is “almost always” the case, and
we encounter no singular matrices in this example.

– Third, we set up an approach inspired by Monte Carlo methods. For this,
we partition the input data into M sets of size 15 each, i.e., we consider the
schemes of chords

(I1, . . . , I15), (I16, . . . , I30), . . . , (I15M−14, . . . , I15M )

for some natural number M . On each of these sets, we solve an interpolation
problemofdegreen = 7 as inSection2.2, yieldingM interpolatingpolynomials
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(pj ∈ H7)
M
j=1. The final result is the averaged harmonic polynomial

p =
1

M

M∑
j=1

pj ∈ H7.

The same remark about unique solvability of the interpolation problems as
above applies.

We plot the relative L2-errors resulting from these three methods. For ease
of comparison, the x axis always indicates the number of additional chords over
the initial 15 that were used in the approximation.

5 10 50 100 500

0.0100

0.0050

0.0020

0.0030

0.0070

Fig. 5. Example 3: errors for the least-squares method with noisy data, degree n = 7.
x-axis: number of additional chords. y-axis: relative L2-error. The upper (purple) dots
correspond to the case where the initial 15 chords are weighted 10 times stronger, while
the lower (blue) dots correspond to the uniformly weighted case.

Figure 5 shows the errors for the least-squares approach for both uniform and
variable weights. We observe that both choices of weights lead to a reduction of
the error as more data is taken into account, however the uniform weights seem
to produce lower errors overall.

Figure 6 shows the errors for the pure interpolation approach with increased
degree of the interpolating harmonic polynomial. This method does not converge.
This is due to the noise in the data being amplified by the large condition
number of the interpolation matrix associated with randomly distributed chords.
We point out that, in contrast, a uniformly bounded condition number was
obtained in [8] for the case of equally spaced chords with constant distances to
the origin.
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Fig. 6. Example 3: errors for the high-degree (n = 7M) interpolation with noisy data.
x-axis: number of additional chords (15(M − 1)). y-axis: relative L2-error
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Fig. 7. Example 3: errors for the Monte Carlo-type method with noisy data, degree
n = 7. x-axis: number of additional chords. y-axis: relative L2-error

Figure 7 shows the errors for the Monte Carlo-type approach. Again no sat-
isfactory convergence is observed. The reason for this is similar as for the pure
interpolation method in that some of the small interpolation problems are ill-
conditioned. Indeed, the jumps in the error plot can be traced back to prob-
lems with particularly large condition number of the corresponding interpolation
matrix.

In summary, of the three methods, only the least-squares approach seems to
yield satisfactory results for highly noisy data over large sets of randomly chosen
chords.
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Generating Functions for Uniform B-Splines
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Abstract. We derive a closed formula for the generating functions of the
uniform B-splines. We begin by constructing a PDE for these generating
functions starting from the de Boor recurrence. By solving this PDE, we
find that we can express these generating functions explicitly as sums
of polynomials times exponentials. Using these generating functions, we
derive some known identities, including the Schoenberg identity, the two
term formula for the derivatives in terms of B-splines of lower degree, and
the partition of unity property. We also derive several new identities for
uniform B-splines not previously available from classical methods, includ-
ing formulas for sums and alternating sums, for moments and reciprocal
moments, and for Laplace transforms and convolutions with monomials.

1 Introduction

Generating functions are a powerful tool for investigating the properties of dis-
crete sequences. Explicit formulas and identities for elements of the sequence can
often be readily derived once we have an explicit formula for their generating
function [1].

The goal of this paper is to compute an explicit formula for the generat-
ing function of the uniform B-splines over arbitrary intervals. We shall then
use these generating functions to derive several well known identities—including
the Schoenberg identity, the two term formula for the derivatives in terms of
B-splines of lower degree, and the partition of unity property—for the uni-
form B-splines. We will also derive several new identities for uniform B-splines
not previously available from classical methods such as blossoming or the de
Boor recurrence, including formulas for sums and alternating sums, for mo-
ments and reciprocal moments, and for Laplace transforms and convolutions with
monomials.

This work is inspired by the papers of Y. Simsek [4–6], who computed explicit
formulas for a novel collection of generating functions for the classical Bernstein
bases

Bn
k (x) =

(
n
k

)
xk(1− x)n−k 0 ≤ k ≤ n, 0 ≤ n < ∞,

by summing over the degree n instead of over the index k. He then used these
generating functions to derive many known and some new identities for the

M. Floater et al. (Eds.): MMCS 2012, LNCS 8177, pp. 172–188, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



Generating Functions for Uniform B-Splines 173

Bernstein basis functions. We shall take a similar approach with the uniform
B-splines Nk,n(x), again summing over the degree n instead of the index k.

We proceed in the following fashion. In Section 2 we consider the simple special
case of B-splines of degree n with knots at the integers 0, . . . , n+ 1 but restricted
to the interval [0, 1]. Over this interval we find that the generating function has
an especially simple form as an exponential, so we are encouraged to study the
generating function over arbitrary intervals. In Section 3 we apply the de Boor
recurrence to derive a PDE for the generating function, and in Section 4 we solve
this PDE to find an explicit formula for the generating function over arbitrary
intervals. This solution reveals a novel connection between uniform B-splines
and exponentials. In Section 5 we show how to use this generating function to
derive some classical identities for the uniform B-splines, including Schoenberg’s
identity, the formula for the derivatives of the B-splines in terms of B-splines of
lower degree, and the fact that the B-splines form a the partition of unity. In
Section 6 we apply the generating function to derive several new identities for
the uniform B-splines not previously accessible from classical methods such as
blossoming or the de Boor recurrence. These new identities for uniform B-splines
include formulas for sums and alternating sums, for moments and reciprocal
moments, and for Laplace transforms and convolutions with monomials. We
close in Section 7 with a brief summary of our work along a short discussion
of the limitations of our approach to deriving identities for the B-splines using
generating functions. We also list a few natural problems involving generating
functions and B-splines for future research.

2 A Simple Example: The Generating Function over the
Interval [0, 1]

We shall begin by investigating the uniform B-splines with knots at the integers
when restricted to the interval [0, 1].

To fix our notation, let

Nk,n(x)= the uniform B-spline of degree n with support [k, k+n+1] and knots

at the integers {k, k + 1, . . . , k + n+ 1}.

We also introduce the generating functions

Gk(x, t) =

∞∑
n=0

Nk,n(x)t
n.

Recall that for uniform B-splines, the functions Nk,n(x) are just shifts of the
functions N0,n(x)—that is,

Nk,n(x) = N0,n(x − k),

so
Gk(x, t) = G0(x− k, t).
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Thus to investigate the B-splinesNk,n(x) and their generating functions Gk(x, t),
it is enough to study the B-splinesN0,n(x) and their generating functionsG0(x, t).

To investigate the B-splines N0,n(x), consider de Boor recurrence:

N0,n(x) =
x

n
N0,n−1(x) +

n+ 1− x

n
N1,n−1(x).

For x ≤ 1, we have N1,n(x) = 0. Therefore

N0,n(x) =
x

n
N0,n−1(x) 0 ≤ x ≤ 1.

Hence in the interval [0, 1]:

N0,0(x) = 1, N0,1(x) = x, N0,2(x) =
x2

2!
, . . . , N0,n(x) =

xn

n!
.

Thus over the interval [0, 1], we have a remarkably simple explicit formula for
the generating function G0(x, t) of the B-splines N0,n(x):

G0(x, t) =

∞∑
n=0

xntn

n!
= ext 0 ≤ x ≤ 1.

Our goal is to find explicit formulas for the generating function G0(x, t) over
arbitrary intervals.

3 A PDE for the Generating Functions Built from the de
Boor Recurrence

For a discrete sequence generated by a recurrence one classical way to derive
an explicit formula for the generating function is first to use the recurrence
to construct a functional equation for the generating function. One can then
often solve this functional equation to find an explicit formula for the generating
function. This technique works, for example, to derive an explicit formula for
the generating function of the fibonacci numbers [1]. Here we shall apply this
method to derive a PDE for the generating functions of the uniform B-splines.
In the next section we will solve this PDE to find an explicit formula for the
generating functions of the uniform B-splines over arbitrary intervals.

Theorem 1.

∂G0

∂t
(x, t) = xG0(x, t) + (2− x)G1(x, t) + t

∂G1

∂t
(x, t). (1)

Proof. We begin with the de Boor recurrence:

N0,n(x) =
x

n
N0,n−1(x) +

n+ 1− x

n
N1,n−1(x).
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Multiplying both sides by ntn−1 yields:

nN0,n(x)t
n−1 = xN0,n−1(x)t

n−1 + (n+ 1− x)N1,n−1(x)t
n−1.

Now summing over n, we find that:∑
n

nN0,n(x)t
n−1 =x

∑
n

N0,n−1(x)t
n−1 + (2− x)

∑
n

N1,n−1(x)t
n−1

+ t
∑
n

(n− 1)N1,n−1(x)t
n−2.

Therefore

∂G0

∂t
(x, t) = xG0(x, t) + (2− x)G1(x, t) + t

∂G1

∂t
(x, t).

	


4 Solving the PDE for the Generating Functions

We shall now derive an explicit formula for the generating function G0(x, t) by
solving the PDE in Theorem 1. We begin with some special cases.

Over the interval [0, 1], we have N1,n(x) = 0. so G1(x, t) = 0. Hence the PDE
in Equation (1) reduces to

∂G0

∂t
(x, t) = xG0(x, t) 0 ≤ x ≤ 1. (2)

Therefore, as we observed in Section 2,

G0(x, t) = ext 0 ≤ x ≤ 1. (3)

Over the interval [1, 2] , we have

G1(x, t) = G0(x− 1, t) = e(x−1)t 1 ≤ x ≤ 2. (4)

Therefore the PDE in Equation (1) reduces to

∂G0

∂t
(x, t) = xG0(x, t) + (2− x)e(x−1)t + t(x− 1)e(x−1)t 1 ≤ x ≤ 2. (5)

One can now guess the solution must have terms with the exponentials ext and
e(x−1)t. By trial and error one soon finds that:

G0(x, t) = ext −
(
(x− 1)t+ 1

)
e(x−1)t 1 ≤ x ≤ 2, (6)

which is easily verified by substituting Equation (6) into Equation (5) and seeing
that the PDE is indeed satisfied. Proceeding in this manner, we find that we have
the following general result.
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Theorem 2. For x ∈ [p, p+ 1], the function

G0(x, t) =

p∑
j=0

(−1)j
(
(x− j)jtj

j!
+

(x− j)j−1tj−1

(j − 1)!

)
e(x−j)t (7)

satisfies the PDE in Equation (1).

Proof. We proceed by induction on p. The cases p = 0, 1 have already been
discussed. Suppose then that this result is true for p − 1; then we must verify
that this result is also valid for p. To simplify our notation, let

G0,p−1(x, t) =

p−1∑
j=0

(−1)j
(
(x − j)jtj

j!
+

(x− j)j−1tj−1

(j − 1)!

)
e(x−j)t,

g0,p(x, t) =

(
(x− p)ptp

p!
+

(x− p)p−1tp−1

(p− 1)!

)
e(x−p)t.

Then for x ∈ [p, p+ 1]

G0(x, t) = G0,p−1(x, t) + (−1)pg0,p(x, t),

G1(x, t) = G0,p−1(x− 1, t) + (−1)p−1g0,p−1(x− 1, t).

Moreover, by the inductive hypothesis

∂G0,p−1

∂t
(x, t) = xG0,p−1(x, t) + (2− x)G1,p−1(x, t) + t

∂G1,p−1

∂t
(x, t).

Therefore it is enough to verify that

∂g0,p
∂t

(x, t) = xg0,p(x, t)− (2− x)g0,p−1(x− 1, t)− t
∂g0,p−1

∂t
(x − 1, t).

But by direct computation:

∂g0,p
∂t

(x, t) =(x− p)

(
(x − p)ptp

p!
+

(x− p)p−1tp−1

(p− 1)!

)
e(x−p)t

+

(
(x− p)ptp−1

(p− 1)!
+

(x− p)p−1tp−2

(p− 2)!

)
e(x−p)t.

Thus

∂g0,p
∂t

(x, t) =xg0,p(x, p)−
(
(x − p)ptp

(p− 1)!
+
p(x− p)p−1tp−1

(p− 1)!

)
e(x−p)t

+ (x − p)

(
(x− p)p−1tp−1

(p− 1)!
+

(x− p)p−2tp−2

(p− 2)!

)
e(x−p)t,

or equivalently

∂g0,p
∂t

(x, t) =xg0,p(x, p)−
(
(x− p)ptp

(p− 1)!
+
p(x− p)p−1tp−1

(p− 1)!

)
e(x−p)t

+
(
(x − 2) + (2− p)

)( (x− p)p−1tp−1

(p− 1)!
+

(x− p)p−2tp−2

(p− 2)!

)
e(x−p)t.
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Hence

∂g0,p
∂t

(x, t) = xg0,p(x, t)− (2− x)g0,p−1(x− 1, t)

−
(
(x− p)ptp

(p− 1)!
+
p(x− p)p−1tp−1

(p− 1)!

)
e(x−p)t

+ (2− p)

(
(x− p)p−1tp−1

(p− 1)!
+

(x− p)p−2tp−2

(p− 2)!

)
e(x−p)t,

so

∂g0,p
∂t

= xg0,p(x, t) − (2− x)g0,p−1(x − 1, t)− (x− p)ptp

(p− 1)!
e(x−p)t

+ (2 − 2p)

(
(x − p)p−1tp−1

(p− 1)!

)
e(x−p)t − (x − p)p−2tp−2

(p− 3)!
e(x−p)t.

Therefore it is enough to verify that

t
∂g0,p−1(x− 1, t)

∂t
=

(
(x− p)ptp

(p− 1)!
+ 2

(x− p)p−1tp−1

(p− 2)!
+

(x− p)p−2tp−2

(p− 3)!

)
e(x−p)t.

But by definition

g0,p−1(x − 1, t) =

(
(x− p)p−1tp−1

(p− 1)!
+

(x − p)p−2tp−2

(p− 2)!

)
e(x−p)t.

Hence

t
∂g0,p−1(x − 1, t)

∂t
=

(
(x− p)p−1tp−1

(p− 2)!
+

(x− p)p−2tp−2

(p− 3)!

)
e(x−p)t

+ (x − p)t

(
(x− p)p−1tp−1

(p− 1)!
+

(x− p)p−2tp−2

(p− 2)!

)
e(x−p)t,

so indeed

t
∂g0,p−1(x− 1, t)

∂t
=

(
(x− p)ptp

(p− 1)!
+ 2

(x− p)p−1tp−1

(p− 2)!
+

(x− p)p−2tp−2

(p− 3)!

)
e(x−p)t.

	


5 Deriving Identities for the Uniform B-Splines from
their Generating Functions

With explicit formulas for the generating functions now in hand, we are finally
ready to derive some identities for the uniform B-splines.
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5.1 Schoenberg’s Identity

Theorem 3. (Schoenbergs Identity [3])

N0,n(x) =
1

n!

p∑
j=0

(−1)j
(
n+ 1
j

)
(x− j)n p ≤ x ≤ p+ 1. (8)

Proof. Schoenberg’s identity for the B-splines follows immediately from the ex-
plicit formula for the generating functions. We simply compare coefficients of tn

on both sides of the generating function:

G0(x, t) =

p∑
j=0

(−1)j
(
(x− j)jtj

j!
+

(x− j)j−1tj−1

(j − 1)!

)
e(x−j)t p ≤ x ≤ p+ 1.

Expanding the exponential function on the right hand side, we find that

G0(x, t) =

p∑
j=0

(−1)j
(
(x− j)jtj

j!
+

(x− j)j−1tj−1

(j − 1)!

)( ∞∑
k=0

(x− j)ktk

k!

)
p ≤ x ≤ p+1.

Now equating the terms with tn on both side of this equation yields

N0,n(x)t
n =

p∑
j=0

(
(−1)j

(x − j)jtj

j!

(x− j)n−jtn−j

(n− j)!
+

(−1)j
(x− j)j−1tj−1

(j − 1)!

(x− j)n−j+1tn−j+1

(n− j + 1)!

)
,

so

N0,n(x) =
1

n!

p∑
j=0

(−1)j
((

n
j

)
+

(
n

j − 1

))
(x− j)n =

1

n!

p∑
j=0

(−1)j
(
n+ 1
j

)
(x− j)n.

	


5.2 The Derivative Formula

To derive a formula for the derivative of the uniform B-splines, we begin by
deriving a functional equation for the derivative of their generating function.

Lemma 1.
∂G0

∂x
(x, t) = tG0(x, t)− tG1(x, t). (9)

Proof. By Theorem 2:

G0(x, t) =

p∑
j=0

(−1)j
(
(x− j)jtj

j!
+

(x− j)j−1tj−1

(j − 1)!

)
e(x−j)t.



Generating Functions for Uniform B-Splines 179

Therefore

∂G0

∂x
(x, t) =

p∑
j=0

(−1)j
(
(x− j)j−1tj

(j − 1)!
+

(x − j)j−2tj−1

(j − 2)!

)
e(x−j)t

+ t

p∑
j=0

(−1)j
(
(x− j)jtj

j!
+

(x− j)j−1tj−1

(j − 1)!

)
e(x−j)t,

or equivalently

∂G0

∂x
(x, t) =− t

p∑
j=0

(−1)j−1

(
((x− 1)− (j − 1))j−1tj−1

(j − 1)!

+
((x − 1)− (j − 1))j−2tj−2

(j − 2)!

)
e((x−1)−(j−1))t

+ t

p∑
j=0

(−1)j
(x− j)jtj

j!
+

(x − j)j−1tj−1

(j − 1)!
e(x−j)t.

Hence

∂G0

∂x
(x, t) = tG0(x, t)− tG0(x− 1, t) = tG0(x, t)− tG1(x, t).

Theorem 4. (Derivative Formula)

∂N0,n(x)

∂x
= N0,n−1(x)−N1,n−1(x). (10)

Proof. From Lemma 1, we have the functional equation:

∂G0

∂x
(x, t) = tG0(x, t)− tG1(x, t).

Comparing the coefficients of tn on both sides, we find that:

∂N0,n(x)

∂x
tn = tN0,n−1(x)t

n−1 − tN1,n−1(x)t
n−1,

∂N0,n(x)

∂x
= N0,n−1(x)−N1,n−1(x).

	


5.3 The de Boor Recurrence

Starting from the de Boor recurrence, we derived a PDE for the partial derivative
of the generating function with respect to t. We can also go the other way:
starting from this functional equation for the partial derivative of the generating
function with respect to t, we can derive the de Boor recurrence. Thus this PDE
is actually equivalent to the de Boor recurrence.
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Theorem 5. (de Boor Recurrence)

N0,n(x) =
x

n
N0,n−1(x) +

n+ 1− x

n
N1,n−1(x).

Proof. By Theorem 2, the generating function G0(x, t) satisfies the functional
equation:

∂G0

∂t
(x, t) = xG0(x, t) + (2− x)G1(x, t) + t

∂G1

∂t
(x, t).

Therefore∑
n

nN0,n(x)t
n−1 =x

∑
n

N0,n−1(x)t
n−1 + (2− x)

∑
n

N1,n−1(x)t
n−1

+ t
∑
n

(n− 1)N1,n−1(x)t
n−2.

Comparing the coefficients of tn−1 on both sides yields:

nN0,n(x) = xN0,n−1(x) + (n+ 1− x)N1,n−1(x).

Now dividing both sides by n, we conclude that:

N0,n(x) =
x

n
N0,n−1(x) +

n+ 1− x

n
N1,n−1(x).

	


5.4 Partition of Unity

Here we shall use the generating functions to show that the uniform B-splines
form a partition of unity. We begin with some technical results.

Lemma 2.

0∑
k=−d

Gk(x, t) =

0∑
k=−d

(−1)k+d

(
(x− k)k+dtk+d

(k + d)!

)
e(x−k)t 0 ≤ x ≤ 1. (11)

Proof. We proceed by induction on d. For d = 0, this formula reduces to

G0(x, t) = ext,

which is just Equation (3). Now by the inductive hypothesis:

0∑
k=−d

Gk(x, t) =

0∑
k=−d

(−1)k+d

(
(x− k)k+dtk+d

(k + d)!

)
e(x−k)t. (12)
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Moreover,

G−(d+1)(x, t) =
∑
n

N−(d+1),n(x)t
n

=

d+1∑
j=0

(−1)j
(
(x+ d+ 1− j)jtj

j!

+
(x+ d+ 1− j)j−1tj−1

(j − 1)!

)
e(x+d+1−j)t.

Reindexing by setting i = j − 1, we get

G−(d+1)(x, t) =e
(x+d+1)t +

d∑
i=0

(−1)i+1

(
(x+ d− i)i+1ti+1

(i+ 1)!

+
(x+ d− i)iti

i!

)
e(x+d−i)t.

Now setting k = i− d, we arrive at

G−(d+1)(x, t) =e
(x+d+1)t +

0∑
k=−d

(−1)k+d+1

(
(x− k)k+d+1tk+d+1

(k + d+ 1)!

+
(x− k)k+dtk+d

(k + d)!

)
e(x−k)t.

Adding this last equation to (12) yields our result. 	


Lemma 3. ∑
−n≤k≤0

Nk,n(x) =

n∑
k=0

(−1)n−k

(
(x+ k)n

k!(n− k)!

)
0 ≤ x ≤ 1. (13)

Proof. This result follows directly from Lemma 2 by setting d = n and comparing
the coefficients of tn of both sides of Equation (11). 	


Lemma 4.

n∑
k=0

(−1)n−k

(
(x+ k)n

k!(n− k)!

)
= 1.

Proof. To establish this result, we shall use a divided difference argument. The
following divided difference formula follows easily by induction on n:

f [0, 1, . . . , n] =
1

n!

n∑
k=0

(−1)n−k

(
n
k

)
f(k).
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Therefore

n∑
k=0

(−1)n−k

(
(x+ k)n

k!(n− k)!

)
=

1

n!

n∑
k=0

(−1)n−k

(
n
k

)
(x+ k)n = (x+ ·)n[0, 1, . . . , n].

But
f [0, 1, . . . , n] = highest order coefficient of the polynomial interpolant,

so
(x+ ·)n[0, 1, . . . , n] = 1.

	


Proposition 1. (Partition of Unity)∑
−n≤k≤0

Nk,n(x) = 1.

Proof. By translation invariance, it is enough to prove this result for 0 ≤ x ≤ 1.
But for 0 ≤ x ≤ 1, this result follows immediately from Lemmas 3 and 4. 	


6 New Identities for Uniform B-Splines

So far we have used our generating function to derive some well known identities
for the uniform B-splines. In this section we shall derive some new identities for
uniform B-splines using their generating functions.

6.1 New Identities from Specializing the Generating Functions

Here we derive new identities for the sums and alternating sums as well as for
the moments and reciprocal moments of the uniform B-splines by considering
special values of t in the generating functions G0(x, t). The reader may easily
construct other identities for the B-splines by considering other specializations
of their generating functions.

Theorem 6. (Sums and Alternating Sums)

∞∑
n=0

N0,n(x) = ex +

p∑
j=1

(−1)j
x(x − j)j−1

j!
e(x−j) p ≤ x ≤ p+ 1. (14)

∞∑
n=0

(−1)nN0,n(x) = e−x +

p∑
j=1

(x − 2j)(x− j)j−1

j!
e−(x−j) p ≤ x ≤ p+ 1. (15)

Proof. These results follow immediately by substituting t = ±1 on both sides of
the generating function in Equation (7). 	
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Theorem 7. (Moments and Reciprocal Moments)

∞∑
n=0

xnN0,n(x) =

p∑
j=0

(−1)j
(
(x− j)jxj

j!
+

(x− j)j−1xj−1

(j − 1)!

)
e(x−j)x, p ≤ x ≤ p+ 1.

(16)

∞∑
n=0

x−nN0,n(x) =

p∑
j=0

(−1)j
(
(1 − j/x)j

j!
+
(1 − j/x)j−1

(j − 1)!

)
e(1−j/x), p ≤ x ≤ p+1.

(17)

Proof. These results follow immediately by substituting t = x±1 on both sides
of the generating function in Equation (7). 	


6.2 New Identities from Manipulating the Generating Functions

Here we derive new identities for the Laplace transform of the B-splines along
with new convolution formulas for the B-splines with the monomials by manipu-
lating the generating functions. Limited only by their imagination and ingenuity,
readers may seek other identities for the B-splines by manipulating their gener-
ating functions.

Our explicit formula for the generating functions over the interval [p, p+1] in
Equation (7) is

∑
n

N0,n(x)t
n =

p∑
j=0

(−1)j
(
(x− j)jtj

j!
+

(x− j)j−1tj−1

(j − 1)!

)
e(x−j)t.

In this section we explore what happens when we move ext to the left hand side.

Theorem 8. (Convolution Formulas)

n∑
j=0

(−1)j

j!
xjN0,n−j(x) =

p∑
j=0

(−1)n
(
jn−j(x− j)j

j!(n− j)!
− jn−j+1(x− j)j−1

(j − 1)!(n− j + 1)!

)
(18)

for all n and p ≤ x ≤ p+ 1.

n∑
k=0

(−1)k

k!
(x+ α)kN0,n−k(x) =(−1)n

min(p,n)∑
j=0

(
(j + α)n−j

j!(n− j + 1)!
(x− j)j−1

(
(x− j)(n− j + 1)− (j + α)j

))
(19)

for all n, α and p ≤ x ≤ p+ 1.
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Proof. To prove the first identity, start with the generating function in Equation
(7):

∑
n

N0,n(x)t
n =

p∑
j=0

(−1)j
(
(x− j)jtj

j!
+

(x− j)j−1tj−1

(j − 1)!

)
e(x−j)t.

Now multiply both sides by e−xt:

∑
n

N0,n(x)t
ne−xt =

p∑
j=0

(−1)j
(
(x− j)jtj

j!
+

(x − j)j−1tj−1

(j − 1)!

)
e−jt.

Then expand the exponentials on both sides of this equation as power series and
compare the coefficients of tn. Thus

∑
n

n∑
j=0

(−1)j

j!
xjN0,n−j(x)t

n =
∑
n

p∑
j=0

(−1)n
(
jn−j(x− j)j

j!(n− j)!
− jn−j+1(x− j)j−1

(j − 1)!(n− j + 1)!

)
tn,

so comparing the coefficients of tn it follows that for all n and p ≤ x ≤ p+ 1

n∑
j=0

(−1)j

j!
xjN0,n−j(x) =

p∑
j=0

(−1)n
(
jn−j(x− j)j

j!(n− j)!
− jn−j+1(x− j)j−1

(j − 1)!(n− j + 1)!

)
.

The second identity can be proved in a similar fashion by initially multiplying
both sides of the generating function by e−(x+α)t and proceeding as in the proof
of the first identity. 	


Next we shall investigate identities generated by taking the Laplace transform
of the explicit formula for the generating functions. We begin by recalling a well-
known result.

Lemma 5. ∫ ∞

0

tke−atdt =
k!

a(k+1)
, when a > 0. (20)

Proof. Integrate by parts and apply induction on k. 	


Theorem 9. (Laplace Transforms)

∑
n

n!N0,n(x)

(x+ 1)n+1
= 1 + (x+ 1)

p∑
j=1

(−1)j

(j + 1)j+1
(x− j)j−1. (21)

∑
n

n!N0,n(x)

(x+ α)n+1
=

1

α
+ (x + α)

p∑
j=1

(−1)j

(j + α)j+1
(x− j)j−1 (22)

for all α > 0 and p ≤ x ≤ p+ 1.
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Proof. To prove the first result, again we begin with the explicit formula for the
generating function given in Equation (7):

∑
n

N0,n(x)t
n =

p∑
j=0

(−1)j
(
(x− j)jtj

j!
+

(x− j)j−1tj−1

(j − 1)!

)
e(x−j)t p ≤ x ≤ p+ 1.

Now multiply both sides by e−(x+1)t:

∑
n

N0,n(x)t
ne−(x+1)t =

p∑
j=0

(−1)j
(
(x− j)jtj

j!
+

(x− j)j−1tj−1

(j − 1)!

)
e−(j+1)t

and integrate with respect to t:∫ ∞

0

∑
n

N0,n(x)t
ne−(x+1)tdt =

∫ ∞

0

p∑
j=0

(−1)j
(
(x− j)jtj

j!

+
(x − j)j−1tj−1

(j − 1)!

)
e−(j+1)tdt.

Then∑
n

N0,n(x)

∫ ∞

0

tne−(x+1)tdt =

p∑
j=0

(−1)j
(
(x − j)j

j!

∫ ∞

0

tje−(j+1)tdt

+
(x − j)j−1

(j − 1)!

∫ ∞

0

tj−1e−(j+1)tdt

)
,

so by Lemma 5:

∑
n

n!N0,n(x)

(x+ 1)n+1
= 1 + (x+ 1)

p∑
j=1

(−1)j

(j + 1)j+1
(x− j)j−1.

The second identity can be proved in a similar fashion by initially multiplying
both sides of the generating function by e−(x+α)t and proceeding as in the proof
of the first identity. 	


7 Summary, Conclusions, and Future Research

We derived a closed formula for the generating functions of the uniform B-
splines, revealing a novel connection between uniform B-splines and exponential
functions. Using this generating function, we established several classical iden-
tities for the uniform B-splines. These identities along with the corresponding
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functional equations for the generating functions are listed in Table 1. We also
derived some new identities for uniform B-splines that cannot be derived by
standard methods. These new identities are listed in Table 2.

Table 1. Some classical B-spline identities and the corresponding functional equations
for their generating functions

B-Splines Identities Generating Functions Functional Equations

N0,n(x) =
x
n
N0,n−1(x)

∂G0
∂t

(x, t) = xG0(x, t)

+n+1−x
n

N1,n−1(x) +(2− x)G1(x, t) + t ∂G1
∂t

(x, t)

∂N0,n(x)

∂x
= N0,n−1(x)−N1,n−1(x)

∂G0
∂x

(x, t) = tG0(x, t)− tG1(x, t)∑
k Nk,n(x) ≡ 1

∑0
k=−n Gk(x, t) =∑0
k=−n(−1)k+n

(
(x−k)k+ntk+n

(k+n)!

)
e(x−k)t

N0,n(x) = G0(x, t) =

1
n!

∑p
j=0(−1)j

(
n+ 1
j

)
(x− j)n

∑p
j=0(−1)j

(
(x−j)jtj

j!
+ (x−j)j−1tj−1

(j−1)!

)
e(x−j)t

p ≤ x ≤ p+ 1 p ≤ x ≤ p+ 1

Sums and Alternating Sums

∞∑
n=0

N0,n(x) = ex +

p∑
j=1

(−1)j
x(x − j)j−1

j!
e(x−j) p ≤ x ≤ p+ 1

∞∑
n=0

(−1)nN0,n(x) = e−x +

p∑
j=1

(x− 2j)(x− j)j−1

j!
e−(x−j) p ≤ x ≤ p+ 1

Moments and Reciprocal Moments

∞∑
n=0

xnN0,n(x) =

p∑
j=0

(−1)j
(
(x− j)jxj

j!
+

(x− j)j−1xj−1

(j − 1)!

)
e(x−j)x p ≤ x ≤ p+ 1

∞∑
n=0

x−nN0,n(x) =

p∑
j=0

(−1)j
(
(1− j/x)j

j!
+

(1− j/x)j−1

(j − 1)!

)
e(1−j/x) p ≤ x ≤ p+ 1
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Convolution Formulas

n∑
j=0

(−1)j

j!
xjN0,n−j(x) =

p∑
j=0

(−1)n
(
jn−j(x− j)j

j!(n− j)!
− jn−j+1(x− j)j−1

(j − 1)!(n− j + 1)!

)
for all n and p ≤ x ≤ p+ 1

n∑
k=0

(−1)k

k!
(x+ α)kN0,n−k(x) = (−1)n

min(p,n)∑
j=0

(
(j + α)n−j

j!(n− j + 1)!
(x − j)j−1

(
(x − j)(n− j + 1)− (j + α)j

))
for all n, α and p ≤ x ≤ p+ 1

Laplace Transforms

∑
n

n!N0,n(x)

(x+ 1)n+1
= 1 + (x+ 1)

p∑
j=1

(−1)j

(j + 1)j+1
(x− j)j−1

∑
n

n!N0,n(x)

(x+ α)n+1
=

1

α
+ (x+ α)

p∑
j=1

(−1)j

(j + α)j+1
(x− j)j−1

for all α > 0 and p ≤ x ≤ p+ 1

Table 2. Some new identities for the B-splines derived from their generating functions

Yet despite these successes, generating functions are not a panacea for deriving
identities for uniform B-splines. The following two well known identities—the
Marsden identity and the refinement equation—are not readily established using
generating functions:

(x − t)n =
∑
k

(k + 1− t) · · · (k + n− t)Nk,n(x) (Marsden Identity)

N0,n(x) =
∑
k

(
n+ 1
k

)
2n

N0,n(2x− k) (Refinement Equation)

We can, however, derive these identities directly or indirectly from the de Boor
recurrence, which we have seen is equivalent to the PDE for the generating
functions (see Table 1).
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Currently our generating functions are restricted to B-splines with uniformly
spaced knots— that is, knots in arithmetic progression

tk+1 = tk + h (arithmetic progression).

In the future we hope to extend our generating functions to B-splines with knots
in geometric or affine progression—that is, to B-splines with knot sequences
where

tk+1 = qtk (geometric progression)

tk+1 = qtk + h (affine progression).

B-splines with knots in affine progression would also include B-splines with knots
at the q-integers [2].

Finally we would also like to extend our generating functions to multivariate
splines such as box splines, where simple recurrences for the basis functions are
also available.
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Abstract. Before isogeometric analysis can be applied to solving a par-
tial differential equation posed over some physical domain, one needs
to construct a valid parametrization of the geometry. The accuracy of
the analysis is affected by the quality of the parametrization. The chal-
lenge of computing and maintaining a valid geometry parametrization
is particularly relevant in applications of isogemetric analysis to shape
optimization, where the geometry varies from one optimization iteration
to another. We propose a general framework for handling the geometry
parametrization in isogeometric analysis and shape optimization. It uti-
lizes an expensive non-linear method for constructing/updating a high
quality reference parametrization, and an inexpensive linear method for
maintaining the parametrization in the vicinity of the reference one. We
describe several linear and non-linear parametrization methods, which
are suitable for our framework. The non-linear methods we consider are
based on solving a constrained optimization problem numerically, and
are divided into two classes, geometry-oriented methods and analysis-
oriented methods. Their performance is illustrated through a few
numerical examples.
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1 Introduction

Isogeometric analysis is a modern computational method for solving partial dif-
ferential equations (PDEs), which is based on a successful symbiosis between
the variational techniques utilized in isoparametric finite element analysis with
the geometric modelling tools from computer aided design [14,4]. A key ingredi-
ent of isogeometric analysis is the parametrization of the physical domain over
which the PDE is posed, in many ways analogous to mesh generation in stan-
dard finite element analysis. Just as mesh quality affects the accuracy of a finite
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element approximation, the quality of the parametrization affects the accuracy
of isogeometric analysis, see [21,2,34,35].

The question of computing and maintaining a valid geometry parametrization
is particularly relevant in applications of isogemetric analysis to shape optimiza-
tion problems, see e.g. [11,22,23,26]. Every time the geometry changes, that is,
at every shape optimization iteration, one needs to update the parametriza-
tion in order to maintain the accuracy of the numerical approximation to the
PDEs, governing the underlying physical model of the system. The algorithm
for parametrization updates should therefore be (a) computationally inexpen-
sive, as it is executed often; and (b) differentiable with respect to the variables
determining the shape of the domain, which allows one to advantageously uti-
lize gradient-based optimization algorithms thus reducing the total number of
optimization iterations when compared with non-smooth or zero-order methods.
One may again draw a parallel with the shape optimization based on the regular
finite element analysis, which involves updating the mesh in between the shape
optimization iterations.

The approach based on the discrete Coons patch [6] is a popular way of
generating candidate parametrizations. This method is explicit and as a result
it is very computationally inexpensive. Unfortunately, the resulting map needs
not to be injective, and it is often necessary to invest further work in order to
obtain even a valid, that is, a bijective parametrization. Even more work may be
required to improve the quality of such a parametrization. Another approach to
the same problem, which we have often utilized, is based on the spring model, cf.
Section 3.1, in which the edges in the control net are modelled as elastic springs.
In order to find a candidate parametrization one is required to solve a system
of linear algebraic equations, thus rendering the method slightly more expensive
than the discrete Coons patch. In our experience, however, the quality of the
parametrizations obtained with this approach is slightly better.

If a good parametrization of a domain with a similar shape and patch lay-
out is known, e.g., by using one of the methods in Section 4, one may employ
one of the many methods developed for mesh generation [9,10,29] in order to
compute a domain parametrization. We will in particular consider mean value
coordinates [8,13], cf. Section 3.2. A new linear method of the same type is a
quasi-conformal deformation method, cf. Section 3.3, which is inspired by con-
formal maps. Finally, any non-linear method may be linearized in the vicinity of
a reference parametrization thereby resulting in a linear method.

We believe that no single linear method is capable of producing a high quality
parametrization in all geometric configurations, and therefore we mainly inves-
tigate some non-linear methods. Many existing methods rely on the theory of
harmonic functions on the physical domain. The method in [20] works on a tri-
angulated volume and starts by constructing a parametrization of the boundary,
i.e., the outer surface, using two harmonic functions with near orthogonal gra-
dients. Then using harmonic functions in 3D the parametrization is propagated
inwards to fill the entire volume. In [24] the inverse of the parametrization is
constructed in a coordinate by coordinate fashion, using harmonic functions on
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the level set of the previously constructed coordinate functions. Finally the par-
ametrization is defined as a tensor product spline approximation of the inverse
map. The method in [25] demands that the inverse of the parametrization of a
planar domain is a pair of harmonic functions and then proceeds to solving a
uniquely solvable non-linear equation. This is mathematically equivalent to the
last method in Section 4.1, where the Winslow functional is minimized. There is
a unique minimizer whose inverse is the same pair of harmonic functions. The
Winslow functional can also be interpreted as a condition number for the Jaco-
bian and it is in that role that it is used in [12]. One may of course devise other
methods based on the idea of finding extrema of geometric functionals, quantita-
tively assessing the quality of the parametrization, such as the area orthogonality
functional and the Liao functional, cf. Section 4.1.

The final class of methods is based on estimating the approximation error
and generating a parametrization that makes the estimate as small as possible.
As test cases one can take problems with known analytical solutions and try to
find the parametrization that minimizes the discrepancy between the exact and
the numerical solutions, see [21,34] for a 1D eigenvalue problem and a 2D heat
conduction problem, respectively. In practice one of course does not know the
exact solution so instead a suitable error estimator is utilized. In Section 4.2 we
try three different error estimators, where the first one is similar to the one used
in [35].

The outline of the rest of this paper is as follows. In Section 2 we intro-
duce the parametrization problem studied in this work, including the partial
differential equation to be solved, namely Poisson’s equation. In Section 3, we
introduce three linear parametrization methods, and in Section 4, we describe
a family of nonlinear, optimization-based parametrization methods based on
two classes of quality measures, namely purely geometric and analysis-oriented
measures. In Section 5, numerical results are presented, and in Section 6 we dis-
cuss extensions of the methods to shape optimization and to multiple patches.
Finally, the current findings and some future challenges are summarized in
Section 7.

2 Parametrization for Partial Differential Equations

In the following, we introduce the context in which the parametrization problem
occurs, we formulate the parametrization problem, and we state a condition for
the validity of a B-spline parametrization.

2.1 The Setting: Poisson’s Problem

We consider a mixed boundary value problem for Poission’s equation in two
dimensions in a regular domain Ω ⊂ R2 with piecewise-smooth boundary ∂Ω.
The boundary ∂Ω is represented as a closure of the union of two open disjoint
subsets ΓD �= ∅ and ΓN , on which we impose Dirichlet and Neumann boundary
conditions. That is, we are interested in finding a function u : R2 → R, such that
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−Δu = f in Ω , (1a)

u = g on ΓD , (1b)

∇u · n = h on ΓN , (1c)

where f, g, h : R2 → R are given, and n is the outwards facing boundary normal.
In the weak form, the boundary value problem (1) reads: Find u ∈ {w ∈ H1(Ω) :
w|ΓD = g } such that∫

Ω

∇u · ∇v dA =

∫
Ω

f v dA+

∫
ΓN

h v ds . (2)

for all v ∈ {w ∈ H1(Ω) : w|ΓD = 0 }.

2.2 The Challenge: Parametrize the Interior

In order to utilize isogeometric analysis for solving the boundary value prob-
lem (1) numerically, a suitable geometry parametrization X of the domain Ω is
required. Constructing such a parametrization is akin to the mesh generation
step required for the standard finite element analysis. The parametrization im-
pacts the accuracy of the numerical solution to the problem [34]. Expectedly, a
higher quality parametrization allows for numerical solution with higher accu-
racy, all other things being equal.

Assuming that the domain Ω ⊂ R2 may be parametrized using a single patch,
the challenge in two dimensions reads: given a parametrizationY : ∂[0, 1]2 → R2

of the boundary ∂Ω, construct a parametrization of the interiorX : [0, 1]2 → R2,
such that X|∂[0,1]2 = Y.

In B-spline-based isogeometric analysis, the maps Y and X are splines, e.g.,

X(ξ, η) =

(
x(ξ, η)
y(ξ, η)

)
=
∑
i,j

Xi,j Mi(ξ)Nj(η) , (3)

where Mi and Nj are B-splines defined by polynomial degrees and knots vectors
and Xi,j are the control points. The equivalent challenge is now to specify the
interior control points given the boundary control points [34,2,11]. This problem
is sketched in Fig. 1.

2.3 The Jacobian

As we assume the boundary mapY = X|∂[0,1]2 is a parametrization, in particular

a homeomorphism, the map X : [0, 1]2 → Ω is a diffeomorphism if and only if
the Jacobian

J =
(
Xξ Xη

)
=
(

∂X
∂ξ

∂X
∂η

)
=

(
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

)
=

(
xξ xη
yξ yη

)
. (4)



Planar Parametrization in Isogeometric Analysis 193

?

Fig. 1. Challenge: How do we go from a parametrization of the boundary of a domain
to a parametrization that includes the interior of the domain?

is regular at every point. Therefore, in order to guarantee the validity of the
parametrization, it is necessary that the determinant of the Jacobian does not
vanish on Ω. At the four corners of the parameter domain [0, 1]2, both partial
derivatives of X are determined by the boundary parametrization Y. As a con-
sequence of this, there are domains which are impossible to parametrize. Indeed,
consider the V-shaped domain in Fig. 2. If the boundary parametrization is

+

+ +

−

a b

Fig. 2. An impossible domain. a: Control points and sign of the Jacobian determinant
in the corners. b: The best quadratic parametrization when the edges are parametrized
affinely.

regular, then the Jacobian has a positive determinant in the three convex cor-
ners, and a negative determinant in the concave corner (or vice versa if the
orientation is reversed). So if the parametrization is C1 on the closed param-
eter domain [0, 1]2, the determinant of the Jacobian attains both positive and
negative values, and it is impossible to have a valid parametrization for this
domain.

If we use B-splines to define the parametrization as in Equation (3), then the
determinant can be written as

detJ =
∑
i,j,k,	

det

(
xi,j xk,	
yi,j yk,	

)
M ′

i(ξ)Nj(η)Mk(ξ)N
′
	(η) . (5)
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IfM andN are B-splines of degree p and q, respectively, this is clearly a piecewise
polynomial map of degree 2p− 1 in ξ and of degree 2q − 1 in η. As a result, it
can be expressed in terms of B-splines M̃i and Ñj of degree 2p− 1 and 2q − 1,
respectively, which are defined on the same knot vectors as Mi and Nj with
multiplicities raised by p and q for interior knots and by p − 1 and q − 1 for
the boundary knots. If rational NURBS are used, then we have a similar result,
but the degree of M̃i and Ñj is now 3p and 3q, respectively. In any case, we can
write

detJ =
∑
i,j

di,j M̃i(ξ) Ñj(η) . (6)

As the B-splines M̃i and Ñj are non negative, we immediately obtain

Theorem 1. If the coefficients di,j of the B-spline expansion (6) of the deter-
minant of the Jacobian are positive then the parametrization is valid.

Observe that this is a sufficient condition and not a necessary one. However, if
we perform knot insertion, then more and more coefficients will become positive.
Indeed, if detJ > 0 on all of [0, 1]2, then di,j > 0 for all i, j, after sufficiently
many knot insertions. On the other hand, if the boundary parametrization has
a zero derivative at some point, then the B-spline expansion (6) may have a
negative coefficient no matter how many knot insertions we perform.

To demonstrate this, consider again the V-shaped domain, but now assume
that the boundary parametrization is quadratic and has a zero derivative at

P3

P2 P4

P1

a

+

+ +

0

b c

Fig. 3. The V-shaped domain with a singular boundary parametrization. a: Three
control points are placed at the concave corner. b: The parametrization and the sign
of the Jacobian determinant at the four corners. c: The Jacobian determinant.

the concave corner P1, see Fig. 3. That is, the two edges meeting at P1 are
parametrized as

(1− ξ2)P1 + ξ2 P2 and (1− η2)P1 + η2 P4 , (7)

respectively. By letting the single inner control point be 1
4P1 +

3
4P3 we obtain a

valid parametrization in the form of a bi-quadratic tensor product Bézier patch.
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We may assume that P1 = 0 and then

X(ξ, η) = P2B
2
2(ξ)B

2
0(η) +

3

4
P3B

2
1(ξ)B

2
1(η) + P4B

2
0(ξ)B

2
2(η)

+
P2 + P3

2
B2

2(ξ)B
2
1(η) +

P3 + P4

2
B2

1(ξ)B
2
2(η) + P3 B

2
2(ξ)B

2
2(η) . (8)

The determinant of the Jacobian is a bi-cubic tensor product Bézier patch

detJ =

3∑
i,j=0

di,j B
3
i (ξ)B

3
j (η) . (9)

We see that d0,0 = d1,0 = d0,1 = 0, and d1,1 = det(P2, P4) < 0 but it is not
hard to see that detJ > 0 on ]0, 1[2, see Fig. 3. This is still the case after any
refinement of the knot vectors.

The fact that a change of the boundary parametrization of the V-shaped
domain can make a parametrization of the interior possible was also noted
in [32].

3 Linear Parametrization Methods

In this section, we present three linear methods for computing geometry par-
ametrizations. The first of these, the spring model, operates without the need
for any information apart from the boundary parametrization; this method may
therefore be utilized for generating initial parametrizations for other linear or
non-linear methods. The last two, the mean value coordinates and the quasi-
conformal methods, rely on the knowledge of a reference parametrization of the
interior. One may of course generate more linear methods by linearizing nonlin-
ear ones around reference parametrizations, as discussed in Section 3.4.

3.1 The Spring Model

This method mimics a mechanical model, in which all edges in the control mesh
are replaced with linear elastic springs. The mechanical equilibrium, which arises
when the positions of the boundary control points are given, defines the position
of the inner control points within this model. In this configuration, all inner
control points are the averages of their four neighbours. That is, we have a set
of simple linear equations:

4Xi,j = Xi+1,j +Xi−1,j +Xi,j+1 +Xi,j−1 , (10)

which is easily solved. By assigning different “spring constants” to different edges
one obtains variations of the method.
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3.2 Mean Value Coordinates

In recent years there has been a lot of work on parametrization of polygonal
meshes [9,10,29]. If we use the control point formulation of our spline param-
etrization problem, some of these methods can be applied to our problem. A
popular and appealing method is based on the mean value coordinates [8,13].
Here, points in the plane are given as a particular affine combination of the ver-
tices of a closed polygon. The closed polygon is in our case the boundary of the
control net.

Suppose we are given a reference parametrization, with inner control points
X̂k,	, and a set of boundary control points X̂i, i = 1, . . . , n, arranged in a counter
clockwise fashion. Any point x ∈ R2 can now be written as an affine combination
of the boundary control points:

x =

n∑
i=1

λi(x) X̂i , where λi(x) =
wi(x)∑n
i=1 wi(x)

. (11)

The weights wi(x) are defined by

wi(x) = 2
tan(αi−1/2) + tan(αi/2)

‖v̂i‖
=

2

‖v̂i‖

(
sinαi−1

1 + cosαi−1
+

sinαi

1 + cosαi

)
=

2

‖v̂i‖

(
[v̂i−1, v̂i]

‖v̂i−1‖‖v̂i‖+ 〈v̂i−1, v̂i〉
+

[v̂i, v̂i+1]

‖v̂i‖‖v̂i+1‖+ 〈v̂i, v̂i+1〉

)
, (12)

where
〈v̂, ŵ〉 = v1w1 + v2w2 and [v̂, ŵ] = v1w2 − v2w1 (13)

are the inner product and the determinant of a pair of vectors v̂ and ŵ, respec-
tively. The angles and vectors are defined in Fig. 4a. If we have a parametrization

a

x

X̂i−1

X̂i

X̂i+1

v̂i−1

v̂i

v̂i+1

αi−1

αi

b

v̂

ŵ

θ

Fig. 4. a) Ingredients of mean value coordinates. b) Ingredients of the quasi conformal
deformation.
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of the boundary of another domain with new boundary control points Xi, then
we simply define the new inner control points as

Xk,	 =
n∑

i=1

λi(X̂k,	)Xi , (14)

i.e., we use the same normalized weights as in the reference control net.

3.3 Quasi Conformal Deformation

Once again we assume we have a reference parametrization X̂. The idea is that
we would like any other parametrization to have a control net that locally looks
like a conformal deformation of the reference control net.

Consider a quadrilateral and two neighbouring edges in the reference control
net, cf. Fig. 4b. We think of these edges as vectors v̂ and ŵ emanating from their
common vertex. The method is based on a simple geometric identity ‖v̂‖ŵ =
‖ŵ‖R(θ) v̂, where R(θ) is a rotation through the angle θ, that is:

‖v̂‖ ŵ = ‖ŵ‖R(θ) v̂ =
1

‖v̂‖

(
〈v̂, ŵ〉 −[v̂, ŵ]
[v̂, ŵ] 〈v̂, ŵ〉

)
v̂ . (15)

If v and w are the corresponding edges in the new control net, then we can
require that

‖v̂‖w =
1

‖v̂‖

(
〈v̂, ŵ〉 −[v̂, ŵ]
[v̂, ŵ] 〈v̂, ŵ〉

)
v , (16)

for each such pair of edges. For each inner control point we have four linear alge-
braic equations of the type (16), and for every boundary control point, apart from
the corners, we have two equations. This results in 4(MN −M −N) equations
in (M − 2)(N − 2) unknown inner control points. The resulting overdetermined
system is then solved in the least squares sense.

One could also look after a conformal deformation of the reference parametri-
zation by replacing the vectors v̂ and ŵ with the partial derivatives X̂ξ and X̂η.
That is, the new parametrization X should satisfy the equation

‖X̂ξ‖Xη =
1

‖X̂ξ‖

(
〈X̂ξ, X̂η〉 −[X̂ξ, X̂η]

[X̂ξ, X̂η] 〈X̂ξ, X̂η〉

)
Xξ , in all of [0, 1]2 . (17)

Similarly to the previous case, this family of equations could be solved in the
least square sense.

3.4 Linearized Methods

In the following section we will introduce several non-linear methods that work
by minimizing a certain quality measure c, and by a linearization of these, we
may obtain new linear methods. One way of formalizing this is by considering a
second order Taylor expansion of the quality measure in the vicinity of a reference
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parametrization X̂. If we let X1 denote the known control points, typically the
boundary control points, and let X2 denote unknown control points, typically
the inner control points, then we can write

c(X) ≈ c(X̂) +
(
G1(X̂) G2(X̂)

)(
X1 − X̂1

X2 − X̂2

)

+
1

2

(
XT

1 − X̂T
1 XT

2 − X̂T
2

)(H11(X̂) H12(X̂)

H21(X̂) H22(X̂)

)(
X1 − X̂1

X2 − X̂2

)
, (18)

where Gi and Hij gives the gradient and the Hessian of c with respect to the
control points of the parametrization. Assuming that the Hessian is positive
definite, the right hand side is minimized when

H22(X̂)X2 = H22(X̂) X̂2 − 2H21(X̂) (X1 − X̂1)−G2(X̂) , (19)

which is a linear equation in the unknown control points X2.

4 Nonlinear Parametrization Methods

We proceed to presenting a family of nonlinear parametrization methods based
on optimization, following the approach taken in, e.g. [34,35]. Thus, the interior
parametrization is constructed by numerically maximizing quantitative measures
of the parametrization quality. We divide these measure into two groups: the
geometry-oriented and the analysis-oriented. Throughout, we assume that we
are given a regular parametrization of the boundary with positive determinant
of the Jacobian in the corners.

In order to have a valid parametrization, the Jacobian needs to have a non-
vanishing determinant everywhere. Owing to our assumption about the sign in
the corners, we will demand that the determinant is positive everywhere inside
the domain, and we can then formulate the following maxmin problem

maximize
X

Z , (20a)

such that detJ ≥ Z , in [0, 1]2 , (20b)

where X|∂[0,1]2 = Y , (20c)

In practice, we replace the condition (20b) with

di,j ≥ Z , for all i, j , (21)

where di,j are the coefficients of the determinant of the Jacobian, cf. (6). In
case an optimization algorithm terminates with a configuration, for which we
have Z > 0, the resulting parametrization is necessarily valid. However, its
quality does not have to be very high, cf. Fig. 5. Despite this drawback, the
approach provides a simple way of generating valid initial parametrizations for
other methods, which require such initialization.
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Fig. 5. Maximizing the smallest coefficient in the B-spline expansion of detJ

4.1 Geometric Measures

The first class of quality measures are geometric in nature, and thereby depend
only on the parametrization itself. The methods in this class amount to solving
an optimization problem, which can be formulated as

minimize
X

c(X) , (22a)

such that detJ ≥ δ Z , in [0, 1]2 , (22b)

where X|∂[0,1]2 = Y , (22c)

In the lower bound (22b) for detJ, the number δ ∈ [0, 1] is an algorithmic
parameter and the number Z is the result of the optimization (20). We have
often successfully used δ = 0.

When defining geometric quality measures for a parametrization, the Jacobian
J and the first fundamental form g are important quantities:

g = JTJ =

[
x2ξ + y2ξ xξxη + yξyη

xξxη + yξyη x2η + y2η

]
. (23)

With these in mind, we proceed to define the area-orthogonality, the Liao, and
the Winslow functionals, which are all well-known quantities for mesh genera-
tions, see e.g. [17,7].

The Area-Orthogonality Functional. The area-orthogonality measure mAO

is defined as the product of the diagonal entries of the metric tensor g, [7,15]

mAO = g11g22 =
(
x2ξ + y2ξ

)(
x2η + y2η

)
. (24)

Based on this, we may define the area-orthogonality functional cAO as the inte-
gral of the area-orthogonality measure mAO over the parameter domain:

cAO =

∫ 1

0

∫ 1

0

mAO dξ dη . (25)
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The Liao Functional. The Liao measure mL is defined as the Frobenius norm
of the metric tensor g, i.e., the sum of the square of its entries [18,17,7,15]:

mL = g211 + g222 + 2g212 =
(
x2ξ + y2ξ

)2
+
(
x2η + y2η

)2
+ 2
(
xξxη + yξyη

)2
. (26)

As above, we may define the Liao functional as

cL =

∫ 1

0

∫ 1

0

mL dξ dη . (27)

The Winslow Functional. In this approach, the goal is to construct a par-
ametrization as conformal as possible [33,11,22].

The parametrization X is conformal if and only if the Jacobian J is the prod-
uct of a scaling and a rotation, or, equivalently, if the first fundamental form
g is diagonal with identical diagonal elements. If we let λ1 and λ2 denote the
eigenvalues of g, we need λ1 = λ2 to have conformality. We easily find that(√

λ1 −
√
λ2
)2

√
λ1λ2

=
λ1 + λ2 − 2

√
λ1λ2√

λ1λ2
=
λ1 + λ2√
λ1λ2

− 2 .

From this, we may define the Winslow measure mW :

mW =
λ1 + λ2√
λ1λ2

=
tr(g)√
det(g)

=
x2ξ + x2η + y2ξ + y2η

xξyη − yξxη
, (28)

where
√
det(g) = det(J). As such, mW is a pointwise measure of conformality.

Using the Winslow function mW we define the Winslow functional as:

cW =

∫ 1

0

∫ 1

0

mW dξ dη , (29)

and use this as a global measure of conformality.
The Winslow functional has particularly nice mathematical properties. In-

deed, if we switch the integration in (29) from the parameter domain [0, 1]2 to
the physical domain Ω, then we obtain

cW =

∫
Ω

((
∂ξ

∂x

)2

+

(
∂ξ

∂y

)2

+

(
∂η

∂x

)2

+

(
∂η

∂y

)2
)

dA . (30)

This is the well known Dirichlet energy, and the unique minimizer is a pair
of harmonic functions Ω → [0, 1]2 whose restriction to the boundary is the
inverse Y−1 of the given boundary parametrization Y : ∂[0, 1]2 → ∂Ω. As the
target [0, 1]2 is convex, the Radó–Kneser–Choquet theorem [1,5,16,28] ensures
that this pair of harmonic functions is a diffeomorphism on the interior. This
means that our optimization problem (22), with the cost function (29), also has
a unique minimum which is a diffeomorphism whose inverse is a pair of harmonic
functions. This is not in conflict with the impossible domain shown in Fig. 2: the
diffeomorphism is defined on the interior, and the maps may be non-differentiable
at the boundary. In Fig. 6 we show the parametrization ensured by the theorem.
Notice that the y coordinate is not differentiable in the concave corner, so the
Jacobian is not defined in that corner.
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Fig. 6. Parametrization of the V-shape and the graphs of the x and y coordinates

4.2 Analysis-Oriented Measures

In the other class of non-linear variational methods for constructing parametri-
zations, we put analysis-oriented methods. Here, the explicit goal is to construct
as accurate analysis of a given partial differential equation as possible. This accu-
racy needs to be estimated, which can be done by comparing the solutions from
several analyses or by evaluating the residual. In any case, when using meth-
ods in this class we aim at analysis-aware parametrizations [34,2]. The quality
measure for these methods depends not only on the parametrization, but also
on the solution to the PDE at hand (the Poisson problem (1) in our case). The
resulting optimization problems can be formulated as follows:

minimize
X

c(X, u) , (31a)

such that detJ ≥ δ Z , in [0, 1]2 , (31b)

where X|∂[0,1]2 = Y , (31c)

−Δu = f , in Ω , (31d)

u = g , on ΓD , (31e)

∇u · n = h , on ΓN . (31f)

As before, in the lower bound (31b) for det J, the number δ ∈ [0, 1] is an algo-
rithmic parameter and the number Z is the result of the optimization (20). It
goes without saying that if the Poisson problem is replaced by another problem,
only the equations (31d)–(31f) are changed.

Strong Residual Norm. In this approach, we use the residual of the problem
we are trying to solve as an error estimator. Hence, from Equation (31d) we set

mSR = (Δu+ f)2 . (32)

We emphasize that at least a quadratic B-spline approximation of the field u
must be employed. The exact expression for mSR depends of course on the
problem considered. As a result, we obtain the quality measure

cSR =

∫
Ω

mSR dA . (33)
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We could also consider the Neumann boundary condition (31f), which is only
weakly satisfied, and add a term like α

∫
ΓN

(∇u · n− h)2 ds to the cost function,
where α is some weight factor.

Weak Residual Norm. Here, we again consider the residual, but instead of
integrating it over the entire domain to get a global error estimator, we now
project it onto a suitable space of test functions to obtain a set of local error
estimators.

When the variational form of the PDE (2) is considered over a given space
S1, the residual will belong to the orthogonal complement of this space owing to
Galerkin’s orthogonality. Therefore, we project the residual onto a larger space
S2 � S1 to obtain a meaningful, non-zero error estimator:

mWR,k =

∫
Ω

∇u · ∇Rk dA−
∫
ΓN

g Rk ds−
∫
Ω

f Rk dA . (34)

Here, the functions Rk are the basis functions for S2 stemming from tensor
product B-splines on the parameter domain [0, 1]2. There are many possibilities
in choosing S2. One obvious choice is by halving all knot segments (h-refinement),
and another is degree elevation (p-refinement). As the integration is performed
knot segment by knot segment the latter yields cheaper integration, so this is
the one we have tested. Again, the exact expression for mWR depends on the
problem considered.

In this method, we consider the quality measure

cWR =
∑
k

m2
WR,k . (35)

Of course, we could also introduce weights αk on mWR,k, e.g. the area of the
support of the basis function Rk.

Enrichment Error Norm. As in the previous subsection we consider two
different spline spaces S1 � S2, but now we seek two approximate solutions
u1 ∈ S1 and u2 ∈ S2 and regard their difference as an error estimator:

u1 − u2 =
∑
k

mEE,kRk, (36)

where the Rk as above is the basis for S2. Therefore, the quality measure is

cEE =
∑
k

m2
EE,k , (37)

and again, we could introduce weights αk on mEE,k. Note that we have to solve
the equation twice in this approach, so it is a rather expensive method.
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5 Numerical Examples

In this section, we study two numerical examples of the parametrization problem
outlined in Section 2, and we compare the resulting parametrizations based on
the nonlinear methods described in Section 4. The methods are implemented
in MATLAB R© [19] and Octave [27]. The optimization is done using IPOPT, a
non-linear optimization package based on an interior point method [30]. In both
examples, the geometries are represented by quadratic splines, while the scalar
field u is approximated using cubic splines. The equations are discretized using
a Galerkin method as described in [4] and the knots are in all cases uniformly
spaced. The weak residual and enrichment error methods are based on a degree
elevation of the analysis spline by one, i.e., the spline spaces S1 and S2 consists
of cubic and quartic C2 splines, respectively.

5.1 Poisson’s Equation on a Wedge-Shaped Domain

We consider the parametrization problem for a boundary value problem (BVP)
with a known analytical solution. The example is taken from [34]. The domain
under consideration is Ω = {(x, y) | − 1 ≤ y ≤ x2, 0 ≤ x ≤ 1}, and we impose
homogeneous boundary conditions u = 0 on the entire boundary ∂Ω, as depicted
in Fig. 7a. The field u∗ = sin(ξ(y − x2)) sin(ξx) sin(ξy) obviously fulfills the

a b c

f

u = 0

u
=

0

u
=

0

u
=

0

Fig. 7. Wedge-shaped domain. a: Domain and boundary conditions. b: Analytical so-
lution of the boundary value problem. c: Boundary control points.

boundary conditions, and therefore is the unique solution to the BVP corre-
sponding to f = −Δu∗. This solution is shown in Fig. 7b, and the control points
of the boundary are depicted in Fig. 7c.

We solve the parametrization problem for this BVP by optimizing the location
of the 12 interior control points, yielding a total of 24 design variables for the op-
timization. We initialize all methods using the spring model in Section 3.1. Fig. 8
depicts, for each of the six parametrization methods, the optimal control net, the
corresponding parametrization, and the numerical error, computed as the differ-
ence |uh−u∗| between the computed solutions uh and the analytical solution u∗.
The depicted error is based on a discretization of the state variable u with ∼ 104
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Fig. 8. Wedge-shaped domain: Isoparametric lines and numerical error (left) and con-
trol net (right) for the parametrization based on area-orthogonality (a), Liao (b),
Winslow (c), strong residual (d), weak residual (e), and enrichment error (f)

degrees-of-freedom, while the optimization for the analysis-oriented methods are
performed on a coarser discretization of u with ∼ 103 degrees-of-freedom. We
note that the optimal control net and the corresponding parametrizations are
quite similar for the Liao, the Winslow, the strong residual, and the weak resid-
ual methods, whereas the area-orthogonality, and the enriched error methods
differ somewhat. This is also clearly reflected in the error, which is found to vary
by several orders of magnitude between the methods.

An interesting question is, how well these parametrizations reproduce the
analytical solution when we refine the analysis. The answer to this is shown in
Fig. 9. The figure depicts the global numerical error ε as a function of the number
of basis functions used to approximate the solution to the PDE for each of the six
methods. As global numerical error, we use the L2-norm of the local numerical
error: ε2 =

∫
Ω |uh − u∗|2 dA. Note that for each method, the parametrization

is kept fixed during these experiments. For not too coarse discretizations, we
see that the error varies by several orders of magnitude between the methods,
clearly emphasizing the importance of the way the domain is parametrized. The
smallest error is found for the weak residual method, while the highest error
is found for the area-orthogonality method. Additionally, for this example the
error for the weak residual method converges faster than for the other methods,
which have practically identical convergence orders.

We conclude this example by emphasizing that the computational expenses
vary significantly between the two classes of methods. The geometrically based
methods (area-orthogonality, Liao, and Winslow) converged within ∼ 30 op-
timization iterations, whereas the analysis-oriented methods (strong residual,
weak residual, and enrichment error) converged after ∼ 300 iterations. Even
more importantly, the analysis-oriented methods require solving the PDE in
each optimization step, unlike the geometrical methods.
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Fig. 9. Wedge-shaped domain: error as a function of number of degrees-of-freedom for
the different parametrization methods

5.2 Poisson’s Equation on a Jigsaw puzzle

We consider the Poisson problem (1) posed over the jigsaw puzzle piece shown
in Fig. 10a. We use the field

u∗G =

2∑
i=1

exp

(
− (x− x̃i)

2

a2i
− (y − ỹi)

2

b2i

)
(38)

as boundary condition on ∂Ω with given parameters x̃, ỹ, a,b ∈ R2, and with
f = −Δu∗G, u∗G is the unique solution to the BVP. The field is depicted in
Fig. 10b. The boundary conditions are enforced strongly through the least square
fit of the traces in the trial space to the field (38). The boundary control points
are shown in Fig. 10c.

a b c

f

u = u∗

u = u∗

u
=

u
∗

u
=

u
∗

Fig. 10. Jigsaw puzzle. a: Domain and boundary conditions. b: Analytical solution of
the boundary value problem. c: Boundary control points.

We solve the parametrization problem using all six nonlinear methods by
optimizing the position of the 64 interior control points, giving us a total of 128
design variables. In this example, we initialize the geometric methods from the
spring model in Section 3.1, and the analysis-oriented methods from the Winslow
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trol net (bottom) for the parametrization based on area-orthogonality (a), Liao (b),
Winslow (c), strong residual (d), weak residual (e), and enrichment error (f)

method. The results are shown in Fig. 11, depicting the optimal control net, the
corresponding parametrization, and the numerical error. We note firstly that
all the optimized control net and their corresponding parametrizations show a
high degree of symmetry, as one would expect from the underlying BVP. The
parametrizations vary markedly between the methods, and so does the error size
and distribution. To examine the numerical error more closely, we compare again
the methods in terms of the L2-norm of the error when the analysis is refined.
This is shown in Fig. 12, displaying the global numerical error ε as a function of
the number of degrees-of-freedom for the analysis for each of the six methods. We
note that for sufficiently fine discretizations, the global error convergence order
is the same for all methods. The superconvergence of the weak residual method
observed in the previous example in Fig. 8 is no longer seen. The difference in
the global error varies by approximately one order of magnitude between the
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Fig. 12. Jigsaw puzzle: error as a function of number of degrees-of-freedom for the
different parametrization methods

methods. Again, the weak residual method yields the lowest error, while the
area-orthogonality gives the highest.

In terms of computational expenses, the geometry-oriented methods con-
verged again significantly faster than the analysis-oriented methods. And as
each geometric iteration is significantly cheaper than a corresponding analysis-
oriented iteration, the computational time is orders of magnitude smaller for the
geometric methods than the analysis-oriented ones.

6 Discussion

The solution to the parametrization problem is particularly important in the
context of shape optimization, where a parametrization needs to be recomputed
repeatedly as the shape of the physical domain is updated by the shape opti-
mization algorithm, cf. [31]. In addition, most realistic industrial problems can
only be realized based on multiple patches, and the problems are most often
three-dimensional and not planar. In the present section, we further discuss
these challenges.

6.1 Shape Optimization

The authors are especially interested in using IGA for shape optimization, which
imposes further requirements on the parametrization method. In addition to pro-
ducing a valid parametrization of high quality, they have to be computationally
inexpensive and robust. Last but not the least, they should produce parametri-
zations, which depend in a differentiable way on the parameters, determining
the shape of the domain. For this purpose, the non-linear reparametrization
methods are often too expensive and too slow in practice. Furthermore, should
the numerical algorithm for solving the optimization problems (22) or (31) stop
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without producing a sufficiently precise stationary point or “jump” from one
locally stationary solution to another, the differentiable dependence of the par-
ametrization on the shape parameters might be lost. In order to overcome these
problems we have successfully utilized the following approach:

1. First, we find a high quality reference parametrization, employing a possibly
expensive non-linear method.

2. During shape optimization iterations, we use a computationally inexpensive
linear method and add the validity condition di,j ≥ δZ, cf. Theorem 1 as
constraints to the shape optimization problem. Again, the number δ ∈ [0, 1]
is an algorithmic parameter and the number Z is the result of the optimiza-
tion (20).

3. If any of the validity constraints in Step 2 is active when the optimization
stops, we improve the parametrization by going to Step 1 and restart the
optimization.

In the papers [22,23,26] this method has been successfully applied to 2D shape
optimization problems. The Winslow functional is minimized in Step 1 and the
linearized Winslow functional is used in Step 2, except for [22] where quasi
conformal deformation was used.

6.2 Multiple Patches

So far we have only considered a single patch, but extending the non-linear
methods and their linearizations to several patches is straightforward. We simply
let the control points for the inner boundary be variables in the optimization
formulations such as (22) and (31). It is interesting to observe how the Winslow
functional distributes the angles between patches meeting a common corner, cf.
Fig. 13.

Fig. 13. An inner boundary of a multi-patch configuration. To the left the initial
parametrization, to the right the parametrization obtained by minimizing the Winslow
functional

6.3 Higher Dimensions

Due to the Radó–Kneser–Choquet theorem the method of minimizing the
Winslow functional has a sound mathematical underpinning in dimension two.
Unfortunately, there is no version of this theorem in higher dimensions, and there
is no unique way to generalize the Winslow functional to higher dimensions ei-
ther. The analysis-oriented methods, on the other hand, generalize verbatim to
higher dimensions, as does the Liao Functional.
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7 Conclusion and Outlook

The construction of geometry parametrizations in isogeometric analysis is of vital
importance for obtaining reliable and accurate numerical results. In applications
of isogeometric analysis to shape optimization, the requirements to computa-
tional algorithms for constructing geometry parametrizations increase further,
owing to the repeated updates to the geometry made by the shape optimization
process. In the present work, we have proposed several methods, both linear and
non-linear, for constructing a parametrization, which meet these requirements.

The linear methods are computationally inexpensive, but do not guarantee
that the resulting parametrization is injective. We have outlined the spring
model, the mean values coordinates, and the quasi conformal deformation meth-
ods. Some of these can be used as an initial guess for other methods, and some
work well in the vicinity of a known valid parametrization. The injectivity of the
parametrization can be guaranteed by controlling the determinant of the Jaco-
bian, which in turn can be controlled by its coefficients in a B-spline expansion.

Two classes of non-linear parametrization methods have been considered,
which are based on maximizing a quantitative measure of the quality of the
parametrization. One class is based on the geometric quality measures, and uses
some of the methods known from mesh generation. Specifically, we have in-
vestigated the area-orthogonality, the Liao, and the Winslow functionals. The
other class of quality measures is analysis-oriented, and rely on error estimates.
Among many estimators available for adaptive meshing, we have tested three,
namely the strong residual, the weak residual, and the enrichment error norm.
The non-linear methods require more computational effort than the linear ones,
in particular the analysis-oriented methods. At the same time they produce valid
parametrizations, typically of higher quality.

We ensure the validity of the parametrization by adding the positivity of the
determinant of the Jacobian as constraints to the optimization-based param-
etrization methods. In our computational experience, these constraints are not
active at the end of the optimization, i.e., the functional we minimize has a
local minimum in the set of valid parametrizations. This is guaranteed in the
case of the Winslow functional which has a unique minimum. To safeguard from
numerical errors, we keep the positivity of the determinant of the Jacobian as
constraints even in this case.

The analysis-oriented methods strive to make the numerical solution of the
PDE at hand as accurate as possible with respect to a given error estimator. For
the few examples of elliptic boundary value problems we have considered, they
seem to work well. However, a word of caution is required. Conceivably, instead
of making the approximation error smaller we may expose flaws in the error
estimator and end up with a useless parametrization after all, which nevertheless
results in a small estimated error.

We are particularly interested in using isogeometric analysis for shape opti-
mization, and that puts conflicting demands on the parametrization algorithm.
It has to be fast, differentiable, robust, and reliable. We have solved the prob-
lem by using a cheap and fast linear method most of the time, and only use an
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expensive non-linear method when it is required. We have considered a range
of 2D shape optimization problems and we have successfully used the Winslow
functional as the non-linear method and the linearized Winslow functional for
the linear method

The future work in the field of parametrizations in isogeometric analysis has
both practical/experimental and theoretical aspects. First of all, more tests of
the proposed optimization methods are needed on more geometries and other
equations, including non-elliptic problems, both in 2D and 3D.

For example, isogeometric analysis is known to perform very well for nu-
merically approximating the eigenvalues, providing the small error even for the
optical/high frequency part of the spectrum, apart from a few highest frequency
modes [3]. In a simple 1D example with a known spectrum, the error can be made
small for all eigenvalues by adjusting the parametrization of the geometry. As
eigenvalue approximation errors have far reaching implications for the numerical
accuracy of other problems with the same operator, it would be very interesting
to know whether such parametrization adjustments generalize to problems in
higher dimensions and can be achieved without knowing the exact spectrum.

Another fundamental issue directly related to geometry parametrization is
that of generating the patch layout in case several patches are needed. This can
be done “by hand,” but automated methods are of course highly desirable.

It would be very interesting to characterize the minima of the analysis-oriented
parametrization methods. For example, for which BVPs/error estimators can
we guarantee the validity of the resulting parametrization without explicitly
enforcing it?

We believe that no universal linear method for generating a geometry par-
ametrization exists. We formulate it as a conjecture, and the proof of this fact
would of course be very interesting:

Conjecture 1. Let F : C1(∂I2,R2) → C1(I2,R2) be an affine map such that
F (Y)|∂I2 = Y for all Y ∈ C1(∂I2,R2). Then there is a regular map Y ∈
C1(∂I2,R2) with a positive Jacobian determinant in the corners such that F (Y)
has a negative Jacobian determinant at least at one point.

Another conjecture is related to minimizing the Winslow functional over the
finite-dimensional spaces of splines:

Conjecture 2. Let Y ∈ C1(∂I2, ∂Ω) be a valid spline parametrization of the
boundary of a domain Ω ∈ R2 with a positive Jacobian determinant in the
corners. Then there exists a finite-dimensional spline space S ⊂ C1(∂I2,R2)
and a minimizer X ∈ S of the Winslow functional, such that X is a valid
parametrization of Ω with X|∂I2 = Y.

Acknowledgement. The authors would like to thank Thomas A. Hogan, The
Boeing Company, USA, for valuable discussions and for suggesting the enrich-
ment error norm as a quality measure.
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30. Wächter, A., Biegler, L.T.: On the Implementation of a Primal-Dual Interior Point
Filter Line Search Algorithm for Large-Scale Nonlinear Programming. Math. Pro-
gram. 106, 25–57 (2006)

31. Wall, W.A., Frenzel, M.A., Cyron, C.: Isogeometric Structural Shape Optimization.
Comput. Meth. Appl. Mech. Engrg. 197, 2976–2988 (2008)

32. Weber, O., Ben-Chen, M., Gotsman, C., Hormann, K.: A complex view of barycen-
tric mappings. Computer Graphics Forum 30, 1533–1542 (2011); Proc. of SGP

33. Winslow, A.: Numerical Solution of the Quasilinear Poisson Equation in a Nonuni-
form Triangle Mesh. J. Comput. Phys. 2, 149–172 (1967)

34. Xu, G., Mourrain, B., Duvigneau, R., Galligo, A.: Optimal Analysis-Aware Pa-
rameterization of Computational Domain in Isogeometric Analysis. In: Mourrain,
B., Schaefer, S., Xu, G. (eds.) GMP 2010. LNCS, vol. 6130, pp. 236–254. Springer,
Heidelberg (2010)

35. Xu, G., Mourrain, B., Duvigneau, R., Galligo, A.: Parameterization of Computa-
tional Domain in Isogeometric Analysis: Methods and Comparison. Comput. Meth.
Appl. Mech. Engrg. 200, 2021–2031 (2011)

http://orbit.dtu.dk/services/downloadRegister/4040813/first-report.pdf
http://www.gnu.org/software/octave


Realistic Plant Modeling from Images

Based on Analysis-by-Synthesis
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Abstract. Plants are essential elements of virtual worlds to get pleas-
ant and realistic 3D environments. Even if mature computer vision tech-
niques allow the reconstruction of challenging 3D objects from images,
due to high complexity of plant topology, dedicated methods for gen-
erating 3D plant models must be devised. We propose an analysis-by-
synthesis method which generates 3D models of a plant from both images
and a priori knowledge of the plant species.

Our method is based on a skeletonisation algorithm which allows to
generate a possible skeleton from a foliage segmentation. Then, we build
a 3D generative model, based on a parametric model of branching sys-
tems that takes into account botanical knowledge. This method extends
previous works by constraining the resulting skeleton to follow a natu-
ral branching structure. A first instance of a 3D model is generated. A
reprojection of this model is compared with the original image. Then,
we show that selecting the model from multiple proposals for the main
branching structure of the plant and for the foliage improves the quality
of the generated 3D model. Varying parameter values of the generative
model, we produce a series of candidate models. A criterion based on
comparing 3D virtual plant reprojection with the original image selects
the best model. Finally, results on different species of plants illustrate
the performance of the proposed method.

1 Introduction

Procedural methods to generate plant models can build a complex plant architec-
ture from few simple rules [1]. In his pioneering work [2], Lindenmayer proposes
the formalism of L-systems as a general framework. By carefully parameterising
these rules, it is possible to achieve a large variety of realistic plant shapes [3,4].
However, a strict recursive application of rules leads to self-similar structures and
thus, to enhance realism, irregularities may be generated through probabilistic
approaches [5,1]. Adjusting stochastic parameters to achieve realistic models re-
quires intensive botanical knowledge [6]. Another approach consists in modeling
plant irregularities as a result of the competition for space between the different
organs of the plants [7]. In this case, the volume of a plant is specified by the
user and a generative process grows a branching structure with branches com-
peting between each other. Competition can be biased to favor certain types of
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structures. However, automatic control of competition parameters to achieve a
given shape is still complicated.

All these first works are derived from computer graphics community. Other
approaches use information provided by images to increase the degree of realism.
A couple of research directions should be investigated. Clearly, a plant should
follow the biological property of its species and also ressemble a picture of an
existing instance. That is typically the subject of our work. Our idea is not to
exactly reconstruct the plant from an image, including its hidden parts (which
seems impracticable) but rather to drive the instantiation of the plant 3D model
by minimising the difference between its reprojection and the original plant in
the image.

Fig. 1. On the left, an original image of a vine plant before and after a metric rec-
tification. In the middle, a possible architecture of the branching extracted with our
skeletonisation method. At the right, a corresponding 3D model of the plant.

Unlike existing methods detailed in section 2, ours must be able to get a 3D
model of a plant without any human interaction from images with possibly no
visible branches. By integrating biological knowledge of the plant species, we
propose a simple fully-automatic process to extract the structure of a plant from
the shape of its foliage. The picture can be taken in arbitrary conditions and
may be of poor quality (for example, in the vine case, the image is degraded
after a metric rectification due to the assumption that all the principal branches
are in a plane as shown at the left on the Fig. 1). We start by presenting a
new skeletonisation algorithm in section 3 in the vine case (as we can see in the
middle of the Fig. 1) and we explain a possible extension to our skeletonisation
method for other kinds of plants with 3D branching architecture in section 3.5.
Then a 3D model is generated thanks to our 3D generative model (section 4).
Finally, an analysis-by-synthesis scheme allows to improve this reconstruction
insuring that the foliage model reprojection matches closely the original foliage
like explained in section 5 (right on the Fig. 1). The last section shows results
and validation comparing with data provided by experts.

2 State of the Art: Generating Plants from Images

Realistic plants are challenging objects to model and recent advances in auto-
matic modeling can be explained by the convergence of computer graphics and
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computer vision [8]. We start this state of the art with the first method of plant
modeling from images. Then, we continue with the ones starting by reconstruct-
ing clouds of 3D points. After, we talk about other methods using several images
to finish with approaches using a single image as ours.

A pioneering work on the reconstruction of trees from images was made by
Shlyakhter et al. [9] who reconstruct the visual hull of the tree from silhouettes
deduced from the images. A skeleton is computed from the hull using a Medial
Axis Transform (MAT) and is used as main branches. Branchlets and leaves are
then generated with an L-system. The skeleton determined from the MAT does
not necessarily look like a realistic branching system. Also, the density of the
original tree is not taken into account.

Quan et al. [10,11] and Tan et al. [12] also use multiple images to reconstruct a
3D model of trees or plants. In order to avoid searching features correspondances
in different images, they use views close to each other (more than 20 images for
any plants). Thus, they obtain a quasi-dense cloud of points by structure from
motion. For simple plants, a parametric model is first fitted on each set of points
representing a leaf. They then generate branches based on information given
by the user. For trees, they start by reconstructing visible branches to create
branch pattern that they combine in a fractal way until reaching leaves. Reche-
Martinez et al. [13] propose another reconstruction from multiple images, based
on billboards. Neubert et al. [14] construct a volume encompassing the plant in
the form of voxels using image processing techniques and fill it with particles.
Particles paths toward the ground and a user given general skeleton define the
branching system.

Wang et al. [15] model different species of trees using images of tree samples
from the real world which are analysed to extract similar elements. A stochastic
model to assemble these elements is also derived and parameterised from the
image. The resulting model can generate many similar trees. The goal in this
case is not necessarily to reconstruct a specific tree instance corresponding to an
image. Similarly, Li et al. [16] propose a probabilistic approach to reconstruct
a tree parameterized from videos. For these methods, the only source of infor-
mation is the given images leading to template branching patterns. If the set of
patterns is rich enough, it will produce aesthetically pleasing results, but without
guarantee to be representative of its species. Additionally, a user must specify
a draft of the structure on the image to avoid segmentation. Talton et al., in
[17], propose to fit a grammar-based procedural methods using Markov Chain
Monte Carlo technique to model objects from a 2D or 3D binary shape. Their
results are aesthetically very convincing but their optimisation routine requires
long computation time.

Other approaches explore the use of a single image [18,19]. In [18], from a
manual segmentation of the plant in the image, they extract a skeleton. A 3D
representation of the branches is derived from visible parts, then the leaves are
added. Here, an user sketching step is required. In [19], a graph topology is first
extracted from a single image of a branching system (a tree without foliage).
Then the 3D tree model is reconstructed by rotating the branches.
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In general, methods of the literature, such as [12] and [18] require visible
branches to learn about the structure of the skeleton. In our case, branches are
directly derived from the foliage structure. Fig. 16 (top row) shows branching
structures devised manually by experts from image: we see that the branches
are deduced on one hand from the knowledge of a space filled by a branch and
its attached leaves and on the other hand from the silhouette of the foliage.
We propose a generalised recursive skeletonisation algorithm together with an
analysis-by-synthesis mechanism to determine the branches and their attached
foliage that is the 3D model. Our approach is fully-automatic, that is, does not
require any user interaction.

3 Skeletonisation

3.1 General Field Skeletonisation Method

Skeletonisation is a classical topic in image processing. We have followed and
completed the analysis of different approaches as proposed in [20] and as illus-
trated in Tab. 1. This table summarises the different properties that skeletons
respect like the thinness or the robustness and compares them to our require-
ments shown in the left column. All these properties are detailed in [20].

’Homotopic’ and ’connected’ are topology preserving properties. As the foliage
may have holes, we prefer not to be attached to its topology. For the same reason,
reconstruction is not very relevant. On the opposite robust is an important
property, since the foliage may not be stable (for example, the foliage may change
in case of wind). Being reliable means that any point in the foliage should be
visible from a point on the skeleton. For our setting, it is not necessary to request
a branch in each bump of silhouette. The transformation invariance property (in
particular affine invariance) is not important in our setting as we do depend on
orientation. For example, vine branches grow vertically. In our case, the smooth
property is important to get realistic branches but we do not need a centred
skeleton. Finally, we shall see that for plants more complex than vines, the
hierarchic nature of the skeleton is used (section 3.5). For these reasons, we
choose to adapt the general field method, and in particular the work of Cornea
[21], since their approach fits the best our needs.

Cornea et al. original method [21] consists in computing the skeleton (Fig.
2 (c)) from a vector field (Fig. 2 (b)). For each interior pixel pi of the binary

shape B, a force vector
−→
fi is computed as a weighted average of unit vectors to

the boundary pixels:

−→
fi =

∑
mj∈Ω

1

||−−−→mjpi||2
−−−→mjpi

||−−−→mjpi||

where Ω contains the contour pixels mj of B (Fig. 2 (a)). Then, points where
the magnitude of the force vector vanishes, so-called critical points (Fig. 2 (b)),
are connected by following the force direction pixel by pixel. The results of this
method can be seen in Fig. 2. The problem here is that this method is not robust
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Table 1. Summary of properties achievable by different skeletonisation methods. In
green, the characteristics compliant with our needs.

Medial
Axis

Thinning Distance
Field

Geometric General
Field

Our
needs

G: general G [22] G G [23] G [21]

Homotopic Y Y Y Y Y N N N

Connected Y Y Y Y N Y

Reconstruction Y N N N N N N N

Robust N N N N N Y Y Y Y

Reliable Y Y N N N

Transf. Invariance Y N Y Y Y Y N

Centred Y Y Y N N

Smooth N N N Y Y Y

Hierarchic Y N N Y Y Y Y

Fig. 2. Cornea et al. original method. (a) shape B with contours pixels ∈ Ω represented
in red. (b) vector field with critical points in blue. (c) extracted skeleton in green.

to the holes in the binary shape. Furthermore, sometimes only one branch grows
when two or more are required.

3.2 A New Computation of the Vector Field

By redefining the set of contour points, we manage to use Cornea’s vector field
method to get a realistic skeleton in 2D.

Based on botanical expertise, we assume that different branches of relatively
similar size coexist and share the space of the plant crown. A large convex
silhouette is usually explained by more than one branch. For the skeleton to
reflect this hierarchy of branches, we propose a strategy to partition the foliage
surface into subsets by positioning artificial contour points in the shape. Fig. 3
shows that by adding contour points within the shape, we define an appropriate
branch set.

We compute a probability map P on B containing, for each interior point

pi, the probability to be considered as a contour point. The new force vector
−→
fi
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Fig. 3. At the left, the skeleton (in green) extracted with Cornea’s original method. A
spatial partition can be generated (red lines) to constraint the skeleton to have more
branches. At the right, the skeleton computed by Cornea’s method when all red points
are considered as contour points.

does not depend only on the points mj ∈ Ω but on all the points of B. The new
formula to compute the vector field is:

−→
fi =

∑
mj∈Ω

1

||−−−→mjpi||2
−−−→mjpi

||−−−→mjpi||
+
∑

pj∈B\Ω
j �=i

Pj

||−−→pjpi||2
−−→pjpi

||−−→pjpi||
(1)

We can see that if Pj = 0 for all the interior points, equation 1 is equiva-
lent to Cornea’s original computation whereas if some interior points have high
probability they act as a repulsive force on the positioning of the branches.

3.3 Definition of the Probability Map

We assume here that n the number of branches is given. We compute the prob-
ability map P with an iterative algorithm. The first step is the choice of cuts
in B. The cuts are segments with one starting point and one ending point and
represent the possible positions of the separations between the n branches in
the shape. Assuming that the shoots grow vertically from the cane, we propose
to place trivially the ending points ei, i = 1..n− 1 of the cuts uniformly in the
bottom of B (Fig. 4). Then, the starting points are computed one by one. To
do that, we compute the DCE (Discrete Curve Evolution) of Ω as in [24]. It
provides a simplified polygonal boundary composed of N vertices (sl),l=1..N like
shown in Fig. 5. Usually, we choose N = 2n. An angle αl can be associated with
each vertex, representing clockwise angle between the 2 segments around the
vertex. A set of points (ck),k=1..K uniformly discretises the polygon.

Then a new probability ρk to be a starting point is computed for each point
ck taking into account two values:

– the proximity to an inward angle:

ρ1k ∼
N∑
l=1

1

d(ck, sl)
(1− αl

2ξ
)
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Fig. 4. At the left, examples of cuts with n = 4 and n = 5 branches. Ending points
are represented in blue and starting points in green. At the right new vector fields.

Fig. 5. DCE algorithm examples. At the left, the original image with the contour
points around the foliage. The two other images show the DCE algorithm with a 24-
point polygon in the middle and a 8-point polygon on the right. The inward angles are
represented in blue.

– the distance along a boundary to the set H of already chosen starting points :

ρ2k ∼ min
c∈H

d(ck, c).

The mix probability ρk is proportional to φ(ρ1k, 1, σ) + φ(ρ2k, 1, σ) where
φ(., 1, σ) represents the gaussian function with a mean equals to 1 and a standard
deviation equals to σ (here, σ = 0.4).

A starting point {ck} is selected according to the probability ρk. Then it is
associated with an ending point ei and accepted if:∣∣∣∣#pixels ∈ B on the left of (eick)

#pixels ∈ B − i

n

∣∣∣∣ ≤ τ (2)

where τ is a parameter allowing the created partitions of the binary shape to
have the same size or not. In the vines case, τ = 15%.

Finally, when all the cuts have been accepted, the new vector field is computed
like shown at the right part of Fig. 4.

3.4 Adjusting First Order Branches

We now have a vector field coherent with the n branches assumption. We want
to extract branches from this vector field. For each row i of the image and each
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area p of the partition that we can see at the left part of Fig. 4, we extract the
attracting point api which is the one with the smallest vector norm. Each branch
bp is a Catmull-Rom curve adjusted on the attracting points api , using a least
square criterion.

An example of skeleton can be seen in Fig. 6.

Fig. 6. A final skeleton with 5 branches

The following algorithm summarises the proposed approach:

ALGORITHM:
input: binary shape B and number of branches n.
output: a skeleton model of the plant consisting in n branches.

∗ Compute the DCE of B with N = 2n vertices and extract candidate {ck}
uniformly along the polygon.

∗ Initialise H = ∅.
∗ Place the ending points {ei, i = 1..n− 1} in the bottom of B.
∗ For i from 1 to n− 1

· Compute ρk for each (ck).
· while (!equation (2))
◦ Randomly select a starting point c among {ck}\H in function of ρk and

an ending point among {ei}.
· H = H ∪ c.

∗ Compute the probability map P .
∗ Compute the vector field using equation (1).
∗ Extract the points api for each row i of each area p of the partition.
∗ Adjust a branch in each area p of the partition.
∗ For each node of each branch, extract a foliage width.
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3.5 Higher Order Branches and Depth Information

In the case of the vines, all the main branches are assumed in a same plane
and there are only first order branches. We adapt this planar setting to a more
recursive structure and to a 3D setting where rotational symmetry is assumed,
like in typical monopodial plants (i.e. plants organised around a main trunk).

Iterative Skeletonisation Algorithm
An automatic colour based segmentation computes a 2D binary shape from the
foliage. Then, the branches are extracted using a modified version of our algo-
rithm presented above. The ending points are placed on the vertical line passing
through the trunk of the monopodial tree and the condition (2) is replaced by a
condition checking that the angle between the cut and the trunk is coherent (i.e.
around π

2 in the bottom of the tree, π
6 in the top and with an angle computed

linearly between these two values for an intermediate cut). This algorithm is
applied recursively to get second order branches for each partition. We can see
an example of cuts with a Liquidambar tree in Fig. 7.

Fig. 7. An example of skeleton for the Liquidambar tree

Depth of Branches
To generate 3D information, we drew inspiration from Zeng et al. [19] and Okabe
et al. [25]. The goal is to deduce depth information for the branches in the 2D
skeleton to make a realistic plant from other views, preserving the appearance
from the original viewpoint as it is shown in Fig. 8. First, we compute the convex
hull of our 2D skeleton. Then, revolving this convex hull around the line passing
through the trunk, we obtain a encompassing volume of the plant. Considering an
orthographic projection onto the ground, for each branch which does not touch
the 2D convex hull, we change depth information for that the end of this branch
touches the boundary of the bounding volume. We have two possibilities, at the
front or at the back. We choose the one which maximises the angles between the
projections of all the branches to the ground, adding the branch one by one.

4 3D Generative Model

Now we have a possible structure of the plant, the next step is to generate a 3D
model of this plant. To do that, we need to build a 3D generative model thanks
to all the a priori knowledge of the plant.
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Fig. 8. At the left, we can see the 2D convex hull of the foliage, in the middle, the-
bounding volume and at the right, the final 3D skeleton of a Liquidambar tree

In our work, we combine procedural methods to generate a plant and image
based approaches. Procedural methods makes it possible to take into account
botanical constraints such as possible regular arrangements of organs (for in-
stance leaves). The procedural model uses stochastic parameters in the position-
ning of the branchlets and the leaves.

We choose to generate the constrained model with L-systems, using the L-Py
modeller [26]. An L-system [1] is a formal grammar, most commonly used to
model the growth processes of plant development. The main idea of L-systems is
to rewrite a string of modules representing the structure of the plant. Rewriting
rules express the creation and change of state of the various modules of the
plant over time. Our model include a deterministic part which is controlled by
the understanding of plant images and a stochastic part to allow a more realistic
result. The model is deduced by both learning from a large number of plants
and also knowledge given by specialists.

We choose to generate our model in two stages: the branching system model
and the foliage.

Branching System Model
Each branch is set by a number of 3D nodes which are the control nodes of
the branch. From each of these nodes one or more lateral branches of the same
nature may grow. Then, to model the 3D structure, each branch is a generalised
cylinder along a curve passing through all nodes. A B-Spline curve is built with
a local interpolation scheme of degree 3 [27]. A radius is assigned to each of
these nodes to determine the radius of the generalised cylinder in these nodes.
This radius is linearly interpolated between two nodes. Textures taken from real
images are then applied to branches.

Foliage Model
We begin by extracting leaf textures from real images. At each node defining
the branches structure is also assigned a value R which is the radius of the
cylinder encompassing the leaves. Thus, to model the foliage, branchlets are
generated randomly along the branches. Stems are placed along main branches
and branchlets. Their density and their length is a random variable distributed
normally with mean R and standard deviation R

4 . On each of these stems a leaf
modeled by a Bezier surface is placed on which a randomly chosen texture is
mapped (Fig. 9b.).
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Fig. 9. Example with the case of vine. (a) Branch structure modelisation. (b) Textures
of vine leaves.

5 Reprojection Criterion

The last step goals to evaluate the quality of the 3D reconstructed 3D model.
We reproject the 3D model in an image with the same viewpoint of the original
image. We obtain a binary shape Ii (1 if foliage, 0 elsewhere). In the same
way, the original segmented foliage forms a second binary image B. The error
reprojection is computed as:

errori =
#((Ii − B)2 == 1)

#pixels(B) (3)

Fig. 10 illustrates the comparison between the projections and the original
image.

Fig. 10. At the left, the original image. At the right, the reprojected model. In the
middle, the projection errors map. White pixels correspond to pixels where the original
image and the reprojected one are superposed and red pixels are wrong pixels.

The idea now is to improve the proposed 3D model using an analysis-by-
synthesis strategy which allows to merge information from the a priori botani-
cal knowledge and from the image. An increasing number of authors propose to
use external knowledge for easing reconstruction from images. Indeed providing
knowledge about the scene to be reconstructed simplifies the image processing
steps. In [28], Tu et al. define generative models for faces, text, and generic
regions which are activated by bottom-up proposals learnt using probabilistic
methods. These proposals are then accepted or rejected using a stochastic cri-
terion. Yuille et al. [29] claim that this approach, which allows to deal with
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the complexity of natural images, has intriguing similarities to the brain. They
present a method where low level features are used to make bottom-up pro-
posals, finally validated by high-level models. In a similar analysis-by-synthesis
method where a priori knowledge consists in geometric and mechanical proper-
ties, Gupta et al. [30] iteratively make proposals for interpreting parts (blocks)
of the image. We use a similar approach, but not iterative.

In our case, we give more freedom to the generative model. For example, we
do not impose the number of branches of the plant that we do not a priori know.
Thanks to all the knowledge of the plant, we can model each parameter (like
the position of the cuts, the leaves densities or the number of branches) by a
random variable, and thus generate numerous models.

We select the best candidate proposed by the generative model using the
following formula:

Mi0 = argmax
Mi

p(Mi|Ii) = argmax
Mi

p(Mi)p(Ii|Mi) (4)

We choose p(Ii|Mi) = 1−errori = 1− #((Ii−B)2==1)
#pixels(B) and p(Mi) is a product

of terms which are probabilities function of all the knowledge of the plant. For
the vine case example, one of the term of p(Mi) is a gaussian representing the
probability of the number of shoots. Fig. 11 shows different error maps. White
pixels correspond to pixels where the reprojected model and the original image
are superposed.

Fig. 11. Different errors maps with different numbers of branches, different distribu-
tions of leaves and different densities. The map outlined in red is the error map of the
selected 3D model because there is the smallest percentage of gray pixels.

6 Results and Validation

Our method has been tested on a large number of images and videos. Some
results are shown in Fig. 15, 14 and 12. To validate our model, we use the error
criterion of equation (3). The average error for the case of vines is 6.9%, 7.2% for
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Fig. 12. Vine plants modelisation. At the top the original images. At the bottom,
rendering of automatically generated vine models using our approach.

Fig. 13. Reprojection errors according to the number of tested models. Different varia-
tions are tested as the number of branches or the leaves density. For example, if we test
different 3D models with only one leaves distribution and 1 leaves density, the error is
almost 10%. Then, this error decreases when we add different leaves distributions or
different leaves density.
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Fig. 14. Walnut. At the left, the original image. At the right, the 3D model with the
same viewpoint.

Fig. 15. Liquidambar. At the left, the original image. In the middle, the 3D model
with the same viewpoint. At the right, the 3D model with an other viewpoint.

Fig. 16. Expert skeletons. At the top, a viticulture expert has drawn skeletons on vine
images (in red). At the bottom, the projections of the skeletons of our method (in
yellow).
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Table 2. The first row represents the number of the vine image. The second and the
third rows represent the numbers of shoots drawn by the experts. The last row represent
the number of shoots of the 3D models generated with our method from these images.

Image 1 2 3 4 5 6 7 8 9

First expert estimation 3 6 5 5 6 5 3 7 7

Second expert estimation 2 6 4 5 4 4 2 5 4

Our method 2 5 4 5 6 6 3 5 6

the Walnut and 8.5% for the Liquidambar. In Fig. 13, we show the reprojection
error according to the number of tested models for an example of vine (the third
example of Fig. 12). It is interesting to note that the greater is the number
of tested models, the lower is the reprojection error. The curve decreases very
quickly between 1 and 15, fairly quickly until 100. This proves the effectiveness
of our skeletonisation method which restricts significantly the search space. This
curve illustrates the importance to test several models but of course, the final
selected model is not necessarily the last one.

A second validation is to compare our solution to the one provided by viticul-
ture experts (Fig. 16). It seems difficult to find a significant measure by compar-
ing the ground truth to our skeletons. Furthermore, for us, the most important
is the final appearance with leaves. Indeed, for the first example in Fig. 16, our
algorithm found a very similar skeleton to the expert one at the left but it is not
the one which has been validated by our method at the right. So, we used our
algorithm on the drawn ground truth skeletons with different leaves distribu-
tions and different leaves densities to find the best 3D model. The improvement
of the reprojection criterion in comparison to our automatically generated skele-
ton is only 0.2% in average. This small difference proves the performance of our
method which does not require human intervention.

In Tab. 2, we can see the number of shoots drawn by two differents experts
from vines images. The last row shows the number of shoots of the 3D models
generated with our method from the same images. We almost reconstruct a 3D
model with the same number of shoots drawn by one of the two experts.

For the 3D case, we have shown that our method can reconstruct realistic 3D
trees from a single image. However, the branching system is mostly based on
branches.

7 Conclusion

Combining analysis and synthesis, we have proposed a new fully-automatic
method of plant modeling from a low resolution image without any branching
pattern unlike [12,19].

The leading contribution of this paper is a new skeletonisation algorithm
able to extract the structure of a plant from an image of its foliage. Then, we
built 3D parametric generative models for different plants using the knowledge
about the species. A final analysis-by-synthesis step improves the quality of
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the final 3D model by comparing the original image with a large number of
3D models generating varying different parameters of the 3D generative model.
The skeletons are used to make proposals to the 3D generative model. The
reprojection criterion insures the similarity between the proposed 3D model and
the original image. We further validated our proposed model by comparing it to
ground truth given by experts in the case of vine.

In future work, we are first interested in extending our setting to non monopo-
dial plant. The current algorithm can be applied to non monopodial plants, like
the Walnut, but the result is still not very satisfying. Moreover, we could inves-
tigate the automatisation of the use of a priori. Indeed, the construction of the
generative model could be done by learning from a large data set avoiding the
necessity prior knowledge on the branching structure of the plant species. The
process would be evolving in loop, where the analysis could give feedback to the
generative models.
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Abstract. In this text we present an approach for Hermite interpolation
with rational splines without predefined weight factors. We rearrange the
equation of the derivative of the rational spline function into a homoge-
neous linear system of equations in homogeneous space. We use this lin-
ear system to formulate different interpolation problems, with the weight
factors as well as the control points as a solution. In the first approach,
we solve the linear system directly by adding only one inhomogeneous
equation to normalise the weights. This approach has some significant
constraints. The second approach uses the linear system as a secondary
condition for maximizing the minimum weight. This way allows us to
obtain method more open regarding the number of interpolation points.
In the third approach, we reduce the number of interpolation points to
approximate the values of the function between the interpolation points.

1 Introduction

Importing bevel gear tooth flanks into a CAD program immediately leads to
the problem of finding a good approximation for the gear geometry by means
of standard geometric primitives. Since, for principal reasons, the geometry of
a tooth flank is part of a sphere, smooth piecewise rational surfaces or NURBs
are the primitives of choice. Moreover, the gear contact and its quality is tied to
properties of the tangent; hence, a Hermite interpolation or approximation has
to be applied.

The naive approach to address this task with NURBS is first to select the
weight factors and then simply solve a linear system like in case of polynomial
splines, see [2,3]. Although the results for different a priori weights vary sig-
nificantly, the choice of the weight factors often is purely heuristic. Farin, for
example, addresses this topic in his book as follows [2, P.240]: ”We have not
yet addressed the problem of how to choose the weights [..] for the data points
[..]. No known algorithms exist for this problem. It seems reasonable to assign
high weights in regions where the interpolant is expected to curve sharply.”. An
approach presented in [4] uses the weights as additional degrees of freedom,
transforms the rational spline into homogeneous coordinates and solves a ho-
mogeneous linear system for Lagrange interpolation. This idea is extended by
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building the derivative in the homogeneous space and setting up a linear sys-
tem. However, this approach only interpolates the derivative in the homogeneous
space which is not equal to the derivative of the curve. In this paper, we extend
the Lagrange approach from [4] to a Hermite interpolation and approximation
method based on derivatives in euclidean space.

2 Definitions

A knot sequence Tm,n := {t1, . . . , tn+m+1} ⊂ R of order m ∈ N is defined to be
an ascending, finite sequence with at most m+ 1 identical elements:

t1 ≤ . . . ≤ tn+m+1, tj < tj+m+1, j = 1, . . . , n.

The polynomial B-splines bmi of degree m with respect to the knot sequence T
are given by the usual recurrence relation

bkj (·|T ) :=
· − tj

tj+k − tj
bk−1
j (·|T ) + tj+k+1 − ·

tj+k+1 − tj+1
bk−1
j+1 (·|T ),

b0j(·|T ) := χ[tj ,tj+1)

and we write b :=
(
b1, . . . , bn

)t
for the vector of all B–splines of degree m with

respect to the knot sequence T .
The weightsw for the rational B–splines are the nomalized nonnegative vector

w =
(
w1, . . . , wn

)t ∈ Rn
+, wt1 = n.

We find it convenient to arrange the control points di ∈ Rd, i = 1, . . . , n into the
matrix D =

(
d1 . . . dn

)
∈ Rd×n. Analogously, we define the i-th homogeneous

control point as

(
wi

di

)
=

(
wi

widi

)
∈ Rd+1 and arrange them into the matrix

(
w1 . . . wn

d1 . . . dn

)
=:

⎛⎜⎜⎜⎜⎝
wt

d
t

x1

...

d
t

xd

⎞⎟⎟⎟⎟⎠ ∈ R(d+1)×n.

We reshape the control matrix one more time, and call

d =
(
wt d

t

x1
. . . d

t

xd

)t
∈ R(d+1)n

the vector of all homogeneous control points.
In this notation, a rational spline curve f : [tm, tn] −→ Rd is given as:

f(t) :=
DWb(t)

wtb(t)
, W := diagw =

⎛⎜⎝w1

. . .

wn

⎞⎟⎠ ∈ Rn×n. (1)
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We call the spline curve polynomial if w = 1. In this case, equation (1) simplifies
and becomes the well–known

f(t) := Db(t).

3 Derivatives and Conditions for Interpolation

The r-th derivative of a polynomial spline curve of degree m is a polynomial
spline curve of degree m − r which can be calculated using a simple matrix
multiplication, see [1], as dr

dtr f(t) = DGr b
m−r(t) withGr := G(m,T ) · · ·G(m−

r + 1, T ) where

G(m,T ) :=

⎛⎜⎝
m

Δmt1
− m

Δmt2
. . .

. . .
m

Δmtn
− m

Δmtn+1

⎞⎟⎠ ∈ Rn×n+1

uses the difference operator Δmtj := tj+m − tj , j = 1, . . . , n + 1, with the
convention that 1

Δmtj
:= 0 if Δmtj = 0.

With the matrix G we can also recursively define the derivative of a rational
spline curve:

dr

dtr
f(t) = −

r∑
s=1

(
r
s

)
wtGsb(t)

wtb(t)

dr−s

dtr−s
f(t) +

DWGrb(t)

wtb(t)
(2)

Equation (2) can be deduced by deriving wtb(t) f(t) with Leibniz’s rule, as
described in [3, p.125].

Let pr
1, . . . ,p

r
k ∈ Rd be given interpolation values and τ1, . . . , τk ∈ R be the

associated interpolation nodes or interpolation sites, r = 0, . . . , r̃. A function f
is said to be a solution to the Hermite interpolation problem if

dr

dtr
f(τj) = pr

j , j = 1, . . . , k, r = 0, . . . , r̃.

We substitute pr
j and τj into equation (2) and obtain

0 = −pr
j w

tb(τj)−
r∑

s=1

(
r
s

)
pr−s
j wtGsb(τj) +

⎛⎜⎜⎝
d
t

x1

...

d
t

xd

⎞⎟⎟⎠Grb(τj)

= −
r∑

s=0

(
r
s

)
pr−s
j bt(τj)G

t
sw +

⎛⎜⎝b
t(τj)G

t
rdx1

...

bt(τj)G
t
rdxd

⎞⎟⎠
=
(
Pt

r(τj) B
t
r(τj)
)(w

d

)
, (3)
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with

Pt
r(τj) = −

r∑
s=0

(
r
s

)
pr−s
j bt(τj)G

t
s ∈ Rd×n,

Bt
r(τj) =

⎛⎜⎝b
t(τj)G

t
r

. . .

bt(τj)G
t
r

⎞⎟⎠ ∈ Rd×nd.

4 Solving the Linear System

By putting together all the Hermite interpolation conditions (3) as well as a
normalization condition for the weights, we end up with the (inhomogeneous)
linear system ⎛⎜⎜⎜⎝

Pt(τ1) B
t(τ1)

...
...

Pt(τk) B
t(τk)

1 0

⎞⎟⎟⎟⎠
(
w

d

)
=

(
0
n

)
(4)

where

Pt(τj) =

⎛⎜⎝P
t
0(τj)
...

Pt
r̃(τj)

⎞⎟⎠ , Bt(τj) =

⎛⎜⎝B
t
0(τj)
...

Bt
0(τj)

⎞⎟⎠ .

This linear system is of dimension 1 + dk(r̃ + 1) × n(d + 1). For the existence
of a unique solution, the linear system must be square which means that the

dimension of the spline space n ∈ N has to be n = 1+dk(r̃+1)
d+1 . Unfortunately, it

is not always possible to find an integer for n, as we can directly see in the case
of Hermite interpolation r̃ = 1 in R3, where n = 1

4 + k · 3
2 /∈ N.

To find a solution for non–square systems, we reformulate the interpolation
problem as an optimization problem, where the minimal weight u is maximized.
This approach guarantees that the the solution is as polynomial as possible and,
in particular, it gives the polynomial solution of the problem whenever such a
solution exists. Hence, we consider

min
w,d

(
0 0 −1

) ⎛⎝wd
u

⎞⎠ , subject to

(
I 0 −1
0 0 1

)⎛⎝wd
u

⎞⎠ ≥
(
0
0

)
(5)

and the linear equality constraints⎛⎜⎜⎜⎝
Pt(τ1) B

t(τ1) 0
...

...
...

Pt(τk) B
t(τk) 0

1 0 0

⎞⎟⎟⎟⎠
⎛⎝wd
u

⎞⎠ =

⎛⎜⎜⎜⎝
0
...
0
n

⎞⎟⎟⎟⎠ .
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To avoid singularities, we added one inequality constraint, requiering u and
therefor all weights to be nonnegative.

From Figure 1 we see that the NURBS curve resulting from this optimization
converges to the polynomial spline as n grows. This behaviour is obvious, since
as soon as the side conditions can be satisfied, the uniform weight vector of the
polynomial spline is the unique solution of the optimization problem. If we want
to use additional degrees of freedom to smooth the spline further, we need to
add more data points. If the points pj are sampling points of a function p at
the values τj , we can extend the approach by also approximating p in between
the interpolation points p(τj). To that end, we minimize the integral over the
squared residual of the linear system (3),

∫ tn

t1

∥∥∥∥(Pt
0(τ) B

t
0(τ)
)(w

d

)∥∥∥∥2 dτ
=
(
wt d

t
) ∫ tn

t1

(
P0(τ)P

t
0(τ) P0(τ)B

t
0(τ)

B0(τ)P
t
0(τ) B0(τ)B

t
0(τ)

)
dτ

(
w

d

)

This leads to the quadratic optimization problem

min
w,d

(
wt d

t
) (∫ P0P

t
0

∫
P0B

t
0∫

B0P
t
0

∫
Bt

0B0

)(
w

d

)
, (6)

with equality constraints that encode the interpolation conditions:

⎛⎜⎜⎜⎝
Pt(τ1) B

t(τ1)
...

...
Pt(τk) B

t(τk)
1t 0

⎞⎟⎟⎟⎠
(
w

d

)
=

⎛⎜⎜⎜⎝
0
...
0
n

⎞⎟⎟⎟⎠ .

Since the quadratic form in (6) is positive definite, it is equivalent to the following
linear system involving the Lagrange multipliers λ1, . . . , λk ∈ Rd and λk+1 ∈ R:

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∫
P0P

t
0

∫
P0B

t
0 P(τ1) . . . P(τk) 1∫

B0P
t
0

∫
B0B

t
0 B(τ1) . . . B(τk) 0

Pt(τ1) Bt(τ1) 0 . . . 0 0
...

...
...

. . .
...

...
Pt(τk) Nt(τk) 0 . . . 0 0
1 0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

w

d
λ1
...
λk
λk+1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
...
0
n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

In order to satisfy the interpolation constraints, the spline space has to be of
dimension n = k(r̃+1) ∈ N. The converse depends on a more intricate interplay
between the weights, the interpolation sites and the position of the knots.
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5 Examples

Figures 1 - 3 illustrate the Hermite interpolation methods for an equidistant
sampling of the cosine function on the interval [0, ξ].

p(t) := cos (t) ∈ R, p
(0/1)
k := p(0/1)(tk),

tk :=
k − 1

5
ξ, k = 1, . . . , 6,

m := 3, n := 7, 9, 12,

T :=

[
0, 0, 0, 0,

1

m− n
· ξ, . . . , m− n− 1

m− n
ξ, ξ, ξ, ξ

]
.

In addition, Figure 4 compares the approximation of an original gear profile
by an interpolating polynomial spline with that of a rational spline computed
by the method from equation (6). It can be seen that even based on a smaller
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Fig. 4. Comparison between a polynomial and a rational spline approximation of the
gear profile

(a): The interpolation error (b): The weight function

number of data points, the rational spline provides superior accuracy. This is
due to the fact that, as also shown in Figure 4, the computed weight function
differs significantly from the constant function.

6 Conclusion

The best results were achieved using the Least-Square-Approximation method,
for the test function as well as the original problem. This is no surprise since in
addition to the interpolation conditions an overall approximation is requested. As
a result of the better fit of the weights, the error of the function was reduced by an
order of magnitude of 102 compared to the polynomial case, hence automatically
adopting the weight vector is definitely worth the effort. The costs of the better
approximation, however, are longer computing time and less stable results: for
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higher values of n the linear system has a severe numerical rank defect, as can
be seen in the eigenvalue profile in Figure 3. This leads to ambiguities in the
weight vector as well as in the coefficients of the approximating function.

To overcome this problem, we rely on the fact that the best weight function is
tied to the approximated function and therefore should be mostly independent
of the number of interpolation points. Hence, to obtain a stable solution, we first
solve the problem for a relatively small number of interpolation points and use
this result to approximate the weight function. Then we add more interpolation
points with a fixed weight function to obtain a better approximation. A nice
side effect of this approach is that in the second phase we have to solve only
relatively simple linear problems.
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Abstract. High-quality rendering of B-spline surfaces is important for
a range of applications. Providing interactive rendering with guaranteed
quality gives the user not only visually pleasing images, but also trust-
worthy information about the model. In this paper we present a view-
dependent error estimate for parametric surfaces. This estimate forms
the basis of our surface rendering algorithm, which makes use of the
hardware tessellator functionality of GPUs.

We use the screen space distance between the tessellated surface and
the corresponding surface point as an error metric. This makes the algo-
rithm particularly useful when visualizing additional attributes attached
to the surface. An example of this is isogeometric analysis, in which
simulation results are visualized along with the surface.

1 Introduction

Smooth surfaces are used in settings ranging from the entertainment industry to
CAD applications. In the entertainment industry, the model’s sole purpose is to
create visually pleasing images. The CAD-related industry, on the other hand,
use visualization both to get an overview of models and to investigate their
geometric qualities, for example the smoothness of a car’s body. Most CAD
models are at some point also used in an analysis setting, e.g., stress analysis,
to investigate the model’s physical properties. It is therefore a great demand for
fast rendering methods that provide accurate, and visually pleasing results that
includes associated data such as textures and simulation results.

One way of computing a correct rendering of a surface is to find the first
intersection between the surface and rays originating from a virtual camera. This
is called ray-casting, which is computationally expensive. GPUs are designed to
rasterize triangles and rendering performance is often dominated by the number
of triangles in a scene. Therefore, the main challenge is to determine which
triangles to draw, and how to invoke their rendering the main challenge.

Single-pass rendering is the most common way to render triangles, because
each object is sent only once through the rendering pipeline.Multi-pass methods,
on the other hand, write partial results to a framebuffer (usually an off-screen
buffer) for use in a succeeding rendering pass. A GPU delivers its best performs
when it can render a large set of triangles in parallel. Multi-pass algorithms
therefore impose a performance penalty when a rendering pass must wait for the

M. Floater et al. (Eds.): MMCS 2012, LNCS 8177, pp. 238–247, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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previous the completion of a previous pass. A CAD model can be composed of
a large set of parts, each represented by a number of boundary surfaces. In such
settings, with hundreds or thousands of surfaces it may be difficult to implement
multi-pass algorithms without adding a large overhead due to pipeline stalls.

We propose a single-pass rendering method driven by the guarantee of pixel
accurate rendering. Obviously, this indicates a view-dependent tessellation, i.e.,
the surface tessellation depends on the location and orientation of the scenes
virtual camera. Our focus is an algorithm suitable for isogeometric models.

1.1 Related Work

Traditionally, algorithms could either provide error guarantees or be interactive.
Filip et al. [1] proposed to use bounds on the second derivatives to create a semi-
uniform tessellation of a C2 continuous surface. The main idea is to split the
surface into a set of patches, and find the tessellation levels independently for
each patch. In order to create a watertight tessellation without cracks, each
patch boundary has a separate tessellation level matching abutting patch edges.
Their implementation is CPU based, but their approach fits very well with the
OpenGL tessellator, and will be the basis for our work.

Cook et al. [2] propose to recursively split a surface until each triangle is
less than a pixel. Their tessellations will for most surfaces be much denser than
required. A fast CPU based algorithm for generating these tessellations was
presented by Fisher et al. [3]. Since the triangles is recomputed based on the
view position, they must be transmitted through the PCI-express bus each frame,
limiting the rendering speed.

If we scarify guaranteed accuracy, there are numerous methods for view-
dependent tessellation of smooth surfaces. Guthe et al. [4] proposed to use the
CPU for deciding the required tessellation level of a semi-uniform tessellation,
and use first generation shader technology to evaluate the surface. Hjelmervik
and Hagen [5] proposed a two-pass algorithm using the GPU both for determin-
ing tessellation level and the evaluation itself. It is based on early GPUs, and is
therefore not optimized for graphics hardware of today.

Lutterkort [6] developed an algorithm for computing piecewise linear enclosure
of polygonal surfaces, called slefes. Yeo et al. [7] developed a interactive render-
ing algorithm with guaranteed pixel accuracy based on these slefes for DX11
compatible hardware. Their algorithm use separate rendering passes for genera-
tion of slefe boxes (estimate of the surface’s deviation from linear), determining
tessellation level, and the tessellation itself.

1.2 Hardware Tessellator

Hardware tessellators as exposed by OpenGL 4 and DirectX 11 are used to create
semi-uniform tessellations. It lets us concentrate on error estimates, tessellation
levels and surface evaluation, without concern for generating the triangles and
managing their connectivity.
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Fig. 1. Example tessellation with interior and boundary tessellation levels. Note that
it generates triangulation with consistent connectivity.

The hardware tessellator allows for implementations in which the entire tessel-
lation is performed at the GPU, and the triangles are directly rasterized without
being transferred to off-chip memory. The tessellator acts on individual surface
patches, which in our case will be the same as the Bézier patches. Each patch is
tessellated individually, as illustrated in Figure 1.

The hardware tessellator adds two programmable shader stages to the exist-
ing OpenGL graphics pipeline that all triangles undergo. The first stage, the
tessellation control shader, controls the tessellation process by specifying the pa-
rameters for the sampling density for each patch. A set of triangles complying
with these criteria is then automatically created, and the tessellation evaluation
shader has the responsibility to compute the position of each new vertex, based
on its parameter value. To ensure that the triangles form a valid triangulation
without holes, the the control shader specifies the sampling density along each
boundary edge in addition to the parameter directions.

Note that all sampling parameters are set in the control shader, before any
triangle is created. Traditional algorithms based on iteratively refining the trian-
gles do therefore not fit with this setup. To fully take advantage of the hardware
tessellator, the triangles should never leave the chip, meaning the tessellation
will have to be redone each frame.

1.3 Contribution

Our research was performed independently of work by Yeo et al. [7] based on
slefes, but contains many of the same features. Both methods use the same error
metric to determine the required tessellation level, but estimate the error in dif-
ferent ways. Where Yeo et al. use slefes, where the theory is only fully developed
for polynomial surfaces, our algorithm can be used for any C2 continuous surface
with bounds on the second order derivatives. This also allows our approach to
be extended such that the lowest possible tessellation is less than one triangle
per Bézier patch.
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CAD-models often consist of a large number of objects, each described by their
boundary surfaces. Special surfaces such as cylinders and swept surfaces, which
are of different polynomial order in the parameter directions, play important
roles in CAD. However, when used in a simulation it is common to use the
same polynomial order in both parameter directions. Our algorithm allows for
more dense sampling in the parameter direction with the highest second order
derivative. Furthermore, in contrast to slefe based tessellation, all computations
are performed after camera transformation, and thus, the tessellation is therefore
ignorant to which space the object is modeled in.

As a starting point, we took the algorithm for semi-uniform tessellation de-
scribed in Filip et al. [1], and analyzed how the error estimate is affected by
projecting the surface to the screen. Their implementation, guarantees that the
tessellation is within the error tolerance at the uniformly tessellated interior of
each patch, and at the boundary curves separating the patches. However, the ring
of triangles connecting the patch boundary with its interior may not. Some of
our test cases included patches where one boundary curve was linear, and hence
sampled only at its endpoints. This leads to visual artifacts, which is remedied
in our implementation.

2 Algorithm

To use the tessellator we need a predicate which defines the tessellation level
without the need of actually sampling the surface. One of the simplest predicates
is to measure the size of the surface’s bounding box when it is projected to
the screen. Such a predicate would lead to overtessellation of flat surfaces or
undertessellation of the more complex parts. We therefore need a view-dependent
predicate taking into account the shape and parametrization of the surface.

The rasterization solves the ray-casting problem of finding the intersection
between a ray through each pixel center and the triangle. The texture coordinates
(or parameter value) at a pixel is therefore associated to its center. Since we
can use this parameter value to evaluate the surface and any additional data
(textures of simulation data), it will be pixel accurate if the surface evaluated
at the given parameter value belongs within the same pixel. We will use this
property to define our error metric as follows:

e(u, v) = ‖proj(S(u, v)− T (u, v))‖∞. (1)

Here S is the original surface, T is the tessellated version and proj is the pro-
jection from eye space to the screen. In this section we will ignore the projection
and focus on the approximation error of a linear interpolation of a C2 continuous
surface.

A well known upper bound for linear interpolation of a C2 continuous curve
g is

|I2g − g|∞ ≤
(
Δ2

8

)
max |g′′|, (2)
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(a) Original tessellation (b) Interior samples moved
closer to the left boundary

(c) Final tessellation

Fig. 2. Figure (a) shows a tessellation where the left boundary has only two sample
points. Figure (b) shows how to move the interior sample points closer to the left
boundary. Finally, in (c) an extra column of triangles is inserted.

in which I2g is a linear interpolation of g with sampling distance Δ. Thus, we
can choose the sampling distance to meet any given tolerance.

The interior of each patch is tessellated by triangles in which two of the edges
follow the parameter directions of the surface. Therefore, we we can estimate
the approximation error by

|I2f − f |∞ ≤ Δ2
u

8
max |fuu|+

ΔuΔv

4
max |fuv|+

Δ2
v

8
max |fvv|, (3)

where Δu and Δv are sampling distance in parameter direction u and v respec-
tively. Again, if we can find upper bounds of the second order derivatives we can
adjust the sampling distances to meet any given error tolerance. However, since
there are two unknowns and only one requirement, the solution is not unique.
The optimal solution is the one that has the lowest triangle count, whilst still
fulfilling the error tolerance. Filip et al. chose different sampling densities in each
parameter direction based on the estimates of the second order derivatives, while
You et al. decided to use the same sampling densities. We use a greedy iterative
process to determine the sampling distances.

In contrast to Filip et al., we experienced a breach of pixel accuracy for trian-
gles adjacent to the patch boundaries. Any adjustment to the sampling density
or position along the patch boundaries would create cracks in the tessellation,
because patch boundaries are shared by the neighboring patch. However, in the
interior of the patch, we may apply an transformation to the parameter values
of each sample point before evaluating the surface. We chose to define an affine
transformation that will narrow the boundary band as illustrated in Figure 2.
Each patch is sampled uniformly in the inner, resulting in a uniform tessellation.
The shapes of the boundary triangles are implementation specific, making it im-
possible to make a hard guarantee on the error in this area. We therefore assume
that each triangle has one edge along the boundary curve and one edge parallel
to the other parameter direction when computing the width of the boundary
band.

Moving the interior samples closer to an edge will increase the size of the
interior triangles, which may violate the pixel correctness. It may therefore be
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necessary to increase the number of interior triangles. Remember that the tes-
sellation levels and the affine transformation is computed based on information
of the second derivative, without the need of actually generating the triangles
to check their feasibility. Therefore, all decisions are made in the control shader.
The control shader therefore performs the following steps:

1. compute the sampling distance for each edge
2. compute the height for each boundary band
3. compute the interior sampling distance
4. use the computed sampling distances to set the tessellation levels and affine

transformation if necessary.

The hardware tessellator will create the required triangles and call the evaluation
shader for each generated vertex, which applies the affine transformation to all
interior points before evaluating the surface. Evaluation of B-spline surfaces in
a shader is straight-forward and explained in Guthe et al. [4].

3 Pixel Accurate Tessellation

In Section 2, we described a tessellation algorithm that generates a tessellation
with a guaranteed maximal distance from the original C2 continuous surface.
However, the error metric did not take into account the viewing distance or
view direction, leading to a static tessellation. In this section, we will study the
same error metric evaluated in screen space instead of model space, i.e., the error
in terms of pixels on the screen.

3.1 Projected Error

As a first step, we study what a perturbation of a point in eye space leads
to as a perturbation in screen space. Vertices in a 3D scene are represented
by four dimensional homogeneous coordinates, and the x, y and z components
are divided by the w component as a part of the fixed function perspective
division in GPUs. The homogeneous coordinates allows perspective projection
to be formulated as a matrix-vector multiplication. Here, we use we use the
OpenGL projection matrix, which can be written as⎡⎢⎢⎣

A 0 B 0
0 C D 0
0 0 E F
0 0 −1 0

⎤⎥⎥⎦
⎡⎢⎢⎣
xes
yes
zes
wes

⎤⎥⎥⎦ =

⎡⎢⎢⎣
xcs
ycs
zcs
wcs

⎤⎥⎥⎦ , (4)

where xes and xcs are vectors in eye space and clip space respectively, see
Shreiner et al. [8] for details. Let

x =

⎡⎢⎢⎣
x
y
z
w

⎤⎥⎥⎦ , and, x̂ =

⎡⎢⎢⎣
x̂
ŷ
ẑ
ŷ

⎤⎥⎥⎦ (5)
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be a point in eye space and its projection to the screen respectively. Then

ŷ = −Cy +Dz

z
, and its inverse, y = − ŷz +Dz

C
(6)

describes the relationship between the y component in eye space and its pro-
jected counterpart. Let ε be the perturbation of x and ε̂ be the corresponding
perturbation of of x̂. Then their relation can be written

y + εy
z + εz

= − ŷ + ε̂y +D

C
, (7)

which leads to

ε̂y = C
εzy − εyz

z(εz + z)
, (8)

which describes the projected perturbation given by position and perturbation
before projection. Assuming εz is neglectable in the term z(εz + z) we arrive at

|ε̂y| � C
(∣∣∣εzy

z2

∣∣∣+ ∣∣∣ εy
z

∣∣∣) . (9)

What remains is to use the estimates from Section 2 to express the error pro-
jected error by the bounding box of the surface and its second order derivatives.

Inserting (2) into (9) and solving for Δ, we arrive at

Δ �

√
8εy

C

/(
�g′′z ��y�
 z2! +

�g′′y �
 z!

)
(10)

as the expression for the maximal sample distance of a curve, given tolerances
εx and εy. Here,  ·! and �·� denotes the minimal and maximal absolute value
respectively. To restrict the error to be less than one pixel, εy and εx are set to
0.5/window width and 0.5/window height respectively.

For the curve case, we were able to derive an explicit formula for the tessella-
tion levels. For the surface case we must first choose a strategy for balancing the
tessellation levels in the two parameter directions. Clearly, the tessellation level
in the interior of the Bézier patch must be at least as dense as the sampling of
the boundary curves. We propose to use the most dense boundary tessellation
in each parameter direction as an initial guess, and iteratively refine the pa-
rameter direction that reduces the approximation error the most. The maximal
error given the tessellation level for each parameter direction can be estimated
by inserting (9) into (3),

8εx

A
≥ Δ2

u

(
�zuu��x�

 z2! +
�xuu�
 z!

)
+Δ2

v

(
�zvv��x�

 z2! +
�xvv�
 z!

)
+2ΔuΔv

(
�zuv��x�

 z2! +
�xuv�
 z!

)
.

For most cases the iteration terminates quickly and does not represent a bottle-
neck in the control shader.
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Fig. 3. Surface color illustrates how close the approximation error is to the given toler-
ance. Gray is used when the error is less than 10% of the tolerance, and blue indicates
that the error larger. The error does not exceed the given tolerance.

4 Results

The tessellations generated by this algorithm are expected to be without any
visual artifacts, as it provides pixel accurate rendering. What remains to be seen
is whether the objects get excessively tessellated, meaning that more triangles
than necessary are generated. It is also interesting to see which areas will have
the highest triangle density.

In our experience, the tolerance is only violated when the calculated tessella-
tion level is higher than the hardware limit of the GPU. To measure the quality
of the tessellation we study the maximal error at each patch. If the maximal
error is much less than the tolerance it indicates that the model is excessively
tessellated. Figure 3 is colored based on the error relative to the given tolerance.
Note that the error is largest along the boundary band, which is expected since
these triangles may be larger than the interior triangles. Due to the shape of
the boundary triangles the error estimate does not apply there, but experiments
show good results here as well.

As expected, the result is pixel accurate and any tessellation algorithm with
this property will produce indistinguishable images. The main objective of our
work is to provide fast, high-quality, reliable rendering, which may also be
achieved by relaxed the error tolerance beyond one pixel. The increased tol-
erance will improve the rendering speed, while keeping the assurance that the
result will be within the given tolerance of the real model. Coarse tessellations
near silhouette edges are easily detected. Several algorithms, including Dyken
et al. [9] target this problem directly, and refines near silhouette triangles. As
shown in Figure 4 no such special treatment is required here, as Bézier patches
near silhouette edges generate smaller triangles compared to other areas. The
triangles are also concentrated in high-curvature areas. Using a GeForce GTX
580 we are able to tessellate 7 million cubic Bézier patches per second, which is
less than Yeo et al. [7]. This is both due to our algorithm being more compute
intensive and due to lack of optimization of our code.
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Fig. 4. Color encoding of triangle sizes. Gray triangles have maximal edge length of
more than 5 pixels, yellow have 5-2.5, and green triangles less than 2.5 pixels.

5 Conclusion and Future Work

This work has been performed in parallel to the pixel accurate algorithm by Yeo
et al. [7] with an almost identical goal. Their work was published at the time
of writing this paper, making it natural to discuss the main differences which
come from different strategies for estimating the rendering error. We require a
one-pass algorithm to facilitate easy integration with large number of simple
surfaces, and our focus is on CAD models.

Single-pass algorithms such as ours avoid latency introduced by multi-pass
rendering, which is an advantage when rendering small surfaces. However, the
control shader must recompute the tessellation levels based on surface coeffi-
cients each frame making it potentially slower for large models due to repeated
computations. Also, patches sharing an edge will always choose compatible tes-
sellation levels, removing the need to store adjacency information for the model
to reach watertight tessellations.

The resulting tessellations from both approaches appear to be of similar qual-
ity and seems to have approximately the same triangle count for most examples,
but we have not yet performed a head-to-head comparison. CAD surfaces such
as swept surfaces and cylinder parts will take advantage of our approach where
the parameter directions does not use the same tessellation levels.

Bézier patches fully outside the view frustum are efficiently detected and the
tessellation level is set to zero in both algorithms. Small patches on the other
hand, will result in a minimum of two triangles, even if they are much smaller
than a pixel. For some applications it may therefore be better to treat more than
one Bézier patch in each tessellation patch. Our error estimate can be used in
this setting, since does not require a polynomial surface.
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Abstract. This paper presents new univariate linear non-uniform interpolatory
subdivision constructions that yield high smoothness, C3 and C4, and are based
on least-degree spline interpolants. This approach is motivated by evidence, partly
presented here, that constructions based on high-degree local interpolants fail to
yield satisfactory shape, especially for sparse, non-uniform samples. While this
improves on earlier schemes, a broad consideration of alternatives yields two
technically simpler constructions that result in comparable shape and smooth-
ness: careful pre-processing of sparse, non-uniform samples and interlaced fit-
ting with splines of increasing smoothness. We briefly compare these solutions to
recent non-linear interpolatory subdivision schemes.

1 Introduction

For non-uniformly spaced samples, uniform linear interpolatory curve subdivision al-
gorithms [DL02, Sab10] often results in dramatic overshoot and oscillation. Starting
with [War95], non-uniform constructions have been proposed such that new knots are
inserted at the midpoints of knot-intervals. Mid-point insertion yields locally uniform
knot spacings that meet at the original data points. The data points thereby become iso-
lated ‘extraordinary points’ where left and right knot intervals may differ; and extraor-
dinary point neighborhoods become the focus of the analysis. Recent examples of such
non-uniform constructions are the edge parameter subdivisions [BCR11b, BCR11a]
and C1, C2, C3 and C4 interpolatory curves [KP13b].

However, for higher smoothness, even these new non-uniform constructions exhibit
shape problems for non-uniform data such as shown in Fig. 2a, pointing to the classical
trade-off between smoothness, convexity and interpolation (cf. Fig. 10(c)). For exam-
ple Warren’s C2 6-point scheme [War95] as well as a C3 6-point scheme of [KP13b]
unexpectedly loose the convexity of the piecewise linear interpolant to the samples (see
Fig. 1c (top)); and a C4 10-point scheme visibly oscillates. By contrast the Catmull-
Rom-inspired construction CR2

3/256 ( see Fig. 1 for the meaning of super-and sub-
scripts) fares considerably better. We think these and many other examples indicate that
large support, resulting from high-degree interpolants, causes problems and not just be-
cause of the increased complexity of the rules. To wit, Warren’s scheme is based on
local polynomial interpolants of degree 5, the C3 6-point scheme uses interpolants of
degree 5 and 3 and the 10-point scheme polynomials of degree 7 – whereas the CR2

3/256

construction is based on local interpolants of degree 2.

M. Floater et al. (Eds.): MMCS 2012, LNCS 8177, pp. 248–264, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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(a) input polygon (b) 3 interpolants (c) part scaled by 10 in y

Fig. 1. Thumb tag data. The constructions use centripetal knot spacing [Lee89] since, for non-
uniform samples, centripetal is superior to chordal. (b) brown = 10-point scheme of [KP13b] with
w = 0.00098, dipping down in the center; black = Catmull-Rom C2 construction CR2

3/256 ( The
notation of [KP13b] exposes, in the superscript, continuity and possibly the degrees of local in-
terpolants and, in the subscript the setting of the free parameter w of the construction); red = C3

6-point scheme A3,5:3:3
0.0141 visually identical to A2,5:3

3/256
, i.e. Warren’s C2 6-point scheme[War95].

(c) The roofs of the T-shaped polygon of A2,5:3
3/256 (top) and CR2

3/256 (bottom) are displayed
with different offset for clarity and scaled by 10 in the y direction to emphasize the curvature
oscillation of A2,5:3

3/256.

(a) new interpolants (b) scaled by 10 in y

Fig. 2. Minimal degree d local interpolant constructions: blue = C3 6-point, d = 3; cyan = almost
C4 8-point, d = 4; green = C4 10-point, d = 4

While reproduction of polynomials of degree k is important for approximation, min-
imal degree of the interpolants seems consistently advantageous both for controlling
shape and for simplicity of downstream use. Hence, in this paper, we construct new
C3 and C4 non-uniform schemes using only the local interpolants of minimal degree
d = 3, 4. Indeed, the construction using d = 3 clearly improves on earlier schemes. But
d = 4 interpolants used in a new 8-point scheme of Hölder regularity > 3.96 as well
as in a C4 10-point scheme, provide only slight improvement and loose convexity for
highly non-uniform data. By contrast, as illustrated in Fig. 2, the curve generated by the
6-point scheme with d = 3 preserves the expected convexity.

This partial failure led us to explore a broader set of alternatives: initial refinement
of data with lower-order schemes followed by higher-order schemes to achieve the re-
quired smoothness; and, secondly, interlaced fitting with splines of increasing smooth-
ness. We also consider, in Section 4.2, locally-determined knot spacings that reduce th
enon-uniformity by spreading it out.

For ease of comparison, we illustrate all our experiments with curves derived from
the ‘thumb tag’ data Fig. 1(a). Many other data sets were tested with like results, e.g.
the ‘bread loaf’ data of Fig. 10(a).

Structure of the paper. Section 2 reviews the analysis of non-uniform interpolatory
midpoint-insertion subdivision schemes of [KP13b] adding improved techniques to
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establish Rouché’s Theorem for subdivision from low-degree interpolants. Section 3
presents new non-uniform C3 and C4 subdivision constructions based on least-degree
spline interpolants. Section 4 contrasts them with alternative constructions: careful pre-
processing of sparse, non-uniform samples and interlaced fitting with splines of increas-
ing smoothness. Section 4.4 and Section 4.5 develop remedies for fast changing discrete
curvature and Section 5 comments on the minimality of the interpolants.

2 Non-uniform Symmetric Interpolatory Midpoint Subdivision

Except for Section 2.1, this section closely follows the exposition of [KP13b]. Given a
sequence of increasing scalars {ti}, called knots, and a sequence of points {pi} in Rd,
the k + 1st point sequence is derived from the kth, starting with p0

i := pi, by

pk+1
2i := pk

i , pk+1
2i+1 :=

2n∑
j=1

eijp
k
i−n+j . (1)

That is, in every refinement step, we insert one new point between two old ones. The
2n coefficients eij depend on 2n − 2 scalars ωi−n+2, . . . , ωi+n−1 that in turn depend
on the knots via ωi :=

ti+1−ti
ti−ti−1

, the ratio of the adjacent knot intervals. In the following,

new knots are picked as midpoints of intervals tk+1
2i+1 := 1

2 (t
k
i + tki+1), t

k+1
2i := tki , a

choice that [DGS99] calls semi-regular. Therefore

ωk+1
2i := ωk

i , ωk+1
2i+1 := 1. (2)

All constructions will be invariant under the replacements
symmetry: eij → ei,2n+1−j ωi−n+2+s → (ωi+n−1−s)

−1,
translation: eij → ei+s,j ωi−n+2, . . . , ωi+n−1 → ωi−n+2+s, . . . , ωi+n−1+s.
As in [KP13b], we follow [War95] and first establish the smoothness in the uniform
case ωi = 1, then focus on the extraordinary points corresponding to an isolated ω �= 1.

For uniform knots ωi = 1 for all i and we may abbreviate the coefficients to ēj .
Since ē2n−i = ēi for the schemes in this paper, Table 1 displays only ēj , j = 1, . . . , n
of the relevant generalizations of the classical 4-point scheme. The uniform schemes
are analyzed using z-transforms, see [Dyn92, DL02, DFH04].

Table 1. Uniform symmetric Cn−1 2n-point interpolatory schemes with parameter w [Wei90,
KLY07]

2n ēj , j = 1, . . . , n Cn−1 range for w
6 w,−3w − 1

16
, 2w + 9

16
(0 . . 0.042]

8 −w, 5w + 3
256

,−9w − 25
256

, 5w + 75
128

; [0.0016 . . 0.0084]
10 w,−7w − 5

2048
, 20w + 49

2048
,−28w − 245

2048
, 14w + 1225

2048
[0.0005 . . 0.0016]

The now isolated non-uniform locations are analyzed by the following four steps of
which especially the last benefits from symbolic computation.
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1. Repeated knot insertion at the middle of intervals surrounds each knot where ω �= 1
by knots with ω = 1. The ω at this isolated extraordinary knot is denoted γ in
the following.

2. Uniform subdivision applies where ω = 1. Table 1 gives the w-ranges for Cm

continuity.
3. The (4n− 1)× (4n− 1) subdivision matrix L for the isolated extraordinary point

has the rows

L1 := (E0,0
2n−1); L4n−1 := (02n−1, E0);

L2i := (0n−1+i, 1,03n−1−i) , i = 1, . . . , 2n− 1, (3)

L2i+1 := (0i, Ei,0
2n−1−i) , i = 1, . . . , 2n− 2,

where 0s is a sequence of s zeros,

E(ωi−n+2, . . . ωi+n−1) := (ei1, . . . , ei,2n),

maps the 2n − 2 ratios ω to the 2n coefficients eij , and, with 1s a sequence of s
ones, Ek := E(12n−2−k, γ,1k−1), k = 1, . . . , 2n − 2, E0 := E(12n−2). For an
example see e.g. [War95, Sec.5].
Since the constructions are chosen to reproduce polynomials up to degree m, the
matrix L has eigenvalues 1, 12 , . . . ,

1
2m whose eigenfunctions are the polynomials

1, t, . . . , tm. For analysis, the characteristic polynomial χ(λ) of L is best factored
into

χ(λ) = const(λ− 1)(λ− 1

2
) · · · (λ− 1

2m
)$(λ)r(λ), (4)

where $(λ) is of the form (λ ± w)k that allows immediate checking whether its
roots are strictly dominated in absolute value by 1

2m . To establish smoothness, it
then suffices to show that the absolute values of the roots of r(λ) are dominated,
i.e. strictly less than 1

2m .
4. Note that the polynomial r(λ) also depends on the extraordinary ratio γ and the

parameter w. We pick a suitable candidate value w after numerical experiments.
To prove that the roots of the polynomial r(λ) are dominated by λ := 1

2m , we use
Rouché’s Theorem [Lan85] in the following way.

a. Let r̃(λ) be the polynomial obtained by replacing γ → 1
γ . By checking that

r̃(λ)γm̃ = r(λ) for some m̃, we may assume that γ ∈ (0, 1].
b. r(λ) :=

∑p
s=0 ds(γ)λ

s has coefficients ds(γ) that are themselves polynomials
(with Bézier coefficients dsi ) of degree k over [0, 1].

c. We check, separately for each i, by symbolic computation that

p−1∑
s=0

|dsi |λ̄s − dpi λ̄
p < 0, dpi > 0 . (5)

Let g(z) :=
∑p

s=0 ds(γ)z
s and h(z) := dp(γ)z

p for z on a circle of radius λ̄. Then
(5) implies the strict inequality in

|g(z)− h(z)| = |
p−1∑
s=0

dsz
s| ≤

p−1∑
s=0

|ds||zs| < |h(z)|.
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Rouché’s Theorem [Lan85] implies that g and h have the same number p of roots
in the λ̄-disk, i.e. by the degree of g all roots of g are confined to the λ̄-disk and
hence r(λ) is dominated by λ̄.

2.1 Details of Proving Root Domination

Compared to constructions based on higher-degree interpolants, our minimal degree
constructions have a smaller, easily checked factor $(λ) but a more complex factor r(λ).
Using Rouché’s Theorem, we show that the roots of the polynomial r(λ) are dominated
by λ̄ > λ := 1/2m, where λ̄ = 1/5 for the 6-point C3 scheme of Section 3.1, λ̄ = 1/7
for the 8-point almost C4 scheme of Section 3.2 and λ̄ = 1/8 for the 10-point C4

scheme of Section 3.3.
To show that the roots of r(λ) are dominated by λ, r(z) is considered as a complex

function over the annulus λ ≤ |z| ≤ λ̄, z := x+ iy. We define F1(x, y) := |r(z)|2 and
F2(x, y) := F1(−y, x) and parameterize the positive quarter-annulus by

ρ := (λ(1− u) + λ̄u)
(1− v2

1 + v2
,

2v

1 + v2

)
, (u, v) ∈ [0 . . 1]2.

We further define fi(u, v, γ) := Fi ◦ ρ(u, v), i = 1, 2. After scaling the denominator
by (1 + v2)d, fi becomes a polynomial (of high degree) in the variables (u, v, γ). It
is converted to trivariate Bézier form. By looking at the coefficients, we can verify (in
Section 3.1 3.2, 3.3) that these fi and hence the functions F1, F2 are strictly positive.
The proof for the other two quadrants not covered by fi then follows by substituting the
complex conjugate z → z̄ and observing that r(z) has real coefficients.

3 Highly Smooth Non-uniform Interpolatory Subdivision

This section presents three constructions that yield respectively C3, almost C4 and C4

curves. Denoting by fki the polynomial of degree k that interpolates, for s = 0, . . . , k,
the points pi−κ+s at the values ti−κ+s, κ :=  k

2 !, we define the localized interpolant
to be

f̆ki,j(u) := fkj ((1 − u)ti + uti+1), u ∈ [0 . . 1]. (6)

3.1 C3 6-point Scheme from Cubic Interpolants

Construction of new points p̃2i+1

1. The interpolating curves f̆3i,i−1, f̆3i,i and f̆3i,i+1 of degree 3 are expressed in Bézier
form of degree 5 with coefficients bl

k, bm
k , br

k, k = 0, . . . , 5.
2. The Bézier coefficients bk of a degree 5 curve g are defined as

bk :=
bl
k + bm

k

2
, k = 0, 1, 2; bk :=

br
k + bm

k

2
, k = 3, 4, 5.

3. Set

p̃2i+1 :=ω̃g(
1

2
) + (1− ω̃)(

1

12
(b0 + b5) +

5

12
(b2 + b3)) ,

ω̃ :=16− 1152w, w :=
5

384
≈ 0.01302.
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Analysis. The analysis via z-transforms confirms that the construction for uniform
knots is C3. Since $(λ) = (λ − w)2, we only needed to analyze the degree 5 poly-
nomial r(λ) according to Section 2.1 to confirm C3 continuity. All Bézier coefficients
of f2 are strictly positive. Proving strict positivity of f1 is only possible after subdivid-
ing the domain [0 . . 1]3 in the u- and γ-directions as shown in Fig. 3: The restriction of
f1 to each of the subdomains has strictly positive Bézier coefficients.

0 u = 11
16

1
8

1
4

0

γ = 1

1
16

1
8

1
4

7
32

15
64

Fig. 3. Subdivision of the (u, γ) coordinates of f1 to prove strict positivity and hence C3 conti-
nuity of the new 6-point scheme

Comparison The global shape improvement over the C3 schemes from [KP13b] can
be observed in Fig. 2.

3.2 An almost C4 8-point Scheme

Construction of new point p̃2i+1

1. We set pl := f4i−1(eti−1 + (1 − e)ti), pr := f4i+2((1 − e)ti+1 + eti+2).
2. By f l and fr we denote degree 4 polynomials that interpolate respectively

f l(ti−1) = pi−1, f
l(eti−1 + (1− e)ti) = pl, f l(ti) = pi,

f l(ti+1) = pi+1, f
l(ti+2) = pi+2,

fr(ti−1) = pi−1, f
r(ti) = pi, f

r(ti+1) = pi+1,

fr((1− e)ti+1 + eti+2) = pr, fr(ti+2) = pi+2.

3. Set

p̃2i+1 :=ω̃
1

2
(f4i + f4i+1)(

ti + ti+1

2
) + (1 − ω̃)

1

2
(f l + fr)(

ti + ti+1

2
), (7)

ω̃ :=
1

3(2− e)
(6− 3e− 256we− 512w).
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Analysis. For a uniform knot sequence, e cancels out. For the choice w := 0.0038, the
analysis via z-transforms confirms that the construction for uniform knots isC3. Careful
numerical treatment shows that Hölder regularity exceeds 3.96 and that a nearby value
of w yields an upper bound of 4.04 [Hor12]. That is, the analysis neither confirms C4

continuity nor does it rule out C4 continuity.
Analysis of the non-uniform case yields $(λ) = (λ+w)2 and r(λ) of degree 8. The

analysis of Section 2.1 shows that this scheme can be C4 for e := 1
4 and w := 0.0038,

if the uniform scheme is C4. Specifically, all Bézier coefficients are strictly positive for
f2 and the restrictions of the u-range of f1 to subintervals (0, 1

32 ,
1
16 ,

1
8 ,

1
4 ,

1
2 , 1) yields

strictly positive Bézier coefficients, hence also positive f1.

3.3 C4 10-point Scheme from Quartic Interpolants

We use the 8-point scheme of Section 3.2 for this construction.

Construction of new point p̃2i+1

1. We set pl := f4i−2(eti−3 + (1 − e)ti−2), pr := f4i+3((1 − e)ti+3 + eti+4), where
e := 5−2048w

5+6144w .
2. We set ẽ := 1

2 , w̃ := 2w + 5
2048 ,

3. The point p̃2i+1 is then defined by the 8-point scheme of Section 3.2 with parameters
ẽ and w̃ and auxiliary points and knots

pl pi−2 pi−1 pi pi+1 pi+2 pi+3 pr

eti−3 + (1 − e)ti−2 ti−2 ti−1 ti ti+1 ti+2 ti+3 (1− e)ti+3 + eti+4

Analysis The standard analysis of Section 2 yields $(λ) = (λ−w)2 and r(λ) of degree
12. For our choice of w = 0.0014, the analysis described in Section 2.1 yields that all
Bézier coefficients are strictly positive and hence fi > 0.

Comparison While the new 10-point construction improves the global shape compared
to the 10-point scheme in Fig. 1, the improvement is not impressive and the global
shape is worse than that of the almost C4 8-point scheme that is also based on quartic
interpolants but has smaller support.

4 Alternative Approaches to Improve Quality

Given the lack of decisive improvement for C4 continuity, we explored a broader set of
alternatives to deal with highly non-uniform data.

4.1 C2 6-point Preparation

The simple C2 6-point interpolatory scheme CR2
w of [KP13b] consistently exhibits a

good global shape with the choice w = 3/256 yielding a better curvature distribution
than another natural choice w = 1/192, see Fig. 4b,c. Wide support and degree in-
terpolants that exhibit poor global shape for highly non-uniform samples benefit from
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Fig. 4. Curvature plots. Visually all curves are similar to CR2
3/256 shown as black curve in

Fig. 1b. (a) C2 Catmull-Rom spline [KP13b] from which are derived (b) CR2
1/192 and (c)

CR2
3/256. (c) has better curvature distribution and is used for preparation. (d) one step of CR2

3/256

followed by A2,5:3
3/256 thereafter.
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w = 0.0038

Fig. 5. Curvature of C3 subdivision curves after preparation with CR2
3/256

applying a single initial step of CR2
3/256. After this 6-point preparation, the curves

generated by the schemes improve both in global shape and in curvature distribution,
to a degree usually observed only for uniformly distributed data. For example, 6-point
preparation of the inferior 10-point scheme of [KP13b] in Fig. 6a demonstrates that a
curvature distribution can be achieved, as good as for the new 10-point scheme Fig. 6b.
The 6-point preparation also dramatically improves the red curve in Fig. 1c to a curve
visually identical to CR2

3/256 but with better curvature distribution. We note that re-
peated pre-processing leaves the global shape visually unchanged but appears to harm
the curvature distribution (Fig. 6c,d).

4.2 Equalizing Knots Disappoint

By inserting the knots to make the spacing more uniform, we hoped to maintain cur-
vature quality while switching from complicated non-uniform rules to simple uniform
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Fig. 6. Curvature plots of C4 10-point subdivision curves after CR2
3/256 preparation: (a) 10-

point, w = 0.00098 from [KP13b] after one step of CR2
3/256; (b) one (c) two (d) three steps

followed by new 10-point scheme.
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Fig. 7. Curvature plots. (a) new 10-point scheme after three steps of CR2
1/192 to equalize knots;

(b) Three steps of equalized sampling othe C2 spline cr21 of [KP13b]. (c) uniform 10-point
scheme (w = 0.0014) after 4 steps of equalizing sampling of C2 spline.

ones. We applied up to three steps of the adaptive CR2
3/256 construction of [KP13b] to

be able to define new points with equalizing knots according to [SD05]:

tk+1
2i+1 := (1− t̄)tki + t̄tki+1, t̄ :=

√
tki+1 − tki−1√

tki+1 − tki−1 +
√
tki+2 − tki

. (8)

However Fig. 7a illustrates that equalizing, followed by the new 10-point scheme, only
harms the curvature distribution shown in Fig. 4c. (A referee has suggested that this
follows from the lack of curvature continuity of the curves generated in [SD05], as
recently shown in [FBCR1x]).

Several equalizing upsampling steps of a quartic C2 spline (see Fig. 4a) shows no
improvement in Fig. 7b despite increased effort. Subsequent uniform 10-point subdivi-
sion when the knot interval ratios are close to 2 clearly yields no progress; see Fig. 7c.
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Fig. 8. (top) Curvature plots (visually the splines are hard to distinguish). (bottom) magnified
vicinity of curvature distribution marked by the box in the respective top figure. Note, (a) is the
same as Fig. 4(a). (b): C2 spline (a) smoothed to C3; (c): C3 spline (b) smoothed to C4; (d): C4

spline (c) smoothed to C5.

4.3 Subdivision Tracking Repeated-Smoothing-Interpolating Splines

[KP13b] introduced the idea of interlaced smoothing of interpolatory splines. Initially
splines of low continuity and degree determine the global shape. Then the degree of
these splines is raised and the additional degrees of freedom used to make the spline
smoother, while still closely conforming to the initial shape. For example, we start with
C1 Catmull-Rom splines and express them as splines of degree 4. Then we smooth the
spline, modifying the C1 constraint and enforcing at the same time a new C2 constraint
to arrive atC2 quartic splines. In a next step theseC2 quartic splines are raised to degree
6 followed by enforcing C2 and C3 constraints.

Interlacing degree-raising with smoothing is important for quality. Compared to im-
mediately setting the degree and enforcing smoothness, interlacing yields better curva-
ture distribution as demonstrated in [KP13b]; see Fig. 8, 9. New higher-order smoothing
formulas for Fig. 8c,d are given in the Appendix. The progression of Fig. 8 typifies the
beneficial effect of the smoothing process.

We can disguise the pure spline construction as a subdivision scheme by uniformly
upsampling their Bézier segments as detailed in the Appendix Section 6.2, labelling
each segment and inserting a new point at the middle of the interval. Spline construction
plus upsampling amortizes over repeated subdivision steps so that after a few steps the
approach is as efficient as simple uniform subdivision with higher continuities.
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Fig. 9. Curvature plots. (a): C2 spline from Fig. 8(a) smoothed to C4; (b): C3 spline from
Fig. 8(b) smoothed to C5; (c): magnified part of (b)

(a) 4pt, 4pt circle preserving (b) zoom of 4pt scheme (c) simple C1

spline

Fig. 10. Interpolating C1 curves. (a): red = 4-point scheme [DLG88], black = geometric (non-
linear) circle preserving scheme from [DH12]; (b) vertical scaling of [DLG88] (also [DH12,
SD05] visibly oscillates in (a)). (c) convex C1 spline with collapsed control segment to deal with
the classical trade-off between smoothness, convexity and interpolation, already present in the
functional data xi = i, yi = |i|, i ∈ −2, . . . , 2.

4.4 Relaxed Interpolation

One of the motivations of geometric (non-linear) subdivision is reproduction of basic
shapes, such as the circle. While this is achieved in pieces, the transition between pieces
of different shape often suffers (Fig. 10a, 11a).

An alternative is relaxed interpolation [ADS10]. Relaxed interpolation is akin to
quasi-interpolation and generally, compared to strict interpolation, improves the shape
for mildly changing data. However, as the oscillation in Fig. 11a illustrates, even relax-
ation does not cope well with rapidly changing discrete curvature. For denser samples,
the reproduction property of geometric subdivision improves the shape but transitions
remain a challenge (see Fig. 11d).

4.5 Curvature-Sensitive Interpolation

Not all data admit interpolation by smooth, convex curves, especially where local dis-
crete curvature changes rapidly, see Fig. 10c. For the specific case, we can modify C1

spline interpolation to preserve interpolation and convexity, the natural requirements for
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Fig. 11. Relaxed interpolation. (a,d) Non-linear subdivision curves: black = circle preserving
[SD05], red = relaxed circle preserving [Sab10]. (b,e) blue = convex C2 cubic, relaxed curvature-
sensitive spline [KP13a], (b) green = cubic C2 B-spline;

fair curves. We then have to give up on geometric smoothness, for example by collaps-
ing a control segment. More generally, quasi-interpolation with splines does not fare
well unless it is made ‘curvature-sensitive’ [KP13a] as shown in Fig. 11b. We think
that, without taking into account discrete local curvature of the input data, any curve
construction, whether subdivision or splines, can and will oscillate. Since curvature-
sensitive splines switch depending on local discrete curvature, we do not present a sub-
division analog. Such an analogue is surely difficult to analyze, especially since rigorous
proofs of smoothness of simpler non-linear, geometric subdivision are still a challenge.
(For splines we have at least smoothness by construction.) We note that curvature-
sensitive splines can be modified to reproduce a circle [KP12] as illustrated in Fig. 11e
and that while cubic C2 B-splines are indeed of high quality, quasi-interpolating (re-
laxed) curvature-sensitive splines are closer to the input data, see Fig. 11b.

5 Least Degree

In our title and later on, we refer to interpolants of ‘minimal degree’ and give a rationale
for seeking low degree. Indeed, our schemes use the natural midpoint insertion that gen-
erates piecewise uniformly-spaced knot subsequences and, according to [Dyn00], Ck

uniform interpolating schemes have to reproduce all polynomials of degree k. Conse-
quently we used interpolants of degree at least k for our Ck constructions.
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ṗ0 ṗ1
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Fig. 12. Local linear interpolation yielding the auxiliary points for the 6-point scheme

A more pedantic but precise naming is constructive interpolants of minimal degree
since, somewhat surprisingly, the interpolating schemes of high continuity can be ob-
tained using only linear interpolants! Specifically we can build from linear interpolants
Warren’s C2 6-point scheme (HERE originally local interpolating degree 5), our new
C3 6-point scheme (degree 3) and the almost C4 8-point (degree 4). We conjecture that
such formulas can also be found for the new 10-point scheme etc. But we rush to point
out that, to find such linear-interpolation-based formulas, we first constructed a good
scheme. To find good schemes from linear interpolants does not seem promising.

Formulas for symmetric 2n-point schemes for linear interpolants (hence only half
the formulas are needed) have the following construction (cf. Fig. 12). For a fixed i, we
set

ṗs := f1i−n+1+s(
1

2
(ti + ti+1)), s = 0, . . . , 2n− 2 (9)

and denote ω̇s := ωi−n+1+s, s = 1, . . . , 2n − 2. Then the new point p̃2i+1 can be
expressed via the following points ṗs

p̃2i+1 :=

2n−2∑
s=0

αsṗswith symmetry ω̇s → (ω̇2n−1−s)
−1 ⇒ αr → α2n−2−r. (10)

where for the uniform
4-point ∗ α0 := 2w.
6-point α0 := − 2

3w, α1 := 8
3w + 1

8 .
8-point α0 := 2

5w, α1 := − 12
5 w − 1

128 , α2 := 6w + 5
32 .

10-point α0 := − 2
7w, α1 := 16

7 w + 1
1024 , α2 := −8w − 7

512 , α3 := 16w + 175
1024 .

(∗linear interpolating functions are consistent with C1).
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As an example of a non-uniform scheme, for CR2
w, the formulas are

α4 :=− 8w

(1 + ω̇3)(1 + ω̇4)(1 + 2ω̇3)
,

α3 :=
(1 + ω̇2)(1 + 2ω̇3)(1 + ω̇4) + 32w(2 + ω̇2 + 2ω̇3 + ω̇4 + 2ω̇3ω̇4

4(1 + ω̇2)(1 + ω̇3)(1 + ω̇4)(1 + 2ω̇3)
.

6 Conclusions

While uniform schemes can be constructed algebraically and analyzed with z-transforms
(see for example [KLY07]), it is difficult to see a similar calculus for non-uniform
schemes. And with a rigorous prediction of shape and curvature not even available for
linear subdivision, it is not surprising that the more complicated non-linear setting does
not provide proofs. Hence we shared observations and corresponding recipes.

Starting from C3, interpolatory non-uniform subdivision rules are not only quite
complex, but the shape is unsatisfactory both for highly non-uniform samples and, as
for all curve constructions, for strong change in discrete curvature. While careful min-
imal interpolant-based constructions yield some progress they are still not satisfactory.
An initial step of the simple 6-point scheme CR2

3/256, based on degree 2 interpolants,
addresses non-uniform samples well. And strong change in discrete curvature can be
handled by relaxing interpolatory requirements and possibly adding curvature-sensitive
averaging.

Acknowledgments. The work was supported in part by NSF Grant CCF-1117695. We
thank the referees. One referee pointed out an alternative construction for interpolants
[BCR13] that appeared after our submission.
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Appendix

6.1 Interlaced Spline Smoothing

Since formulas for C1, C2 and C3 constructions appeared in [KP13b, Section 2], we
list here only formulas for smoothness higher than C3. Denote the Bézier control points
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of two consecutive curve segments of degree m, connected with geometric continuity
parameter ω, by b̃0, . . . , b̃m, respectively b0, . . . ,bm, b̃m = b0. Each step modifies
the Ck−1 constraint and enforces a new Ck constraint.

Smoothing C2 → C4 The curves are assumed C2 connected. We set (redefine)

b3 :=a0b̃m−4 + a1b̃m−2 + a2b0 + a3b2 + a4b4 ,

bm−3 :=ã0b̃m−4 + ã1b̃m−2 + ã2b0 + ã3b2 + ã4b4 , (11)

a0 := − ω4

4(1 + ω)
, a1 :=

1

2
ω2(1 + ω) , a2 := −1

4
(1 + ω)3 ,

a3 :=1 + ω , a4 :=
1

4(1 + ω)
;

and ãk(ω) := a4−k(
1
β ), k = 0, . . . , 4.

Smoothing C3 → C5 The curves are assumed C3 connected. We set (redefine)

b4 :=a0b̃m−5 + a1b̃m−3 + a2b̃m−2 + a3b2 + a4b3 + a5b5 ,

b̃m−4 :=ã0b̃m−5 + ã1b̃m−3 + ã2b̃m−2 + ã3b2 + ã4b3 + ã5b5 , (12)

a0 :=
ω5

5(1 + ω)
, a1 := −3

5
ω3(1 + ω) , a2 :=

2

5
ω2(1 + ω)2 ,

a3 :=− 3

5
(1 + ω)2 , a4 :=

7

5
(1 + ω) , a5 :=

1

5(1 + ω)
;

and ãk(ω) := a5−k(
1
β ), k = 0, . . . , 5.

6.2 Interpolatory Subdivision Replicating an Underlying Spline

Let fi be pieces of the spline, of any continuity ≥ 0, in Bézier form of degreem, defined
over [0 . . 1].

– The spline is sampled at the points fr(
j
m ), j = 0, . . . ,m, j = 0, . . . ,m − 1,

(fr−1(
m
m )= fr( 0

m )). To the segment fr(
j
m ), fr(

j+1
m ) the label j is assigned. Sampled

points are denoted by pi and the knot spacing ti is uniform.
– The new point with label s, corresponding to the segment (pi,pi+1), is the value

at ti+ti+1

2 of the polynomial interpolant of degree m to the points pi−s+j , j =
0, . . . ,m. The interpolant coincides with the initial fr of this segment defined over
interval [ti−s . . ti−s+m]. Hence insertion rules indeed depend only on label s and
are easily pre-calculated.

– New subsegments are labeled s.
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Fig. 13. Labelling the upsampled spline (case m = 4)

Pre-calculation of insertion rules We take Lagrange polynomial of degree m interpo-
lating at i the points pi, i = 0, . . . ,m, and evaluate it at s+ 1

2 . The coefficients for pi

form a mask of a new point corresponding to label s. Due to symmetry, only half the
entries, s = 0, . . . , m2 − 1, are displayed and the entries must be divided by 2D

m :=4 : D = 7

s :=0 (35, 140,−70, 28,−5);

s :=1 (−5, 60, 90,−20, 3).

m :=6 : D = 10

s :=0 (231, 1386,−1155,−924,−495, 154,−21);

s :=1 (−21, 378, 945,−420, 189,−54, 7);

s :=2 (7,−70, 525, 700,−175, 42,−5) .

m :=8 : D = 15

s :=0 (6435, 51480,−60060, 72072,−64350, 40040,−16380, 3960,−429);

s :=1 (−429, 10296, 36036,−24024, 18018,−10296, 4004,−936, 99);

s :=2 (99,−1320, 13860, 27720,−11550, 5544,−1980, 440,−45);

s :=3 (−45, 504,−2940, 17640, 22050,−5880, 1764,−360, 35) .
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Abstract. Natural looking human motion are difficult to create and to
manipulate because of the high dimensionality of motion data. In the
last years, large collections of motion capture data are used to increase
the realism in character animation. In order to simplify the generation
of motion, we present a mathematical method to create variations in
motion data. Given a few samples of motion data of a particular ac-
tivity, our framework generates a high dimensional continuous motion
space. Therewith our motion synthesis framework is able to synthesize
motion by varying boundary conditions. Furthermore, we investigate the
different properties of spline functions and Fourier series and their suit-
ability for the description of complex human motion. We have derived an
optimization heuristic, which is used to automatically generate the ini-
tial motion space. We have evaluated our system by comparison against
ground-truth motion data and alternative methods.

1 Introduction

Digital human models for modelling and simulating human-like motion are used
in a wide variety of different applications, including humanoid robotics, biome-
chanics, virtual prototyping, and character animation. Beside these classical ap-
plications digital humans are often used for product and process design within a
digital production setting. Here the motion of the human model is used to analyse
load handling, field of view and reachability tasks. The results of there ergonomic
analyses can be used to optimize the motion sequence and the workspace in order
to minimize exhausting and hazardous situations. Common digital human mod-
els used within the digital factory are RAMSIS and HumanBuilder, for example.
A survey of digital humans and their application can be found in [15]. They
are either integrated modules for use within CAx systems or standalone prod-
ucts which expose several import/export interfaces to communicate with CAx
systems. In order to generate motion sequences, they use forward or inverse
kinematics. This means these systems basically rely on keyframing methods.
Keyframing has the advantage, that it provides the user with absolute control
over the positioning process. However, it is a notoriously time consuming task
to synthesize complex movement, such as pick up a box or hammering a nail.
The main reason is that a typical articulated human model usually has at least
90 degrees of freedom. The animator must then painstakingly animate each of

M. Floater et al. (Eds.): MMCS 2012, LNCS 8177, pp. 265–282, 2014.
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these degrees of freedom, one at a time. In order to speed up the motion gener-
ation, the user can define macros to store frequently repeated motion sequences
within a motion database. There are several studies that examine the practical
usability of these human models. Many of these studies, such as Spanner-Ulmer
et al. [16], show that there is an increased demand for better and faster motion
adjustment. In order to generate reliable motion sequences, most of the systems
mentioned above are able to use motion capture data as input motion. Here the
motion of a real life person is captured using a tracking device. However these
methods are limited to playback of existing motion sequences.

Fig. 1. Overview of our motion-processing framework

The goal of our framework is to provide a motion synthesis database, which
generates biomechanical and physically correct movement. Therefore, we have
to fulfil two competing goals: on one hand, we would like to have an adaptable
motion which covers a whole range of possible activities. On the other hand,
the used storage space should be as small as possible, in order to handle large
system which is able to generate all kinds of motions. Figure 1 gives an overview
of the proposed framework.

In our current experiments we rely completely on motion capture data as
input to our system. However, it is also possible to use sequences of interpolated
keyframes as starting point.

In the reminder of this paper, Section 2 places our work in the context of
the recent literature. Section 3 gives an overview of our framework. Section 4
describes the mathematical definition of motion spaces as well as the developed
algorithms. Section 5 presents the experimental results, while conclusions as well
as further research directions are outlined in section 6.

2 Related Work

In computer animation, data-driven motion synthesis is an important technique
to generate realistic motions from recorded motion capture data. Due to the
frequent use of motion capture data, efficient editing tools of such data become
more and more important. There have been an abundance of research results
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addressing the problem of developing motion editing tools to modify motion
data [7].

The framework developed in this paper is similar in spirit to the work of Rose
et al. [18]. The authors also separate motion data into activities, that they call
verbs. A verb describes the base motion of the activity. In order to create certain
styles, i.e. for the verb ”walking” one wants to create the style ”sneaky walking”,
they use adverbs to encode this. The adverbs are b-splines which describe the
difference between the base motion (”walking”) and the style (”sneaky”). In
order to create a series of motion styles, they need to interpolate between the
different styles and therefore need to apply b-spline interpolation.

In contrast to their work, we use splines and Fourier series to approximate the
given sets of motion data. The motion data is annotated with certain parameters
by the user, similar to the adverbs of Rose et al., but there is no need to identify
a base motion of a certain activity.

Splines are extensively studied in computer sciences and engineering. They are
also used in statistics to approximate scattered data [5]. However, most of these
methods use fixed knot spline fitting and thus their use is very limited. If the
knots are considered free, the approximation can be improved significantly. The
free knot spline approximations are non-linear optimization algorithms where the
spline coefficients and the knot positions must be determined. There are basically
two different approaches to solve the problem. The first class of algorithms tries
to solve the whole problem in one step, while the second class separates the
problem in a linear least square optimization with fixed knots and a non-linear
optimization to determine the knot position.

A member of the first class is the method developed by Holt and Fletcher
[8]. They developed a special algorithm for least square problems with specially
structured constraints and applied it to the problem of spline approximation with
free knots. A serious problem of these approaches is the existence of a potentially
high number of local extrema in the solution space of the approximation function.
Jupp [11] calls this problem the lethargy-problem. With a logarithmic change of
variables he transforms the constraint problem into an unconstrained one. He
shows that this transformation in a certain sense reduces the difficulties related
with the original formulation. When solving the resulting unconstrained non-
linear least squares problem, he makes special use of its structure and separates
the linear and non-linear aspects. Dierckx [6] developed an algorithm, where
the constraints for the knot positions are treated via a certain barrier term
in the objective function. The unconstrained problem obtained in this way is
solved by the Fletcher/Reeves conjugate gradient method. Recently, Suchomski
[22] proposed a new method of optimal variable-knot spline interpolation in
the discrete L2-norm. He explicitly enforces the Schoenberg-Whitney regularity
condition, equation (14), which leads to additional constraints for the knots.
With a logarithmic change of variables similar to that of Jupp, he transforms
the constrained non-linear least squares problem into an unconstrained one.

De Boor and Rice [4] also consider the case of L2-approximation by cubic
splines with variable knots. Thereby they do not allow the knots to coalesce and
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Fig. 2. The structure of a virtual human skeleton (left) and the corresponding hierar-
chical tree structure (right)

they use a certain ”coordinate relaxation” where each knot is varied cyclically
so as to minimize the L2-error as a function of this knot alone. In the proposed
framework we adopt this method and describe a possible generalization to multi-
variate spline approximation. Furthermore, we simplify the termination criterion
described by de Boor and Rice [4].

Fourier series are used in a wide range of mathematical and physical appli-
cations. They are also used to process motion data. Bruderlin and Williams [1]
applied a number of different signal processing techniques to motion data to
allow editing. Unuma et al. [23] used Fourier principle to interpolate and extrap-
olate motion data in the frequency domain. The method described in this paper
uses them to approximate motion data.

3 Motion Spaces

The configuration of a virtual human model is specified by its joint angles and the
position of the root segment. The position of the root is given by a 3-dimensional
vector and the joint rotations are given by Euler angles. An example of a skeleton
structure is shown in figure 2. Motion data consists of a set of motion signals.
Those signals are sampled at a sequence of discrete time steps with a uniform
interval to form a motion sequence. The sampled values of the signals determine
the configuration of an articulated figure at a time-step, which is called a pose.

A motion sequence of length m is given as a n×m-matrix

M =

⎛⎜⎝ p1,1 · · · p1,m
...

. . .
...

pn,1 · · · pn,m

⎞⎟⎠ . (1)

Each column pj = (p1,j , . . . , pn,j)
T (for 1 ≤ j ≤ m) of M describes a pose of

the virtual human, where n are the degrees of freedom of the skeleton. In the
following, we consider each degree of freedom, i.e. the rows of M, individually.
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A row is denoted by an m-dimensional vector ϕi = (pi,1, . . . , pi,m). A motion
sequence is thus given by M = (ϕ1, . . . , ϕn)

T .
In our case we have k motion sequences of a certain activity, for example

motion sequences of pick up a box at different heights. In the first step, the
user has to define the height parameter {h1, . . . , hk} = Dh (where |Dh| = k and
h1 < . . . < hk) for each motion sequence.

Mhj =

⎛⎜⎜⎝
p
hj

1,1 · · · phj

1,m
...

. . .
...

p
hj

n,1 · · · phj
n,m

⎞⎟⎟⎠ =

⎛⎜⎝ϕ
hj

1
...

ϕ
hj
n

⎞⎟⎠ ,
1 ≤ j ≤ |Dh|.
hi ∈ Dh

(2)

We assume, that each motion sequence has the same length m, that is the same
number of poses.

In order to describe motion sequences of an arbitrary activity we associate r
parameters:

{w1
1 , . . . , w

1
n1

} = Dw1 where |Dw1 | = n1 and w1
1 < . . . < w1

n1

...
{wr

1, . . . , w
r
nr

} = Dwr where |Dwr | = nr and wr
1 < . . . < wr

nr

(3)

with each motion sequence:

Mw1
i1

,...,wr
ir

=

⎛⎜⎜⎝
ϕ
w1

i1
,...,wr

ir

1
...

ϕ
w1

i1
,...,wr

ir
n

⎞⎟⎟⎠ ,
w1

i1 ∈ Dw1

...
wr

ir
∈ Dwr .

(4)

The discrete parameters are either defined by the user or given as annotation
of the captured motion. Each of these motion sequences of a certain activity is
an element of a discrete motion space. The discrete motion space is defined as a
structure, where the motion signals of each degree of freedom are arranged in a
separate set:

ΦDw1 ,...,Dwr =
{
Φ
Dw1 ,...,Dwr

1 , . . . , Φ
Dw1 ,...,Dwr

n

}
(5)

where

Φ
Dw1 ,...,Dwr

i =

{
ϕ
w1

i1
,...,wr

ir

i

∣∣w1
i1 ∈ Dw1 ∧ . . . ∧ wr

ir ∈ Dwr

}
(6)

for i = 1, . . . , n.

4 Calculation of Motion Spaces

What we intend to do is to calculate a continuous motion space, where the user
can select any parameter within the ranges of the discrete motion space. To achive
this, we approximate the given discrete motion space using regression analysis.
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The motion signal of an arbitrary activity within a continuous motion space
is given as a r + 1 dimensional function:

ϕi(v1, . . . , vr, t) (7)

where 1 ≤ i ≤ n and 1 ≤ t ≤ m is the time step. The parameters vj (for
1 ≤ j ≤ r) of the function ϕi(·) correspond to the parameters wj ∈ Dwj defined
within the discrete motion space.

In order to calculate a pose of the virtual human at a discrete time step t one
has to evaluate all motion signals of the continuous motion space:

Θ(v1, . . . , vr, t) =

⎛⎜⎝ϕ1(v1, . . . , vr, t)
...

ϕn(v1, . . . , vr, t)

⎞⎟⎠ , where vj ∈ [wj
1, w

j
ni
] ⊂ IR. (8)

4.1 Regression

Regression analysis is a statistical technique for modelling and analysing the
relationship between several variables. The goal is to model the dependence
of a response variable y on one or more predictor variables x1, . . . , xl−1 with
given realizations N = (xk1 , . . . , x

k
l−1, yk)

r
k=1 where (xk1 , . . . , x

k
l−1, yk) ∈ IRl for all

k ∈ 1, . . . , r. The point set N represents the unknown function f : IRl−1 → IR
where

yk = f(xk1 , . . . , x
k
l−1) + εk ∀k = 1, . . . , n.

The additive term εi characterizes the statistical errors, which are independent
and identically distributed with zero mean and constant variance. The aim of
regression analysis is to use the data to construct a function f̂(x1, . . . , xn) that
can serve as a reasonable approximation to f . Here reasonable means accurate
in the least squares sense, since the function f̂ is used to approximate f at points
which are not part of the initial point set.

The basic least squares method consists of finding the function f̂ which min-
imizes the sum of squared errors

χ =
r∑

k=1

(
yk − f̂(xk1 , . . . , x

k
l−1)
)2

(9)

With regard to motion spaces, the focus lies on the relationship between
several independent variables, the parameters of the motion sequences and one
dependent variable, the corresponding joint angle. The input motion space is
specified in equation (5) as a set of sets. The elements are the motion signals of
a certain degree of freedom of the skeleton, defined in equation (6).

The optimization is performed separately for each degree of freedom, by uti-
lizing the least square criterion:

χi =

m∑
t=1

∑
w1∈Dw1

. . .
∑

wr∈Dwr

(pw
1,...,wr

i,t − ϕi(w
1, . . . , wr, t))2 (10)

where 1 ≤ i ≤ n denotes the degree of freedom.
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4.2 B-Spline Approximation

This section describes the approximation method using b-splines. In the first
part we consider a single motion signal and approximate them by cubic b-spline
with variable number of knots and knot positions. To simplify the mathematical
model, a motion signal of the ith degree of freedom of the underlying skeleton is
given by ϕi = (pi,1, . . . , pi,m), all other parameters are omitted in the following

illustration. The goal of the optimization process is to calculate a function f̂
which minimizes:

χi =
∑m

j=1 (pi,j − f̂(j))2

=
∑m

j=1 (pi,j −
∑k

l=−d (cl ·B
(d)
l (j)))2

(11)

where d = 3 is the degree of the basis function defined on the vector of knots
(λ−d, . . . , λk+d+1) with coincident boundary knots λ−d = . . . = λ0 = 1 and
λk+1 = . . . = λk+d+1 = m. Equation (11) can be rewritten in matrix notation:

χi = (ϕT
i −Bc)T (ϕT

i −Bc) = ‖ϕT
i −Bc‖2 (12)

where ‖ · ‖ denotes the euclidean vector norm and

B =

⎛⎜⎜⎝
B

(d)
−d(1) . . . B

(d)
k (1)

...
. . .

...

B
(d)
−d(m) . . . B

(d)
k (m)

⎞⎟⎟⎠ , c =

⎛⎜⎝ c−d

...
ck

⎞⎟⎠ (13)

are am×(k+d+1) dimensional observation matrix containing the basis functions
and a (k + d+ 1) dimensional vector of coefficients, respectively. The goal is to
determine the unknown coefficients ci for i ∈ {−d, . . . , k}. Therefore one has to
solve an overdetermined linear system

B · c = ϕT
i .

In order to solve this, the matrix B has to have full rank k+ d+1. According to
Cox [2] this will be the case if and only if the knot vector satisfies the Schoenberg-
Whitney condition, i.e. if there exists {u−d, . . . , uk} ⊂ {1, . . . ,m} with uj < uj+1

such that
λj < uj < λj+d+1, j = −d, . . . , k. (14)

The optimization algorithm used herein is a simplified version of the algorithm
described by de Boor and Rice [4]. The algorithm consists of two nested loops.
The inner loop relocates the knots in a greedy fashion, while the outer loop
inserts knots in intervals with high L2-error.

The method starts with the initial knot-vector Λ0 which has only one inte-
rior knot λ01 = m+1

2 at the center of the time interval. After each calculation
of the least square optimization the L2-error for each interior knot is calcu-
lated. For the relocation of the knots, the intervals [λi−1, λi, λi+1] for 1 ≤ i ≤ k
are considered and processed in order of decreasing L2-error. For each of the
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three nodes of the considered interval, the L2-error e(λi−1), e(λi) and e(λi+1)
is calculated. These three values are used to determine the minimum of the
parabola p(t) satisfying p(λi−1) = e(λi−1), p(λi) = e(λi) and p(λi+1) = e(λi+1),
respectively. It is assumed, that the minimum is located within the interval
[p(λi−1), p(λi+1)], otherwise the interval is skipped. Therefore only intervals
where e(λi−1), e(λi+1) ≥ e(λi) are considered. During the relocation process
the inner knots are moved within the ”safe interval” defined by de Boor and
Rice [3]:

[λi−1 + 0.0625(λi+1 − λi−1), λi+1 − 0.0625(λi+1 − λi−1)] . (15)

so that the Schoenberg-Whitney condition remains satisfied. After relocation,
the involved knots are labelled as processed and are no longer considered for
the current iteration. Intervals that contain a processed knot are skipped. After
processing the hole knot vector, the method continues with the least-square
optimization and starts the next iteration. The inner loop stops when either the
knots begin to oscillate or the L2-error is not reduced significantly. Therefore,
during the relocation step the position of the knots as well as the current L2-error
are recorded. De Boor and Rice [4] suggest to perform at least four iterations of
the inner loop. After these four loops the reduction of the error of each loop is
calculated. The assumption is, that the method is converging linearly and the
error is reduced at each cycle. The inner loop terminates if the reduction falls
below a user defined threshold εreduction i.e. |�i,j−1−�i,j

�i,j
| ≤ εreduction, where χi,j

denotes the L2-error of the ith motion signal after the jth iteration.
The outer loop checks if the L2-error of the current approximation spline is

below a user defined threshold. If this is not the case, then a knot is inserted
near the location of the maximum error. In order not to violate the Schoenberg-
Whitney condition, the inserted knot has to lie within the safe interval defined
in equation (15).

The other dimensions are relatively sparse compared to the uniformly sampled
time dimension. Therefore there are cases where a large region contains a few
data points or the number of spline coefficients is close to the number of data
points. This may causes a rank deficiency observation matrix, thus the least
square solution is no longer unique. The points of the given set are, however,
located on a rectangular grid, making the Schoenberg-Whitney condition remain
valid. In the following, the two-dimensional case is discussed. The extension to
higher dimensions is straightforward and outlined at the end of this section.

Considering a set of motion signals with one additional parameter w1
i1

∈ Dw1

for 1 ≤ i1 ≤ |Dw1 | = n1 and the point set Ni = {(w1
i1
, t, p

w1
i1

i,t )|1 ≤ t ≤ m ∧
w1

i1
∈ Dw1 ∧ 1 ≤ i1 ≤ |Dw1 | = n1}. Therewith one has a rectangular domain

[1,m] × [w1
1 , w

1
n1
]. The problem here is that the distribution of the points in

Ni is relative sparse, which leads to the fact, that one can not solve the linear
equation system. For this reason, the motion signals are interpolated linearly.
The interpolated point set is denoted by Ñi and the associated parameters make
up the set D̃w1 . The interpolated values only provide a rough approximation
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to the real values. In order to reduce their influence, a weighted least square
optimization is used in the following.

Here the weights of the data-points in Ni are set to α
w1

i,t = 1. For the interpo-

lated data points Ñi, we suggest to use weights of αw1

i,t ≤ 0.3. The least square

optimization is then calculated for the point-set N̂i = Ni∪Ñi and the parameter
set D̂w1 = Dw1 ∪ D̃w1 .

χi =
m∑
t=1

∑
w∈D̂w1

(αw
i,t p

w
i,t − αw

i,t ϕi(w, t))
2 (16)

where αw
i,t are the individual weights and

ϕi(w, t) =

k1∑
l1=−d

k2∑
l2=−d

cl1,l2B
(d)
l1

(t)B
(d)
l2

(w) (17)

is a tensor product spline of degree d. As in the univariate case, the unknown
spline coefficients cl1,l2 can be determined as the least-square solution of the
overdetermined linear system:

αw
i,t

k1∑
l1=−d

k2∑
l2=−d

cl1,l2B
(d)
l1

(t)B
(d)
l2

(w) = αw
i,t p

w
i,t. (18)

This can also transformed in matrix notation:

B vec(c) = vec(z) (19)

whereB is a (k1+d+1)(k2+d+1)×mmatrix with αw
i,tB

(d)
l1

(t)B
(d)
l2

(w) as elements.
By vec(A) we denote the column vector obtained by putting the columns of
the matrix A underneath each other in their natural order. The matrices are
therefore:

c =

⎛⎜⎝ c−d,−d . . . ck1,−d

...
. . .

...
c−d,k2 . . . ck1,k2

⎞⎟⎠ (20)

and

z =

⎛⎜⎝ αw1

i,1 p
w1

i,1 . . . αw1

i,m pw1

i,m
...

. . .
...

α
wn̂1

i,1 p
wn̂1

i,1 . . . α
wn̂1

i,m p
wn̂1

i,m

⎞⎟⎠ (21)

where wi ∈ D̂w for 1 ≤ i ≤ |D̂w| = n̂1. Furthermore it is assumed, that the wi

is sorted in ascending order.
In the two-dimensional case the number of knots and their positions are op-

timized similarly to the one-dimensional case. In order to create an initial knot
vector, the knots of the time dimension, calculated with the one dimensional least
square optimization can be used. Therefore, one can choose the approximation
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Fig. 3. The one dimensional spline approximation with free knots is shown in the left
figure. Initialization of the two dimensional spline approximation is shown in the right
figure. Here the knots are marked as black dots.

Fig. 4. Example of the knot relocation step. The knots of the intervals considered
during the relocation step, are outlined in red and the calculated minimum of the
corresponding parabola is shown as a red dot. The knots are then repositioned along
the red line.

of an arbitrary motion signal, since these knots are relocated in the following
optimization progress. For the other dimension, it is useful to start with n1/2
equally spaced inner knots. An example of the initialization is shown in figure 3.

During the optimization the knots need to be relocated. The relocation of the
knots is performed separately in every dimension. Therefore one can extend the
method proposed by de Boor and Rice [4] (see figure 4). At first all intervals
where e(λi,j−1), e(λi,j+1) ≥ e(λi,j) (for 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2) holds are
marked. After that for each i the number of marked and unmarked intervals is
compared. If the majority of the intervals is marked, then all knots are relocated
to the weighted average of the calculated minima. This is performed iteratively
for every dimension. As termination criterion, the criteria defined for the one
dimensional case are used.

The knot insertion is realized analogue to the one dimensional case. At first
one has to determine the location of maximal L2-error. The new knots are in-
serted along the line passing through that maximum. This process is performed
separately for every dimension (see figure 5). The insertion of the knots in the
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Fig. 5. Example of the knot insertion. To maintain the lattice structure of the knots,
one must insert an entire row/column of knots.

parameter dimension is not trivial, since there are regions where the point set Ni

is sparse. Therefore, prior to every least square optimization, one has to check if
the Schoenberg-Whitney condition is satisfied. If there are intervals where this
is not the case, one has to augment the point set Ñi and the parameter set D̃w1 ,
respectively.

In case of higher dimensional motion spaces, we apply an r + 1-dimensional
tensor product spline regression. The optimization begins with the approxima-
tion of the one-dimensional motion signal. After that a r + 1-dimensional lat-
tice is generated, and the knot optimization is performed analogue to the two
dimensional case.

4.3 Fourier Approximation

As a second approach we approximate the motion signals using a trigonometric
polynomial. Considering a single motion signal ϕ = (p1, . . . , pm) and the corre-
sponding point set N = {(tj , pj)} for 1 ≤ j ≤ m and tj = j. We use the following
approach for approximating function

ϕ(t) = p̂l−1(t) =

l−1∑
j=0

ξj · exp (ijqt) (22)

where i is the imaginary unit, q is a constant scaling factor and l ≤ m. Using
that approach, we have to solve the following minimization problem:

χ(l) = min
ξ∈Cl

m∑
j=1

(pj − p̂l−1 (tj))
2
. (23)

If the independent variables tj are equidistant, then we could use the discrete
Fourier transform to solve the minimization problem (23). In this case the
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polynomial p̂l−1 can be expressed as follows:

p̂l−1(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α0

2 +
l/2−1∑
j=1

(αj · cos (jqx) + ωj · sin (jqx)) + αl/2 · cos
(
l
2qx
)
, l even

α0

2 +
(l−1)/2∑
j=1

(αj · cos (jqx) + ωj · sin (jqx)) , l odd

where
α0 = 2 · ω0;
αj = ξj + ξl−j , 1 ≤ j < l

2 ;
αl/2 = ξl/2, l even ;
and
i · ωj = ξj − ξl−j , 1 ≤ j < l

2 .
(24)

The unknown coefficients αi and ωj can be arranged in the vector γ as follows:

γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ωs
ωs−1

...
ω0
αt

αt−1

...
α1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ IRl−1 where t :=

⌊
l

2

⌋
and s :=

⌊
l − 1

2

⌋
. (25)

Then one has:

r(l) = min
ξ∈Cl

n∑
j=1

(yj − p̂l−1 (xj))
2

= min
γ∈IRl−1,α0∈IR

n∑
j=1

(yj − p̂l−1 (xj))
2
.

(26)

If one sets l = m then there is always a trigonometric polynomial p̂l−1 with
r(l) = (yj − p̂l−1(xj))

2 = 0. The basic idea is to calculate the Fourier-transform
using l = m in a first step. If we consider the magnitude of values stored in γ,
then the values with higher magnitude contribute more to the final shape of the
function ϕ(t). Therefore we select a value k ≤ m and select the k largest values
of γ:

ϕ(t) = α0

2 +
u∑

j=1

αlj · cos (ljqt) +
v∑

j=1

ωlj · sin (ljqt)

with u+ v = k
(27)

where αl1 , ..., αlu , ωl1 , ..., ωlv are the k largest absolute values of the vector

γ ∈ IRl−1. The idea is based on the fact that the functions

(
cos x√

π
, sin x√

π
, cos 2x√

π
,

sin 2x√
π
, cos 3x√

π
, sin 3x√

π
, ...

)
span an orthonormal basis in the space L2(0, 2ξ), which

are the squared trigonometric function on the interval [0, 2ξ].



Representation of Motion Spaces 277

In practice we have a global error threshold defined by the user. Therewith we
sort the vector γ in ascending order and remove the values of smallest magnitude
until the resulting error exceeds the given threshold.

Unfortunately, this method cannot be generalized as easily as the b-spline re-
gression outlined in the last paragraph. In order to calculate the two-dimensional
Fourier transformation, we need equidistant sampling points in both dimensions.
Considering the discrete motion space with 1 parameter, we have a uniform sam-
pling of each motion signal itself. However we cannot assume, that the user de-
fined parameter w ∈ Dw1 is chosen equidistant. Here the solution is to calculate
a one-dimensional Fourier-transform first and obtain the coefficients:

α0,l2 , α1,l2 , ..., αt1,l2 , ω1,l2 , ω2,l2 , ..., ωs1,l2 ∀l2 ∈ {0, 1, ..., n1 = |Dw1 |}
where t1 :=

⌊
m
2

⌋
and s1 :=

⌊
m−1
2

⌋
.

In the second step the following equations must be solved:

H ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

al1,0
al1,1
...

al1,t2
cl1,1
cl1,2
...

cl1,s2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣
αl1,0

αl1,1

...
αl1,n1

⎤⎥⎥⎥⎦ ; l1 = 0, 1, ..., t1;

and H ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bl1,0
bl1,1
...

bl1,t2
dl1,1
dl1,2
...

dl1,s2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣
ωl1,0
ωl1,1
...

ωl1,n1

⎤⎥⎥⎥⎦ ; l1 = 1, 2, ..., s1.

(28)

where

t2 :=
⌊
n1

2

⌋
;

s2 :=
⌊
n1−1

2

⌋
;

hkl :=

{
cos ((l − 1) · q2 · (wk−1 − w0)) , 1 ≤ l ≤ t2 + 1
sin ((l − t2 − 1) · q2 · (wk−1 − w0)) , t2 + 1 < l ≤ n1 + 1

k = 1, 2, ..., n1

and H := [hkl]
n1

k,l=1 .

(29)

The two step approximation method can directly be generalized to arbitrary
dimension.
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4.4 Combining the Approximation Results

As a last preprocessing step we combine the approximated motion signals to
form a continuous motion space. By doing that, we attempt to compress the
data. For the spline function one has to store the values of the coefficients and
the knot vector. In order to evaluate the Fourier function we have to store the
selected coefficients values and their indices. For each degree of freedom we select
the approximated motion function, where fewer values need to be stored. Here
we compare the number of Fourier coefficients and b-Spline coefficients used.
The smaller number is used to form the motion space.

5 Experimental Results

To evaluate our framework we used four different activities, which are common
within a production setting. These are pick up box, hammering a nail, manual

(a) hammering a nail

(b) pick up box

(c) manual screwing

(d) wipe surface

Fig. 6. Examples of the approximated activities. The left column shows the motion of
the skeleton. The corresponding motion signal of the right elbow joint is shown in the
middle column. The approximation results are presented on the right.
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Fig. 7. The figure shows the approximation results for a single motion. The original
motion capture data is shown in black. The approximated motion is drawn in red.

Table 1. Number of coefficients needed to approximate the left elbow joint, with a
mean error of ε = 0.5 degree. εmax specifies the maximum angular error in degrees.

Activity length of the # of Fourier # of B-spline
motion signal coefficients coefficients

hammering a nail 460 30 (εmax = 6.5) 10 (εmax = 1.2)

manual screwing 250 50 (εmax = 2.3) 90 (εmax = 15.01)

wipe surface 270 34 (εmax = 0.5) 96 (εmax = 4.3)

pick up box 33 24 (εmax = 2.2) 8 (εmax = 1.8)

screwing and wiping of a surface. Examples of these activities are shown in
figure 6.

In order to verify the quality of the approximation methods we approximated
a single motion. The results are shown in figure 7. The individual poses were
placed over each other. The black poses correspond to the original motion capture
data. The approximated motion is placed underneath in red. For approximating
an average error of 0.5 degrees was used.

An example of the interpolation results of the framework shown in figure 8.
Here the calculated continuous movement space of the box lift motion was used.
The black poses correspond to the recorded motion data. The blue poses are
generated by evaluation of the motion spaces.

An example of the motion generated by evaluating the continuous motion
spaces is shown in figure 9. In table 1 the number of coefficients needed as well
as the maximal approximation error is shown.

In order to measure the compression archived with the proposed approxima-
tion methods, we compared the file size of the original bvh file with the file size
of the motion spaces. Both files are encoded in ASCII format. The bvh file con-
sists of two parts. The first part specifies the skeleton hierarchy and the second
part lists the Euler angles for all poses. The motion space file is specified in a
similar fashion. Here the first part also specifies the skeleton hierarchy, while the
second part specifies the b-spline and Fourier functions. In order to reconstruct
the b-spline functions, one has to store the coefficients and the knot positions.
In case of Fourier function the coefficients and their indices need to be stored.
In table 2 the corresponding file sizes are listed.
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Table 2. Comparison of the storage space needed for the .bvh file and the stored
approximations

Activity Original file size (.bvh) File size of the approximation result

hammering a nail 73.6 KB 39.5 KB

manual screwing 80.5 KB 45.2 KB

wipe surface 40.1 KB 25.3 KB

pick up box 37.4 KB 18.8 KB

Fig. 8. A two handed pick action sampled across the hight parameter. The black poses
are motion capture data and the blue poses are generated by our approach. The height
parameter increases from top to bottom (0.8; 0.9; 1.0; 1.1; 1.2 meter).



Representation of Motion Spaces 281

Fig. 9. The example shows the activity pick up a box, generated by evaluating the
continuous motion space. The heights of the boxes are: 0cm, 40cm, 80cm, 100cm and
120cm (left to right).

6 Conclusion and Further Work

We have shown, that our approximation method enhances the capabilities of the
captured human motion while we are also able to reduce the amount of storage
space needed. We also plan to apply this method to long connected motion
sequences, in order to archive a good compression rate. It may also be possible
to apply additional compression methods, in order to further reduce the storage
space needed.

Also, it may be useful to examining further spline models and their suitability
for the approximation and compression of motion data.

Acknowledgements. The authors would like to thank imk automotive GmbH
and the Institut of Mechatronics for providing the motion capture data. The
work reported in this publication has been financially supported by the European
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Bilinear Clifford-Bézier Patches on Isotropic Cyclides
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Naugarduko g. 24, 03225 Vilnius, Lithuania

Abstract. We study Bézier-like formulas with weights in geometric algebra for
parametrizing a special class of rational surfaces in isotropic 3-space. These for-
mulas are useful for constructing isotropic-Möbius invariant surfaces that are dual
to rational offset surfaces in euclidean 3-space. Our focus is on bilinear Clifford-
Bézier patches. We derive their implicitization formula and characterize them as
patches on special quartic surfaces called isotropic cyclides. Finally we present
one modeling application with rational surfaces admitting rational offsets.

Keywords: isotropic cyclides, Clifford algebra, geometric algebra, rational
offset surfaces.

1 Introduction

In this paper we develop the parallel theory to the recently introduced bilinear quaternio-
nic-Bézier patches on Darboux cyclides (see [7] and [12]).

The main motivation for these studies is in the following theorem due to Pottmann
and Peternell [9,11]: There is a 1–1 correspondence via duality between non-
developable rational offset surfaces (PN-surfaces) in euclidean space and rational sur-
faces in isotropic space (see details in Section 5.1).

For example, pipe surfaces with quadratic spines, or non-singular quadrics (and their
offsets) in R3 are duals of certain isotropic cyclides.

We hope that these results can be the starting point of a new approach that will help
to simplify the general theory and also will provide new computational and modeling
tools for rational offset surfaces.

Isotropic space and its geometric algebra are introduced in Section 2. Bilinear
Clifford–Bézier (CB) patches are defined and their properties are described in Sec-
tion 3. Section 4 is devoted to isotropic cyclides: their geometry is studied and relations
with CB-patches are established. In Section 5 modeling applications with Pythagorean
normal surfaces (PN-surfaces) are illustrated. Technical results characterizing both ver-
sions (Darboux and isotropic) of cyclides are postponed to Section 6. Conclusions and
further research directions are drawn in Section 7.

2 Isotropic Space and Its Geometric Algebra

2.1 Isotropic Geometry

Define an isotropic space R3
++0 as a vector space R3 with a scalar (interior) product

having signature (+,+, 0), i.e. with an orthonormal basis {e1, e2, e3}, such that

e1 · e1 = e2 · e2 = 1, e3 · e3 = 0, ei · ej = 0, i �= j.

M. Floater et al. (Eds.): MMCS 2012, LNCS 8177, pp. 283–303, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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Therefore,x·x = x21+x
2
2 and distances in isotropic geometry are measured as Euclidean

distances in the projection to the first two coordinates (x1, x2, x3) �→ (x1, x2), which
is called a top view. There are distinguished vertical lines and vertical planes that are
called isotropic lines and isotropic planes.

Definition 1. An isotropic sphere (or i-sphere) is a quadric S ⊂ R3
++0 defined by the

equation
a(x21 + x22) + L(x1, x2) + dx3 + b = 0, (1)

for some a, b, d ∈ R, a �= 0, L a linear form.

The motivation for this definition is simple: i-spheres are isotropic inversions of
planes (see Lemma 2). Similar to planes, i-spheres can be of two different types (de-
pending on the parameter d):

– i-spheres of parabolic type – paraboloids of revolution with vertical axis (d = −1);
– i-spheres of cylindric type – cylinders with top view circles (d = 0).

An isotropic circle (or i-circle) is the intersection between an i-sphere of parabolic
type and a plane. This definition implies that an i-circle is either an ellipse with a circle
as top view or a parabola with vertical axis.

Thus in R3
++0, we can consider the counterpart to Möbius geometry, where the

main objects are i-M-spheres that are either i-spheres of parabolic type or non-isotropic
planes. Their intersections are called i-M-circles that can be i-circles of both types or
non-isotropic lines. The space of isotropic Möbius geometry is defined as an exten-
sion R3

++0 ∪ R, where the ideal line R of infinite points is attached. Every i-M sphere
x3 = a(x21 + x22) + L(x1, x2) + b has a unique ideal point 2a ∈ R on that line (see
details in Section 4.1).

2.2 Isotropic Möbius Transformations

The group of isotropic Möbius (i-M) transformations is generated by inversions with
respect to i-spheres (see details in [10]):

(i) inversions with respect to i-spheres of cylindrical type are most similar to classical
inversions, since they are defined by a central point p and radius r:

invp,r(x) = r2inv(x− p) + p, inv(x) =
x

x · x , (2)

i.e. inv(x) is the special case of invp,r(x) when p is the origin and r = 1;
(ii) inversions with respect to i-spheres of parabolic type x3 = f(x1, x2), f(x1, x2) =

a(x21 + x22) + L(x1, x2) + b,

invf (x) = (x1, x2, 2f(x1, x2)− x3). (3)

Lemma 1. All i-M transformations are generated by

– uniform scalings Sr(x) = rx;
– translations Tp(x) = x+ p;
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– inversion inv(x) = x/(x · x);
– vertical reflections inv0(x) = (x1, x2,−x3).

Proof. Any inversion of type (i) can be obtained using the first three generators, since

invp,r = (Tp ◦ Sr) ◦ inv ◦ (Tp ◦ Sr)
−1.

Also if p is a vertex of the paraboloid x3 = f(x1, x2) then

invf = Tp ◦ inv ◦ inva ◦ inv ◦ T−1
p , inva = T(0,0,a) ◦ inv0 ◦ T−1

(0,0,a).

Hence by adding the vertical reflection inv0 one can generate all inversions of type (ii).

The following lemma shows that, in analogy to the classical Möbius geometry, i-M
circles and i-M spheres are preserved by i-M transformations.

Lemma 2. If S is an i-M sphere and C is an i-M circle, then

(1) invp,r(S) is an i-M sphere;
(2) invp,r(S) is a plane if and only if S passes through p;
(3) invp,r(C) is an i-M circle;
(4) invp,r(C) is a line if and only if C passes through p.

Proof. First we note that items (1) and (2) in the particular case when invp,r = inv (i.e.
p is the origin and r = 1) follow from Lemma 7 in Section 6. Indeed, inv coincides with
g-inversion when g = x2 + y2 and g-Möbius spheres are exactly i-spheres or planes
(the class of i-M spheres is a bit smaller but it is invariant with respect to inversions).

The general case can be reduced to this particular case, since according to Lemma 1
invp,r is a composition of translations, uniform scalings and the map inv, and for every
i-M sphere S, p ∈ S, if and only if T−1

p S passes through the origin.
Items (3) and (4) now can be proved by representing any i-M circle as the intersection

of two i-M spheres. 	


2.3 The Geometric Algebra G(R3
++0)

In the geometric algebra (Clifford algebra) generated by R3
++0 the geometric product

of vectors is defined to be associative and distributive with respect to addition, with the
additional relation: x ·x = x2 ∈ R. This algebra will be denoted by G = G(R3

++0). For
vectors v, u ∈ R3

++0 the geometric product is a sum of interior and exterior products

vu = v · u+ v ∧ u. (4)

The algebra G(R3
++0) has the same underlying vector space as the usual exterior algebra∧

(R3), namely it is a vector space of dimension 8, that can be decomposed as a direct
sum E0 ⊕ E1 ⊕ E2 ⊕ E3 of subspaces with the following bases

{1}, {e1, e2, e3}, {e12, e23, e13}, {e123}, (5)
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where eij = eiej and e123 = e1e2e3. The vector spacesE0, . . . , E3 are scalars, vectors,
bi-vectors, and tri-vectors respectively. For any x ∈ G(R3

++0), its k-grade component
〈x〉k is the projection to the subspace Ek of grade k.

A reversion operation in the algebra G will also be used (see [3,4,8] for details). If x
is a product of vectors x = v1v2 · · · vn−1vn, then its reversion is x̃ = vnvn−1 · · · v2v1.
If all vi are non-zero, then xx̃ = (vn · vn) · · · (v2 · v2)(v1 · v1) ∈ R. Hence it is easy
to calculate the inverse element x−1 = x̃/(xx̃). Reversion is similar to conjugation in
quaternions. For example, if x is an element of even grade, then

x = a+ be12 + ce23 + de13, x̃ = a− be12 − ce23 − de13. (6)

In terms of the algebra G(R3
++0) we get a simple formula for inversion in R3

++0

inv(x) = x−1, invp,r(x) = r2(x− p)−1 + p. (7)

Similar to the representation of a euclidean circular arc by a quaternionic–Bézier
(QB) curve of degree 1 in [7,13], one can derive the following Clifford–Bézier (CB)
formula

C(t) = (p0w0(1− t) + p1w1t)(w0(1− t) + w1t)
−1 ∈ R3

++0, (8)

where pi, i = 0, 1, are two endpoints of an i-circular arc C in R3
++0, and wi, i = 0, 1,

are weights defined using some interior point q of the arc

w0 = (q − p0)
−1, w1 = (p1 − q)−1. (9)

Here points and weights are vectors in R3
++0, and all algebraic operations are defined

in the algebra G(R3
++0). In order to avoid degenerate cases we suppose that all three

points have different top views. If the points p0, q, p1 are collinear, then C(t) is a line
segment. So in general C(t) is the arc of an i-M circle (see Remark 1 below).

Obviously one can divide byw0 and get the equivalent couple of weightsw′
0 = 1 and

w′
1 = w1w

−1
0 = (p1 − q)−1(q − p0). Now the weights are not vectors but still by the

product formula (4) they are elements of the even subalgebra Geven = E0 ⊕ E2 ⊂ G.
The bi-vector component of w′

1 has a simple geometric meaning: it defines a vector
plane generated by p1 − q and q − p0, in particular it contains the vector p1 − p0. The
latter condition is equivalent to the equation

(p1 − p0) ∧ 〈w1w
−1
0 〉2 = 0, (10)

which is a necessary and sufficient condition for the weights in (8) to define an i-M
circle.

If just one weight is multiplied by a real number λ > 0, then the arc is
reparametrized.

Remark 1. The formula (8) for a circular arc C is invariant with respect to i-M transfor-
mations. Indeed, it is enough to check this invariance for all generators of the i-Möbius
group (see Lemma 1). For example,

inv(C(t)) = C(t)−1 = (w0(1− t) + w1t)(p0w0(1− t) + p1w1t)
−1.

Therefore, inv(C(t)) = C′(t) is defined by the same formula (8) with w′
i = piwi and

p′i = wi(w
′
i)

−1 = wiw
−1
i p−1

i = inv(pi), i = 0, 1.
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Lemma 3. C(t) can be represented in classical Bézier form with the following control
points and real weights:

P0 = p0, P1 = (p0w0w̃1 + p1w1w̃0)/(w0w̃1 + w1w̃0), P2 = p1, (11)

W0 = w0w̃0, W1 = (w0w̃1 + w1w̃0)/2, W2 = w1w̃1. (12)

Proof. Denoting numerator and denominator in (8) by F (t) and W (t) respectively and
using the reversion operation in G(R3

++0), one can express C(t) as a fraction with real
denominator:

C(t) = F (t)W (t)−1 = F (t)W̃ (t)(W (t)W̃ (t))−1. (13)

Then calculating separately F (t)W̃ (t) and W (t)W̃ (t)

F (t)W̃ (t) = p0w0w̃0(1− t)2 + (p0w0w̃1 + p1w1w̃0)(1 − t)t+ p1w1w̃1t
2

W (t)W̃ (t) = w0w̃0(1− t)2 + (w0w̃1 + w1w̃0)(1− t)t+ w1w̃1t
2

we detect Bézier control points (11) and weights (12). 	


Corollary 1. An arc C defined by (8) with vectors pi andwi �= 0, i = 0, 1, is contained
in R3

++0 if and only if p0w0w̃1 + p1w1w̃0 is a vector, i.e. 〈p0w0w̃1 + p1w1w̃0〉3 = 0.

3 Clifford–Bézier Surface Patches

We call a curve or a surface i-spherical if it is contained in an i-M sphere (so this
includes the planar case). For example, two i-M circles are i-cospherical if they are on
the same i-M sphere.

An i-spherical triangle with corner points p0, p1, p2 bounded by three i-circular arcs
(such that these three i-circles intersect in a point q) has the parametrization formula
with weights: wi = (pi − q)−1, i = 0, 1, 2,

P (s, t) = (p0w0(1− s− t) + p1w1s+ p2w2t)(w0(1− s− t) +w1s+w2t)
−1 (14)

with the triangular parameter domain: s, t ≥ 0, s+t ≤ 1. It is natural to call this surface
patch a linear triangular CB-patch. Any formula (14) with arbitrary weights, such that
the boundary curves are i-M circles, define a patch on an i-M sphere.

Any i-M-sphere is i-M equivalent to the plane x3 = 0 in R3
++0 which can be identi-

fied with the euclidean plane R2. Therefore, all propositions about spherical triangular
and quadrangular QB-patches of any degree (see [7]) are valid also for i-spherical CB-
patches of parabolic type.

Let us switch to the simplest non-i-spherical case. Consider a bilinear CB-patch de-
fined by the formula (here the fraction a

b means ab−1):

P (s, t) =
p0w0(1 − s)(1− t) + p1w1s(1 − t) + p2w2(1− s)t+ p3w3st

w0(1 − s)(1− t) + w1s(1 − t) + w2(1− s)t+ w3st
, (15)

with the square parameter domain 0 ≤ s, t ≤ 1. We consider only the case when the
image is contained in the vector space R3

++0. Formula (15) is i-M invariant similar to
the i-circle case (see Remark 1).



288 R. Krasauskas, S. Zubė, and S. Cacciola

Lemma 4. If two adjacent boundary circles of a bilinear CB-patchP are i-cospherical,
then the bilinear CB-patch is either i-spherical or it is a patch of a double ruled quadric
(including its i-M transformations).

Proof. Denote by Cij a boundary circle joining vertices pi and pj . Assuming that the
circles C01 and C02 are i-cospherical, there are two cases: the circles intersect in two
points p0 and q �= p0; the circles are tangent in p0 (a double point).

In the first case we apply inversion with a center q and use the same notation for the
transformed patch. Now C01 and C02 are line segments, and one can assume (after a
reparametrization)w0 = w1 = w2 = 1. If w3 ∈ R, then the CB-patch P is on a doubly
ruled quadric (or plane). Otherwise 〈w3〉2 �= 0, and according to (10) the vectors p3−p1
and p3 − p2 lie on the plane generated by the bi-vector 〈w3〉2. Hence the two boundary
circles C13 and C23 lie on the same plane Π going through the three points p1, p2, p3.
All weights along these circles have the same bi-vector direction, since they are linear
averages between w3 and 1. Similarly it follows that all other circles on the CB-patch
are on the same plane Π , and P is planar, i.e. i-spherical.

In the second case after the same inversion (with a center p0) we get the base point
at (s, t) = (0, 0). Therefore we consider a subpatch P ′ which is the restriction of P on
a rectangular domain (s, t) ∈ [0, 1] × [ε, 1], with a small ε > 0. The same argument
as earlier allows us to get weights w0 = w1 = 1, and w2 very close to 1. Then the
subpatch P ′ is as close as we wish to the planeΠ going through the three points p1, p2,
p3. So the whole P is planar. 	


Lemma 5. Let four circles C01, C02, C13, C23 in R3
++0 be defined by four control

points and weights {(pi, wi)}i=0,...,3, and suppose that any two adjacent i-circles are
not i-cospherical. Then there is a unique non-zero number

λ = −〈p1w1w̃2 + p2w2w̃1〉3
〈p0w0w̃3 + p3w3w̃0〉3

∈ R, (16)

such that the same control points with weights w0, w1, w2, λw3 define a bilinear CB-
patch.

Proof. Let P = FW−1 be a fraction as in formula (15) with control points pi,
i = 0, . . . , 3, and weights w0, w1, w2, λw3. Following the proof of Lemma 3 we
modify the expression FW−1 = FW̃ (WW̃ )−1 and expand its numerator FW̃ in
the biquadratic Bernstein basis with control points qij (multiplied by their weights)
of the corresponding rational biquadratic Bézier surface. Boundary control points are in
R3

++0, since they represent i-M circular arcs in R3
++0. The middle control point multi-

plied by its weight has the following form:

q11 = (p1w1w̃2 + p2w2w̃1) + λ(p0w0w̃3 + p3w3w̃0),

where both expressions in brackets have non-zero 3-grades (otherwise, adjacent bound-
ary circles would be i-cospherical, cf. Corollary 1). Solving the equation 〈q11〉3 = 0 for
λ we get exactly (16). 	
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Theorem 1. Let C0, C01, C1 be i-circles in R3
++0, and let p0 = C0 ∩ C01 and p1 =

C01 ∩ C1 be the unique points of their transversal intersections. Then for almost any
other point p2 ∈ C0, p2 �= p0, there exists a unique bilinear CB-patch (up to trivial
reparametrization) with control points pi, i = 0, 1, 2, and p3 ∈ C1 with three boundary
arcs lying on the given three i-circles.

Proof. We choose any point q ∈ C1, q �= p1, and apply inversion with center in q.
Using the same notation, we see that C1 is a line and, up to multiplication by a real
number, we can find unique weights w1 = 1, w0 and w2, that correspond to the given i-
circles. The point p2 and the weightw2 determine a plane Π where the fourth boundary
i-circle C23 can lie (see the condition (10)). So we can find a point p3 as an intersection
Π ∩ C1 with a weight w3 = 1. The exceptional case when Π is parallel to the line C1

can happen only when the initial point q (before the inversion) has been chosen as p3.
Finally we use Lemma 5 in order to fill the closed contour of i-circles. 	


Our next theorem allows us to find the implicit equation of the patch P (s, t) defined
by (15) as an algebraic surface in R3

++0. Without loss of generality, we can assume that
the weights of P (s, t) are in the even subalgebra Geven = E0 ⊕E2 (e.g dividing by w0,
see Section 2.3). We denote by F (s, t) the numerator and by W (s, t) the denominator
of the fraction P (s, t) in (15). Then formally P (s, t) is in the vector subspace E1 ⊕
E3 ⊂ G(R3

++0) generated by the basis {e1, e2, e3, e123}. Let us introduce a formal
element X = xe1 + ye2 + ze3 + ue123, multiply both sides of the equation X =
F (s, t)W (s, t)−1 by W (s, t), and move all terms to the left side

XW (s, t)− F (s, t) = 0.

We treat this equation as a system of 4 real linear equations with 4 unknowns

(1 − s)(1− t), s(1 − t), (1− s)t, st.

The 4 × 4 matrix M of this system has 4 columns filled with coordinates of vectors
(X− pi)wi ∈ E1 ⊕E3, i = 0, . . . , 3, in the same basis. Hence the entries of the matrix
M are linear forms in x, y, z, u, and the polynomial

F (x, y, z, u) = det M (17)

must vanish on every pointX of the patch P (s, t). Therefore, F (x, y, z, u) = 0 defines
at most a quartic equation in the variables x, y, z, u.

Theorem 2. The implicit equation of a bilinear CB-patch P (s, t) in R3
++0 is a factor

of the polynomial F (x, y, z, 0), where F (x, y, z, u) = detM has degree at most 4.
	


The following example illustrates this theorem.

Example 1. Consider the CB-patch (15) with control points and weights

p0 = 2e2, p1 = e2, p2 = −2e2, p3 = −e2,
w0 = 1, w1 = e12 − e23, w2 = 2e12 + 3e23, w3 = −3(2 + e13).
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We compute 4 columns of the matrix M as the coordinates of elements (X − pi)wi,
i = 0, . . . , 3, in the basis {e1, e2, e3, e123}:

M =

⎛⎜⎜⎝
x 1− y −2(2 + y) −6x

−2 + y x 2x −6(1 + y)
z (1− y − u) (y − 2u+ 2) −3(x+ 2z)
u (−x+ z) (x+ 2z) 3(1 + y − 2u)

⎞⎟⎟⎠ .
Finally the implicit equation of the surface is obtained by substituting u = 0 in the
determinant detM = F (x, y, z, u) and multiplying by −1/9 for simplicity

(x2 + y2)2 − 8x2 − 5y2 + 12z2 + 4 = 0. (18)

Fig. 1. The CB-patch on the full algebraic surface defined by (18)

4 Isotropic Cyclides

4.1 Model of Isotropic Möbius Geometry on the Blaschke Cylinder

In analogy with the standard conformal model of Möbius geometry in R3, we introduce
the model of isotropic Möbius geometry defined on the Blaschke cylinder B : x21 +
x22 + x24 = x25 in P4 (see Section 5). Here it will be convenient to use slightly different
coordinates in P4: instead of the standard basis {e1, . . . , e5}, we will use the basis
{e0, e1, e2, e3, e∞} with e∞ = e4 + e5, e0 = (−e4 + e5)/2. Then x∞ = (x4 + x5)/2,
x0 = −x4 + x5, and the equation of B is x21 + x22 − 2x∞x0 = 0. Actually B is a cone
in P4 with a vertex v = [e3] (i.e. v = [0, 0, 0, 1, 0] in the current basis).

We treat the isotropic space R3
++0 as an affine part x0 = 1 in P3. Define a stere-

ographic projection from B to R3
++0 as a restriction of the linear projection from the

point c = [e∞] = [0, 0, 0, 0, 1]:

ξ : P4 → P3, (x0, x1, x2, x3, x∞) �→ (x0, x1, x2, x3).

The inverse of this stereographic projection is

σ : R3
++0 → B, (x1, x2, x3) �→ [1, x1, x2, x3,

1

2
(x21 + x22)].
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Theorem 3. The inverse stereographic projection defines a 1–1 correspondence be-
tween i-M spheres (respectively i-M circles) and hyperplanes (respectively 2-planes) in
P4 that do not contain the vertex v of the Blaschke cylinder:

– i-M spheres S go to hyperplane sections σ(S) = H ∩ B;
– i-M circles C go to 2-plane sections σ(C) = Π ∩ B;

Moreover, isotropic lines go to lines on B and the ideal line corresponds to a line l∞
going through two points c = [e∞] and v = [e3].

Proof. Consider a hyperplaneH ⊂ P4 given by the equation

ax∞ +
1

2
L(x0, . . . , x3) = 0, (19)

where L a linear form in the variables x0, . . . , x3. The equation of the projected surface
ξ(H ∩ B) is obtained by eliminating the variable x∞ from the system of equations
x21+x

2
2−2x0x∞ = 0 and (19). From the first equation we have x∞ = (x21+x

2
2)/(2x0).

Therefore, ξ(A ∩ B) is defined by

a(x21 + x22) + x0L(x0, . . . , x3) = 0. (20)

The hyperplane H does not contain v = [e3] if and only if L(x0, . . . , x3) depends on
x3, i.e. the latter equation (20) defines an i-M sphere. Actually hyperplanes containing
v correspond to i-spheres of cylindric type or isotropic planes.

Any i-M circle C can be represented as the intersection of two i-M spheres C =
S1 ∩S2. Then σ(C) = σ(S1)∩ σ(S2) = (H1 ∩H2)∩B for some hyperplanesH1 and
H2 that do not contain v. So Π = H1 ∩H2 is a 2-plane, v /∈ Π , and σ(C) = Π ∩ B.

Any isotropic line in R3
++0 can be parametrized by t �→ (x1, x2, t) for some fixed

x1, x2. Then σ(x1, x2, t) = [1, x1, x2, t, (x
2
1 + x22)/2], t ∈ R, defines a line in the

Blaschke cylinder B. In this way just one line in B will be missed: the line l∞ going
through c and v. Let us parametrize its affine part by R, t �→ [te3 + e∞]. Then the
i-M sphere S : x3 = a(x21 + x22) + L(1, x1, x2) corresponds to the hyperplane ax∞ +
1
2 (L(x0, x1, x2)− x3) = 0 (see (19)), that intersects l∞ at the point t = 2a ∈ R. This
is exactly the ideal point of S. 	


4.2 Basics on Isotropic Cyclides

Definition 2. An isotropic cyclide is a surface in R3
++0 defined by an equation of the

form
a(x21 + x22)

2 + L(x1, x2, x3)(x
2
1 + x22) +Q(x1, x2, x3) = 0, (21)

where a ∈ R andL(x1, x2, x3), Q(x1, x2, x3) are polynomials, degL ≤ 1, degQ ≤ 2.

Theorem 4. The intersection of any quadric hypersurface A ⊂ P4 with the Blaschke
cylinder A ∩ B is mapped by the stereographic projection to an isotropic cyclide in
R3

++0. Moreover every isotropic cyclide can be defined in this way.
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Proof. Consider a quadric A ⊂ P4 given by the equation

ax2∞ +
1

2
x∞L(x0, . . . , x3) +

1

4
Q(x0, . . . , x3) = 0, (22)

whereL andQ are a linear and a quadratic form respectively in the variables x0, . . . , x3.
The equation of the projected surface ξ(A ∩ B) is obtained by eliminating the variable
x∞ as in the proof of Theorem 3

a(x21 + x22)
2 + x0(x

2
1 + x22)L(x0, . . . , x3) + x20Q(x0, . . . , x3) = 0.

In the affine part {x0 = 1} of P3 this equation represents an isotropic cyclide (21). 	


Let A and B be symmetric real 5x5 matrices defining, respectively, a quadric hy-
persurface A and the Blaschke cylinder B, such that σ(D) = A ∩ B for an isotropic
cyclide D. For example, in the standard basis, B = diag(1, 1, 0, 1,−1). Then σ(D) is
the carrier of the pencil of quadrics PD : A−tB, where t is a real parameter. Moreover,
as in [12], all families of i-circles on D can be found by looking at singular quadrics
(cones) in the pencil PD defined by the roots of the polynomial det(A− tB).

More precisely, suppose that the isotropic cyclide D contains an i-circle C. Let Π
be the 2-plane in P4 containing C′ = σ(C) = Π ∩ B (see Theorem 3). Choose a point
p ∈ Π \ C′, not contained in D′ = σ(D). There is a unique quadric QC in the pencil
PD such that p ∈ QC . Then QC ∩Π ⊃ C′ ∪ {p}, which implies that Π ⊂ QC . Since
QC is a quadric containing a 2-plane, QC is a quadratic cone. We say that the cone QC

is associated with the i-circle C.
Actually any cone Q in a pencil PD can be associated with many i-circles. Indeed, a

general hyperplane section H ∩Q is a real quadric surface of three possible types:

– a quadric with no lines, e.g. an ellipsoid;
– a cone with one family of lines (rankQ = 3);
– a double ruled quadric with two families of lines (rankQ = 4).

These 0, 1, or 2 families of lines define families of 2-planes in cones that correspond to
families of i-circles on the isotropic cyclide D.

Definition 3. Families of i-circles on a given isotropic cyclide D are called paired if
their associated cones in the pencil PD coincide. Otherwise they are called unpaired.
A family of i-circles associated with a cone of rank 3 is called single.

In the following theorem we collect several properties of i-circle families on isotropic
cyclides, that are similar to the case of Darboux cyclides (see [12]) .

Theorem 5. Any two i-circles from different paired families (or from one single family)
are i-cospherical. Two i-circles from non-paired families are not i-cospherical, and they
intersect exactly at 1 point (might be on the ideal line).

Proof. If the i-circles C1 and C2 belong to different paired families or to the same
single family, then in both cases their associated cone Q is the same. Let Π1 and Π2 be
their 2-planes, i.e. σ(Ci) = Πi ∩ B, i = 1, 2. For a general hyperplaneH , the quadric
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surfaceQ∩H contains the lines li = Πi∩H , i = 1, 2. There are two cases: the quadric
Q∩H is double ruled (then l1 and l2 are from different families of lines) or it is a cone.
In both cases these two lines intersect in a certain point p. Hence, Π1 ∩ Π2 contains
a line going through the point p and the vertex of Q. Then Π1 and Π2 are in some
hyperplaneH ′, and both i-circles C1 and C2 are in the i-sphere ξ(H ′ ∩B). Hence they
are i-cospherical.

If two i-circles C1 and C2 belong to non-paired families, then their associated cones
Q1 and Q2 are different. Suppose C1 and C2 are i-cospherical. Then the corresponding
2-planes Π1 and Π2 are contained in one hyperplane H . This implies that their inter-
section contains a line, say l, and l ⊂ Q1 ∩ Q2. If l ⊂ B, then Π1 ∩ B ⊃ σ(C1) ∪ l.
This is a contradiction because B is a quadric, so intersecting B with any 2-plane we
cannot get a curve of degree higher than 2. Hence l �⊂ B. In particular there exists a
point p /∈ B such that p ∈ Q1 ∩ Q2. This is again a contradiction because there exists
a unique quadric in the pencil PD containing the point p. Therefore C1 and C2 are not
i-cospherical.

Now let us show that C1 ∩ C2 is one point. Note that σ(C1) and σ(C2) have to
intersect because their 2-planes Π1 and Π2 have a non-empty intersection in P4, and
again they cannot have a common point outside B. Of course this intersection point
might appear on the ideal line, e.g. when both i-circles are of parabolic type. 	


4.3 Degenerate Isotropic Cyclides

We say that an isotropic cyclide D is degenerate if it is defined by a pencil of quadrics
PD : A − tB such that det(A − tB) = 0 for all t ∈ R. In this case all quadrics in
the pencil PD are cones, so that a degenerate isotropic cyclide carries infinitely many
families of i-circles.

Note that in the classical conformal model this case cannot happen because the
sphere S3 ⊂ P4 is not a degenerate quadric.

Suppose now thatD is a degenerate isotropic cyclide, such that for general t ∈ R the
matrix A − tB has rank 4, so that the general quadric in the pencil has only one point
as a vertex.

The theorem below (originally proved by C. Segre) is a combination of Theorem 21.2
and Corollary 21.3 in [2] for the case of P4.

Theorem 6 (Segre). For a pencil of quadrics P in P4 let

V =
⋃

Q∈P,rankQ=4

Vert(Q).

Then exactly the following three cases may occur:

(1) V is a point, and all quadrics in the pencil have the same vertex;
(2) the Zariski closure of V is a line l, and the vertices of all quadrics in the pencil

(with rank = 4) are contained in this line; moreover all such cones are tangent
along this line.

(3) the Zariski closure of V is a conic contained in a plane Π , and all quadrics in the
pencil contain that plane.
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Theorem 7. Degenerate isotropic cyclides can be of two kinds:

(1) union of isotropic lines, i.e. cylinders over bi-circular quartic curves in the hori-
zontal plane R2

a(x21 + x22)
2 + L(x1, x2)(x

2
1 + x22) +Q(x1, x2) = 0 (23)

(2) i-M equivalent to paraboloids x3 = ax21 + bx22, a �= b.

Proof. We apply Theorem 6 to the pencil of quadrics P = PD.
In case (1) of Theorem 6 the quadric A must be a cone with a vertex v, the same as

the vertex of B. Hence A is a union of lines in B, and projects to a union of isotropic
lines in R3

++0 (see Theorem 3). Then the equation of A does not depend on x3, i.e. it
is of the form (23). Hence A is a cylinder over a 2-circular curve in the plane x3 = 0.
Note that this cylinder is not a rational surface when this curve is not rational.

In case (2) of Theorem 6 the vertices of all quadrics in the pencil are contained in a
line l. Moreover all such cones are tangent along this line. The projection of this line to
the isotropic space is an isotropic line. Therefore one can move the line l by inversion
to the ideal line. Then it corresponds to the line on the Blaschke cylinder which goes
through its vertex v = [e3] and the center of the stereographic projection c = [e∞], i.e.
the line l is defined by three equations l : {x0 = x1 = x2 = 0}. Then an arbitrary
quadric A which contains l has the following equation

x0L0 + x1L1 + x2L2 = 0,

where L0, L1, L2 are linear forms in the variables x0, . . . , x∞. Moreover, the tangent
hyperplane to the Blaschke cylinder Tc(B) = {x0 = 0} must coincide with Tp(A) for
any point p = [se3 + te∞] ∈ l. This means that

∂A
∂x1

(p) = L1(p) = 0,
∂A
∂x2

(p) = L2(p) = 0,

Therefore L1 and L2 depend only on x0, x1, x2, and we see that the projected surface
ξ(A ∩ B) has equation

L0(x
2
0, x0x1, x0x2, x0x3, x

2
1 + x22) + x1L1(x0, x1, x2) + x2L2(x0, x1, x2) = 0.

In the affine space x0 = 1 this is a paraboloid x3 = f(x1, x2) defined by a quadratic
polynomial f . Using translation and rotation in the (x1, x2)-plane, one can transform
this paraboloid into the standard one x3 = ax21 + bx22. Note that a �= b, since otherwise
this paraboloid would be an i-sphere of parabolic type having just one common point
with the line l.

Case (3) of Theorem 6 is very special, since all quadrics in the pencil contain the
plane Π , which implies that D also contain Π as one of its irreducible components.
Hence, in particular, D is not irreducible. 	


4.4 Isotropic Cyclides and CB-patches

Theorem 8. Let T ⊂ R3
++0 be an algebraic surface of degree ≤ 4. If inv(T ) has

a component V of degree ≤ 4, then V is an isotropic cyclide. In particular T is an
isotropic cyclide or it is the union of two isotropic cyclides.
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Proof. Apply Theorem 11 with g = x2 + y2. 	


Corollary 2. Any non-i-spherical bilinear CB-patch is an isotropic cyclide patch.

Proof. Let S be a non-i-spherical bilinear CB-patch. Then by Theorem 2 degS ≤ 4,
whence S is contained in a surface T ⊆ R3 of degree at most 4. Then S′ := inv(S) is
again a bilinear CB-patch, so that degS′ ≤ 4. This implies that inv(T ) has a component
V of degree at most 4 such that S′ ⊆ V . Hence, by Theorem 8, V is an isotropic cyclide.
Therefore S′ is an isotropic cyclide patch, so that the same holds for S. 	


Any bilinear CB-patch generates 2 families of i-circles as its isoparametric curves.
The following theorem characterizes such patches on the given isotropic cyclide.

Theorem 9. Any two non-paired families of i-circles from different pairs on a given
isotropic cyclideD are generated by a bilinear CB-patch. Two families of i-circles from
the same pair can be generated only by a CB-patch defined by rulings of a double ruled
quadrics (or its i-M equivalent).

Proof. Take two i-cirlces C0 and C1 from the family F1 and take an i-circle C01 from
the other family F2. Then by Theorem 5 the pairs of i-circles C0, C01 and C1, C01

intersect in the unique points p0 and p1. By Theorem 1 there exists a unique CB-patch
S bounded by these three circles. But by Corollary 2 we know that every CB-patch is
contained in an isotropic cyclide. Hence if we show that D is the only isotropic cyclide
going through the three circles, then S ⊆ D, so thatD generates the families F1 and F2.

Consider the cone Q associated with the family F1 in the pencil of quadrics PD.
Then the projections of the conics σ(C0), σ(C1), σ(C01) to a general hyperplaneH in
P4 from the vertex of Q are two lines l0, l1 and a conic C, such that the pairs l0, C and
l1, C intersect exactly in one point.

Now if D′ is a different isotropic cyclide that goes through C0, C1 and C01, then
a cone Q′ associated with C0 and C1 has the same vertex as Q. Similarly projecting
the corresponding conics to the hyperplane H , we get the same configuration of lines
l0, l1 and the conic C. If the lines l0, l1 are skew, then by Lemma 6 there is a unique
quadric containing this configuration. This implies that Q′ = Q, so that D′ = D and
the theorem is proved. If the lines l0, l1 intersect, then the family F1 is single and we
need to prove the uniqueness of a quadratic cone going through l0, l1 andC inH , which
is easy. 	


Lemma 6. Given two skew lines (or segments) l1, l2 and a conic C in R3 intersecting
them, there exists a unique quadric surface that contains l1, l2 and C.

Proof. Assume there are two quadrics Q1 and Q2 containing l1, l2 and C. Then Q1 ∩
Q2 = C ∪ l1 ∪ l2. Choose a point p /∈ C but on the same planeH with C. Then there is
a quadric Q in the pencil generated by Q1 and Q2, such that p ∈ Q. Since Q contains
p and C, it contains also the plane H . Therefore, Q is a union of two planes and both
lines l1, l2 should lie on the other plane, but they are skew. This is a contradiction. 	


Two bilinear CB-patches have the same type if they generate the same families of
i-circles, i.e. they define rational parametrizations that differ by an automorphism of
P1 × P1.
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Corollary 3. There are exactly 12 different types of bilinear CB-patches on an isotropic
cyclide with 6 real families of i-circles that are grouped into 3 pairs.

Proof. The existence of such an isotropic cyclide is proved in Example 2. According
to Theorem 9 we choose 2 pairs of families from 3 available, and then we choose from
every family a pair of circles. Thus we get 3 · 2 · 2 = 12 possibilities. 	

Example 2. The isotropic cyclide from Example 1 given by the equation

(x2 + y2)2 − 8x2 − 5y2 + 12z2 + 4 = 0,

has 6 families if i-circles. In Figure 2 one can see 6 i-circles from different families
going through one point. Paired families are represented by pairs if i-circles which
intersect in two points.

Fig. 2. An isotropic cyclide with 6 i-circles from different families

Corollary 4. A patch on the degenerate isotropic cyclide D : x3 = ax21 + bx22, a �= b,
can be parametrized as a bilinear CB-patch if and only if its top view is a parallelogram.

Proof. All i-M circles on D are either i-circles of parabolic type or non-isotropic lines.
According to Section 4.3 their associated cones in P4 have vertices on the exceptional
line l∞ that correspond to the ideal line. Therefore two i-circles on D are associated
to the same cone if their ideal points coincide. Also different families of i-circles are
mapped by the top view projection to different families of parallel lines in the plane R2.
Hence the top view of a bilinear CB-patch will be a parallelogram.

Let us consider two adjacent boundary lines of a given parallelogramP ⊂ R2, which
are top views of two i-circles C and C′ on D. The latter i-circles can be either from
unpaired or from paired families. In both cases by Theorem 9 we can find a CB-patch
with a top view P . 	


5 Applications to Rational Surfaces with Rational Offsets

5.1 PN-surfaces and the Blaschke Model of Laguerre Geometry

Pythagorean-normal (PN) surfaces are rational surfaces F (s, t) in the euclidean space
R3 together with a field of rational unit normals n(s, t). PN-surfaces are important in
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geometric modeling applications, since they are rational surfaces with rational offsets.
Their d-offsets for any d ∈ R can be easily parametrized rationally:

Fd(s, t) = F (s, t) + dn(s, t), |n(s, t)| = 1.

Following [9,11] (see also survey in [5]), we use a dual approach to PN-surfaces. We
treat such a surface as the set of its oriented tangent planes

T or : n1x+ n2y + n3z + h = 0, n2
1 + n2

2 + n2
3 = 1,

and represent them as points
[n1, n2, h, n3,−1] (24)

on the Blaschke cylinder B : x21 + x22 + x24 − x25 = 0 in P4.
The following theorem is due to Pottmann and Peternell [9,11].

Theorem 10. This duality defines a 1–1 correspondence between non-developable (re-
spectively developable) PN-surfaces in the euclidean space R3 and rational surfaces
(respectively curves) in the Blaschke cylinder B ⊂ P4.

Oriented tangent planes and oriented spheres in the standard Laguerre geometry cor-
respond to points and hyperplane sections respectively in the Blaschke cylinder. La-
guerre transformations on B are all projective transformations of the ambient space P4

that preserve B. So one can try to model curves and surfaces in B and then by duality go
back to euclidean space. Unfortunately to work directly in this 3-dimensional cylinder
in P4 is not so easy.

Therefore we project the Blaschke cylinder to the isotropic space R3
++0 using stere-

ographic projection. First we define a point (24) (which is dual to T or) in slightly dif-
ferent coordinates x0, . . . , x∞

δ(T or) = [n3 + 1, n1, n2, h,
1

2
(n3 − 1)] ∈ P4,

and then we apply the stereographic projection ξ

φ(T or) = ξ(δ(T or)) =
−1

n3 + 1
(n1, n2, h) ∈ R3

++0. (25)

Note that for oriented planes −z + h = 0 with normal vector n = (0, 0,−1), this
formula is not defined. In this case we assign the image as a point (actually a number)
h ∈ R on the ideal line in the extended isotropic space R3

++0 ∪ R.
Now oriented tangent planes and oriented spheres can be recognized as points and

i-M spheres respectively in the isotropic space (see Theorem 3). Intersections of i-M
spheres are i-M circles. Therefore i-M circles correspond to oriented circular cones (or
cylinders), since the latter are envelopes of all common oriented tangent planes for pairs
of oriented spheres.

In the following section we will illustrate how bilinear CB-patches can be used for
non-trivial PN-surface construction.
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Fig. 3. A torus patch blending the corner

5.2 Blending Example

The goal is to construct a PN-surface blend of a corner bounded by three orthogonally
intersecting planes in R3, where three edges are rounded with circular cylinders of
different radii r1 < r2 < r3.

We are going to blend these three cylinders and the top horizontal plane using the
special patch of a PN-surface that is dual to a particular bilinear CB-patch.

First we start from the simpler case r1 = r2 < r3 (see Fig. 3) where one can blend
the corner using the obvious patch of a torus with the smaller radius r1 = r2 and the
bigger radius R = r3 − r1. Later on in this section (see too Fig. 4) we will change
radius r1.

Choose the radii r1 = r2 = 1, r3 = 3/2 and three planes Π1 : x − 3/2 = 0,
Π2 : y− 3/2 = 0, Π3 : z− 1 = 0. In the isotropic space they correspond to the control
points of a CB-patch (see (25)):

p0 = φ(Π1) = −e1+
3

2
e3, p1 = φ(Π2) = −e2+

3

2
e3, p2 = p3 = φ(Π3) =

1

2
e3.

Then we calculate the intermediate points qij on arcs joining pi and pj as the φ im-
ages of corresponding tangent planes on cylinders (we choose positions with rational
coordinates avoiding square roots):

q01 = −3

5
e1 − 4

5
e2 +

3

2
e3, q02 = −1

3
e1 +

13

18
e3, q03 = −1

3
e2 +

13

18
e3.

Now we correct the point q02 := q02+
1
10e3 in order to change the radius of the cylinder

between tangent planes Π1 and Π3. Then we calculate weights (see Section 2)

w0 = 1,

w1 = (p1 − q01)
−1(q01 − p0) = 1− e12,

w2 = (p2 − q02)
−1(q02 − p0) = 2− 1

10
e13,

w3 = λ(p3 − q13)
−1(q13 − p1)w1 = λ(2 − e13 − e23 − 2e12),

where the constant λ = 19
10 is determined using Lemma 5.
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In Fig. 4 (left) we see the CB-patch with the calculated control points and weights
and its top view in wire-frame. It is a degenerate quad patch with one edge collapsed
into a point.

The resulting blending surface in Fig. 4 (right) is generated by applying the inverse
of the stereographic projection and calculating a dual surface as the envelope of its
tangent planes. This is a PN-surface patch that can be converted into a tensor product
Bézier surface of bidegree (3, 4).

Fig. 4. A CB-patch and its dual PN-surface patch

6 g-Möbius Geometry

In classical Möbius geometry in R3 the main objects considered are Möbius spheres:
these can be spheres or planes. In other words we can define a Möbius sphere as a
surface in R3 defined by a polynomial of degree 2, whose homogeneous part of highest
degree has the form a(x2 + y2 + z2), for some a ∈ R (possibly zero).

In this section we collect several technical results about g-Möbius geometry, where
the polynomial x2 + y2 + z2 is replaced with any homogeneous polynomial g(x, y, z)
of degree 2, irreducible over R. Actually g = x2 + y2 corresponds to isotropic Möbius
geometry.

Moreover we will give an algebraic definition of a g-cyclide as a generalization of
a Darboux cyclide in Möbius geometry. The main result is Theorem 11, which gives a
sufficient condition for a surface to be a g-cyclide.

6.1 g-spheres

Definition 4. A g-sphere S ⊆ R3 is an algebraic surface whose equation is of the form

ag(x, y, z) + L(x, y, z) + b = 0,

where a �= 0, b ∈ R and L is an homogeneous polynomial of degree 1 (or it is zero). A
g-Möbius sphere is either a g-sphere or a plane.



300 R. Krasauskas, S. Zubė, and S. Cacciola

Definition 5. Let G = {g = 0} ⊂ R3. A g-inversion (with respect to the origin) is the
map invg : R3 \G → R3 \G, defined by

invg(x, y, z) =

(
x

g(x, y, z)
,

y

g(x, y, z)
,

z

g(x, y, z)

)
.

Given an algebraic subset T ⊂ R3, such that no irreducible components of T are
contained in G, we define invg(T ) := invg(T \G), where the closure is with respect
to the euclidean topology in R3.

Note that for every homogeneous irreducible polynomial g of degree 2, we have that
(invg)

2 = id. Moreover invx2+y2+z2 is the Möbius inversion with respect to the sphere
of radius 1 centered in the origin, while invx2+y2 is exactly the isotropic inversion inv
that appears in Section 2.2.

Remark 2. Given a polynomial f ∈ R[x, y, z] of degreen, let us write f = fn+· · ·+f0,
where fi is homogeneous of degree i and let us define fg := fn + fn−1g + fn−2g

2 +
· · ·+ f0g

n. If T := {f = 0}, then, because (invg)2 = id, we have that

invg(T ) =

{
fg
gn

= 0

}
=

{
fg

gcd(fg, gn)
= 0

}
.

Lemma 7. S is a g-Möbius sphere if and only if invg(S) is a g-Möbius sphere. More-
over S passes through the origin if and only if invg(S) is a plane.

Proof. A g-Möbius sphere S has the equation ag(x, y, z) + L(x, y, z) + b = 0, for
some a, b ∈ R. Then invg(S) = {bg(x, y, z)+L(x, y, z)+a= 0} is again a g-Möbius
sphere. MoreoverS passes through the origin if and only if b = 0, if and only if invg(S)
is a plane. 	


6.2 g-cyclides

Definition 6. We say that an algebraic surface S ⊂ R3 is a g-cyclide if it is the zero-set
of the polynomial

f(x, y, z) = λg(x, y, z)2 + g(x, y, z)L(x, y, z) +Q(x, y, z),

where λ ∈ R, L is an homogeneous polynomial of degree 1 (or it is zero) and Q is a
polynomial of degree at most 2.

Note that a (x2 + y2 + z2)-cyclide is a Darboux cyclide and a (x2 + y2)-cyclide is
an isotropic cyclide.

Lemma 8. X is a g-cyclide if and only if invg(X) is a g-cyclide.

Proof. Let X := {λg2 + gL + Q = 0} = {λg2 + gL + Q2 + Q1 + Q0 = 0},
where degQi = i. Then invg(X) has the equation λ+ L+Q2 +Q1g +Q0g

2, so that
invg(X) is a g-cyclide. 	
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Theorem 11. Let T ⊆ R3 be a surface of degree ≤ 4. If invg(T ) has a component V
of degree ≤ 4, then V is a g-cyclide. In particular either T is a g-cyclide or T is the
union of two g-cyclides.

Proof. Let T = {f = 0} ⊂ R3, where f ∈ R[x, y, z] and deg f ≤ 4. Let us suppose
deg f = 4 (the other cases are similar). Let fg = f4 + f3g + f2g

2 + f1g
3 + f0g

4, as
in Remark 2. Note that in general deg fg ≤ 8 and deg fg = 8 if and only if f0 �= 0. Let
us suppose that in fact f0 �= 0 (the other cases are similar).

Denote by T ′ the variety obtained by performing the inversion invg of T . Consider
a polynomial h such that fg = hgk, for some 0 ≤ k ≤ 4, and gcd(g, h) = 1. Then,
by Remark 2, T ′ = {h = 0}, so that, by hypothesis, h has a factor a of degree ≤ 4,
defining a component V of T ′. Let us suppose for simplicity that deg a = 4. Then
fg = ab is the product of two polynomials of degree 4. By lemma 9 it follows that V is
a g-cyclide.

The last part of the theorem follows because we have proved that T ′ = invg(T ) is a
union of g-cyclides, so that the same holds for T . 	


Remark 3. If a surface T satisfies the conditions of Theorem 11, then it can be a union
of two g-cyclides but it might happen that it is not a g-cyclide itself. For example,
T might be the union of two quadrics and invg(T ) might be a union of two quartic
cyclides.

Lemma 9. Let f and fg be as in the proof of Theorem 11. If fg = ab is the product of
two polynomials of degree 4, then a and b define two g-cyclides.

Proof. Remember that fg := f4 + f3g+ f2g
2 + f1g

3 + f0g
4, and for all i, the polyno-

mials fig4−i are homogeneous of degree 8− i. Let us write a := a4+a3+a2+a1+a0
and b := b4+b3+b2+b1+b0, where, for every i, ai and bi are homogeneous of degree
i. To prove the lemma, we need to prove that g2|a4, g2|b4, g|a3 and g|b3.

By considering the part of degree 8 of the equation fg = ab, we get that

a4b4 = f0g
4

(remember that we are assuming f0 �= 0). This implies that a4 = γag
2, b4 = γbg

2,
where γa, γb ∈ R \ {0}.

Now, the part of degree 6 of the equation fg = a · b gives that

f2g
2 = a4b2 + a3b3 + a2b4 = g2(γab2 + γba2) + a3b3.

Hence a3b3 = g2 · (f2 − γab2 + γba2). If f2 − γab2 + γba2 �= 0, then g2|a3b3, which
implies that g|a3 and g|b3 and we are done. If f2 − γab2 + γba2 = 0, then a3b3 = 0.
Without loss of generality we can then assume then b3 = 0. In this case we also consider
the part of degree 7, which gives that

a3b4 + b3a4 = f1g
3.

This implies that a3γbg2 = f1g
3, so that g|a3, and we are done. 	
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7 Conclusions

A Bézier-like rational surface construction was introduced with weights in the geomet-
ric (Clifford) algebra generated by isotropic space. It is shown that these Clifford-Bézier
(CB) patches are isotropic Möbius invariant. The bilinear case is studied in most detail:
their implicitization formula is derived, they are characterized as patches on isotropic
cyclides and the uniqueness of patches with three given boundary isotropic circles is
proved.

The developed theory allows us to model Pythagorean-normal (PN) surfaces em-
ploying duality between the standard model of Laguerre geometry and the isotropic
one. One example is presented where a PN-surface (dual to a CB-patch) is used to
blend three cylinders of different radii and one plane.

Further research directions include: detailed classification of isotropic cyclides, gen-
eralization of bilinear CB-patches to higher degrees, more applications to PN-surface
modeling, e.g. one can expect that CB-patches of bidegree (1, 2) can reproduce the
branching blend in [6].

Acknowledgements. This paper has been partially financed by the Marie-Curie Initial
Training Network SAGA (ShApes, Geometry, Algebra) FP7-PEOPLE contract PITN-
GA-2008-214584.

The Maple Package for Clifford Algebra [1] was used extensively for symbolic
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Gábor Kiss1, Carlotta Giannelli2, and Bert Jüttler2
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Abstract. Tensor–product B–spline surfaces are commonly used as
standard modeling tool in Computer Aided Geometric Design and for
numerical simulation in Isogeometric Analysis. However, when consid-
ering tensor–product grids, there is no possibility of a localized mesh
refinement without propagation of the refinement outside the region of
interest. The recently introduced truncated hierarchical B–splines (THB–
splines) [5] provide the possibility of a local and adaptive refinement pro-
cedure, while simultaneously preserving the partition of unity property.
We present an effective implementation of the fundamental algorithms
needed for the manipulation of THB–spline representations based on
standard data structures. By combining a quadtree data structure —
which is used to represent the nested sequence of subdomains — with a
suitable data structure for sparse matrices, we obtain an efficient tech-
nique for the construction and evaluation of THB–splines.

Keywords: hierarchical tensor–product B–splines, truncated basis,
THB–splines, isogeometric analysis, local refinement.

1 Introduction

The de facto standard in computer aided geometric design is the tensor–product
B–spline model together with its non–uniform rational extension (NURBS).
Among other fundamental properties, like minimum support, efficient refine-
ment and degree–elevation algorithms, B–splines are nonnegative and form a
partition of unity. This implies that a B–spline curve/surface is completely con-
tained in the convex hull of a certain set of points, usually referred to as control
net. The shape of the control net directly influences the shape of the B–spline
representation, so that the designer can use it to manipulate the correspond-
ing parametric representation in a fairly intuitive way. Unfortunately, an un-
avoidable drawback of the tensor–product structure is a global nature of the
mesh refinement which excludes the possibility of a local refinement scheme as
illustrated in Figure 1(a–c).

M. Floater et al. (Eds.): MMCS 2012, LNCS 8177, pp. 304–323, 2014.
© Springer-Verlag Berlin Heidelberg 2014
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(a) initial grid (b) area of interest (c) knot insertion (d) hierarchical grid

Fig. 1. Adaptive refinement of an initial tensor–product grid (a) with respect to a
localized region (b) may be achieved by avoiding a propagation of the refinement due
to the tensor–product structure (c) through a hierarchical approach (d).

Despite an increasing interest in the identification of adaptive spline spaces
and related applications, see e.g., [7,15,18], local mesh refinement remains a non–
trivial and computationally expensive issue. A suitable trade–off between the
quality of the geometric representation (in terms of degrees of freedom needed
to obtain a certain accuracy) and the complexity of the mesh refinement al-
gorithm has necessarily to be taken into account. Different approaches have
been proposed which all extend the standard tensor–product model by allow-
ing T–junctions between axis aligned mesh segments. Among others, this led to
the introduction of hierarchical B–splines (HB–splines) [4,11,12], T–splines [16],
polynomial splines over T–meshes [2] and – more recently – truncated hierarchi-
cal B–splines (THB–splines) [5] and locally refined B–splines [3].

The idea of performing surface modeling by manipulating the parametric rep-
resentation at different levels of details was originally proposed by Forsey and
Bartels [4]. In order to localize the editing of detailed features, the refinement is
iteratively adapted on restricted patches of the surface in terms of a sequence of
overlays with nested knot vectors. Subsequently, Kraft [11,12] showed that the
hierarchical structure enforced on the mesh refinement procedure can be comple-
mented by a simple and automatic identification of basis functions which natu-
rally generalizes some of the fundamental properties of tensor–product B–splines
— such as nonnegativity and linear independence — to the case of HB–splines.

The multilevel approach allows to break the rigidity of a tensor–product con-
figuration by simultaneously preserving a highly organized structure as shown
in Figure 1(d). An example of hierarchical refinements over rectangular–shape
regions is presented in Figure 2.

The hierarchical B–spline model found applications in data interpolation and
approximation [10,11,13], as well as in finite element and isogeometric analysis
[1,14,18]. Alternative spline hierarchies were also considered in the literature, see
e.g., [9,19].

Kraft’s basis for HB–splines does not possess the partition of unity prop-
erty without additional scaling and it possesses only limited stability properties.
Truncated hierarchical B–splines [5] have the potential to overcome these lim-
itations and provide improved sparsity properties. They were introduced as a
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possible extension of normalized tensor–product B–splines to suitably handle
the local refinement in adaptive surface approximation algorithms. This multi-
level scheme was also generalized and further investigated in [6], where partic-
ular attention was devoted to the stability analysis of the proposed hierarchical
construction.

In virtue of the multilevel nature of the hierarchical B–spline approach, the
natural choice in terms of data structures is a tree–like representation where
a given refinement level correspond to a certain level of depth in the tree [4].
Related and alternative solutions were also further investigated. An algorithm for
scattered data interpolation and approximation by multilevel bicubic B–splines
based on a hierarchy of control lattices was described in [13]. An implementation
of hierarchical B–splines in terms of a tree data structure whose nodes represent
the B–splines from different levels was recently presented in [1]. Another solution
consists of storing in each node of the tree the data related to a knot span of a
certain level, in particular the significant basis functions acting on it [14].

The goal of the present paper is to introduce an effective implementation
of data structures and algorithms for the newly introduced THB–splines. To
represent the subdomain hierarchy we use a quadtree data structure in com-
bination with sparse matrices. The quadtree provides an efficient and dynamic
data structure for representing the subdomains. It also facilitates the needed
update which may be caused by an iterative refinement process. One key moti-
vation for this choice is to reduce the memory overhead in need for storing the
subdomain hierarchy as much as possible. The selection of (possibly truncated)
basis functions proceeds as described in [5] by means of certain queries which
use the quadtree. The result is encoded by a sequence of sparse matrices. The
quadtree and the related sparse matrices are initially created and subsequently
updated during the refinement procedure. For the hierarchical spline evaluation
algorithm, however, only the access to the sparse matrices is required. This leads
to a reasonable trade–off with respect to memory and time consumption during
both the construction of THB–splines from an underlying subdomain hierarchy
and their evaluation for given parameter values.

The paper is organized as follows. In Section 2 we describe the hierarchical ap-
proach to adaptive mesh refinement together with the definition and evaluation
of the THB–spline basis. Section 3 introduces the data structures and algorithms
used for the representation of the subdomain hierarchy, while Section 4 explains
the construction of the matrices needed during the THB–spline evaluation in
more detail. Some numerical results are then presented in Section 5 to illustrate
the performance of our approach, while the extension of the proposed approach
to more general knot configurations and refinements is discussed in Section 6.
Finally, Section 7 concludes the paper.

2 THB–splines

We define an adaptive extension of the classical tensor–product B–spline con-
struction in terms of a certain number N of hierarchical levels that correspond
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Fig. 2. An example of hierarchical refinement over rectangular–shape regions where
the central area of the mesh is always refined up to the maximum level of detail: two
levels (left), three levels (middle) and four levels (right).

to an increasing level of detail. At each refinement step we select a specific
tensor–product grid associated with the current level. Provided that the se-
quence of tensor–product grids corresponds to a nested sequence of spline spaces
V 0, . . . , V N−1 which satisfies

V 	−1 ⊂ V 	,

for $ = 1, . . . , N−1, the hierarchical framework allows to consider different types
of grid refinement. Following the notation of [17], the superscript $ denotes the
hierarchical level $ throughout the paper.

The present paper focuses on the bivariate tensor–product case. However, the
framework can easily be adapted to the multivariate setting and even to more
general spline spaces [5,6]. Nevertheless, even if the representation model we
are going to introduce may in principle be used to handle non–uniform mesh
refinement and even spaces generated by degree elevation, we will consider only
the dyadic uniform case throughout this paper. The modifications which are
required to extend the proposed approach to more general knot configurations
are discussed in Section 6.

More precisely, we assume that the coarsest spline space V 0 is spanned by
bivariate tensor–product B–splines with respect to two bi–infinite uniform knot
sequences. The finer spaces V 	 are obtained by iteratively applying dyadic sub-
division, i.e., each cell of the original tensor-product grid is split uniformly into
four cells.

Let Ω0 be a rectangular planar domain whose edges are aligned with the
tensor-product grid of V 0, and let {Ω	}	=0,...,N−1 be a nested sequence of sub-
domains so that

Ω	−1 ⊇ Ω	, (1)

for $ = 1, . . . , N − 1. Each Ω	 is defined as a collection of cells with respect to
the tensor–product grid of level $− 1.

Example 1. Figures 2 and 3 show three subdomain hierarchies which will be
used to demonstrate the performance of our algorithms and data structures:
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(a) Ω0 ⊇ Ω1 (b) Ω0 ⊇ Ω1 ⊇ Ω2 (c) Ω0 ⊇ Ω1 ⊇ Ω2 ⊇ Ω3

(d) Ω0 ⊇ Ω1 (e) Ω0 ⊇ Ω1 ⊇ Ω2 (f) Ω0 ⊇ Ω1 ⊇ Ω2 ⊇ Ω3

Fig. 3. Two nested sequences of subdomains — indicated as linear (top) and curvilinear
(bottom) in Example 1. They satisfy relation (1) with respect to two (left), three
(middle) and four (right) hierarchical levels.

– rectangular (refinement over rectangular–shaped regions);
– linear (refinement along a diagonal layer);
– curvilinear (refinement along a curvilinear trajectory).

By starting with an initial tensor–product configuration at level 0, the tensor–
product grid associated with level $+1 is obtained by subdividing any cell of the
previous level into four parts. Each subdomain Ω	 is then defined as a certain
collection of cells with respect to the grid of level $ so that (1) is satisfied. Figure 2
illustrates an example of hierarchical refinement over rectangular–shape regions
where the central area of the mesh is always refined up to the maximum level
of detail. The other two subdomain hierarchies mentioned above are shown in
Figure 3 up to four refinement levels so that Ω0 ⊇ . . . ⊇ Ω3.

For each hierarchical level $, with $ = 0, . . . , N − 1, let B	 be the normalized
B–spline basis of the spline space V 	 with respect to a certain degree (d, d)
defined on corresponding nested knot sequences. We say that

ω ∈ B	 is active ⇔ supp0 ω ⊆ Ω	 ∧ supp0 ω �⊆ Ω	+1,

where supp0 ω = suppω ∩ Ω0 is a slightly modified support definition which
makes local refinements possible also along the boundaries of Ω0. A B–spline
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ω ∈ B	 is then active if it is completely contained in Ω	 but not in Ω	+1, and
passive otherwise.

We may assume the initial domain Ω0 to be an axis-aligned box1. By denoting
with k the number of knot spans of level 0 along the edges ofΩ0, which is assumed
to be the same for both directions, we define a characteristic matrix X	 of size
s	 × s	, with s	 = (2	k + d), for $ = 0, . . . , N − 1. These matrices collect the
information about active/passive B–splines level by level, namely

X	
i,j =

{
1 if ω	

i,j is active,
0 otherwise,

where ω	
i,j is a B–spline of level $. The indices i, j are chosen such that exactly

the B-splines ω	
i,j with i, j = 1, . . . , s	 are non–zero on Ω0.

Definition 1 ([11,12], extended in [18]). The hierarchical B–spline (HB–
spline) basis H is defined as the set of all active B–splines defined over the
tensor–product grid of each level,

H =
⋃

	=0,...,N−1

{ω	
i,j ∈ B	 : X	

i,j = 1}.

A spline function represented in the hierarchical B–spline basis is then defined
as a linear combination of active B–splines from different levels in the hierarchy.
In order to evaluate the considered spline in a given point of the domain, the
contribution of all the active B–splines (from the minimum to the maximum level
of basis functions whose support is non–zero on that point) has to be computed
and then added together. The cost of the hierarchical evaluation algorithm is
then quadratic and linear with respect to the degree (B–spline evaluation) and
the number of levels, respectively.

Truncated hierarchical B–splines [5,6] form a different basis for the same mul-
tilevel B–spline space. The key idea behind this alternative hierarchical construc-
tion is to properly exploit the refinable nature of the B–spline basis which allows
to express a B–spline of level $ in terms of (d + 2)2 functions which belong to
level $+1 and of certain binomial coefficients scaled by a factor 2−d with respect
to any dimension. By using this subdivision rule, any function τ ∈ V 	 can be
represented according to a two–scale relation with respect to the basis B	+1 of
V 	+1, namely

τ =
∑

β∈B�+1

c	+1
β (τ)ω,

with certain coefficients c	+1
β (τ) ∈ R. The truncation of τ ∈ V 	 with respect to

B	+1 and Ω	+1 is the function trunc	+1τ ∈ V 	+1 defined as:

trunc	+1τ =
∑

β∈B�+1,supp β �⊆Ω�+1

c	+1
β (τ)ω.

1 Different shapes are easily identified at subsequent levels as shown in Figure 3.
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The overall truncation of a hierarchical B–spline ω ∈ B	∩H is defined by recur-
sively applying the truncation with respect to the different levels,

trunc ω = truncN−1(truncN−2 . . . (trunc	+1ω)).

By recursively discarding the contribution of active B–splines of subsequent lev-
els from coarser B–splines, we obtain the definition of the truncated basis.

Definition 2 ([5]). The truncated hierarchical B-spline (THB–spline) basis T
is defined by

T ={truncω	
i,j : X

	
i,j = 1, $ = 0, . . . , N − 2} ∪ {ωN−1

i,j : XN−1
i,j = 1}.

Truncated hierarchical B–spline are linearly independent, non-negative, form
a partition of unity and preserve the nested nature of the spline spaces [5].
Moreover, the construction of THB–splines is strongly stable with respect to
the supremum norm provided that the knot vectors satisfy certain reasonable
assumptions — see [6] for more details.

In addition to the characteristic matrices {X	}N−1
	=0 , we consider another se-

quence of matrices {C	}N−1
	=0 of the same size and with the same sparsity pattern,

i.e. X	
i,j = 0 implies c	i,j = 0. These matrices store the coefficients associated to

the (active) basis functions in the representation of a spline function with respect
to the truncated basis. The following simple algorithm performs the evaluation
of a hierarchical spline function which is represented in terms of THB–splines.

Algorithm EVAL THB(seqmat X, seqmat C, int D, int LMAX, float U,V)

\\ seqmat X is the sequence of characteristic matrices, i.e., X[L] is the char-
acteristic matrix of level L

\\ seqmat C is the sequence of coefficient matrices associated to the spline
function f , i.e., C[L] is the coefficient matrix of level L

\\ int D is the degree in both directions
\\ int LMAX is the maximum refinement level N − 1
\\ float U,V are evaluation parameters
Identify the (D+1)×(D+1) sub–matrix M of C[0] which contains the coeffi-

cients of those B–splines of level 0 that are non–zero at (U,V)
for L = 1 to LMAX do {

Generate the matrix S by applying one step of B–spline subdivision to M

Identify the (D+1)×(D+1) sub–matrix T of S which contains the coeffi-
cients of those B–splines of level L that are non–zero at (U,V)

for each pair of indices i,j in T do {

if X[L](i,j) == 1 then T(i,j) = C[L](i,j) }

M = T }

return the value f obtained by applying de Boor’s algorithm to M
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In this algorithm, the sub-matrices M,S, and T at a certain level are always ac-
cessed by global indices, i.e., indices with respect to the entire array of all tensor–
product splines of that level. The following proposition clarifies the connection
between the evaluation algorithm and the truncated hierarchical B–spline basis.

Theorem 1. The value f(u, v) computed by the algorithm is the value of a
function represented in the THB–spline basis.

This can be proved by applying the algorithm to Kronecker–type coefficient
data, where exactly one coefficient is nonzero and equals 1. This corresponds to
the evaluation of a truncated basis function.

The cost of the THB–spline evaluation algorithm EVAL_THB is equal to N − 1
times the application of the B–spline subdivision rule plus the cost due to the
standard de Boor’s algorithm. Consequently, it grows linearly with the number
of levels and quadratically with the degree of the splines. This is similar to the
costs needed for evaluating the classical (non-truncated) hierarchical B–splines.
The computational cost could be further reduced

– by starting the for loop at the minimum level of functions which are active
at the given point (u, v), and

– by stopping it at the maximum level of functions which are active at this
point.

With this modification, the computational costs grows linearly with the number
of levels which are active at the given point. This number can be controlled by
choosing a suitable refinement strategy.

The following sections discuss data structures and algorithms for manipulat-
ing and storing the subdomain hierarchy and for representing the characteristic
matrices and coefficient matrices.

3 Representing and Manipulating the Subdomain
Hierarchy

The domain Ω0 is now assumed to be a box consisting of 2n × 2n cells of the
coarsest tensor-product grid, where n is a non-negative integer. This assumption
is made in order to facilitate the use of a quadtree data structure. Moreover, in
order to simplify the implementation, the edges of the coarsest tensor–product
grid should have the length 2M−1, where M is the maximum number of lev-
els, i.e. N ≤ M . Under this assumption, all coordinates of bounding boxes in
the algorithms presented below are integers. Alternatively, one may use other
exact data types than integers (e.g. rational numbers), thereby eliminating the
restriction on the number of levels.
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3.1 The Subdomain Hierarchy Quadtree

We represent the entire subdomain hierarchy by a single quadtree. Each node of
the quadtree takes the form

struct qnode{

aabb box;

int level;

*node nw;

*node ne;

*node sw;

*node se; };

where the axis–aligned bounding box aabb box is characterized by coordinates
of its upper left and lower right corner, level defines the highest level in which
the box is completely contained and nw, ne, sw, se are pointers to the four
children of the node. These children represent the northwestern, northeastern,
southwestern and southeastern part of the box after the dyadic subdivision. All
pointers to these children are set to null until the node is created during the
insertion process, which is described by the INSERTBOX algorithm below.

Let Ω	 =
⋃

i b
	
i , where each b

	
i is a collection of cells forming a rectangular box.

During the creation of the quadtree which represents the subdomain hierarchy,
for each level $, we insert all boxes b	i which define Ω	. The following recursive
algorithm performs the insertion of a box b	i into the quadtree:

Algorithm INSERTBOX(box B, qnode Q, int L)
\\ box B is the box which will be inserted
\\ qnode Q is the current node of the quadtree
\\ int L is the level
if B == Q.box then {

Q.level = L

visit all nodes in the subtree with root Q; if the level of a node is less
than L then increase it to L }

else {

for child in {Q.nw, Q.ne, Q.sw, Q.se} do {

if child != null then {

if B∩Q.box �= ∅ then INSERTBOX(B∩Q.box, child, L) }

else {

create the box childbox of child
if B∩childbox �= ∅ then

create the node child

set child.box to childbox, child.level to Q.level and the
four children to null

INSERTBOX(B∩childbox, child, L) } } }

After each box insertion we perform a cleaning step, visiting all sub–trees and
deleting those where all nodes have the same level. This reduces the depth of
the tree to a minimal value and optimizes the performance of all algorithms.
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Fig. 4. Initial subdomain structure (left) and corresponding quadtree (right) which
stores the boxes related to level 0 and 1 in the hierarchy. The box b = [16, 8]× [24, 12]
(red) has to be inserted into the quadtree at level 2.

Example 2. To explain the INSERTBOX algorithm, we consider the subdomain
hierarchy composed of three levels (N = 3), two of which (level 0 and 1) are
initially present. This is shown in Figure 4, together with the related quadtree
representation. The domain Ω0 has k = 16 edges of length 2N−2 = 2. The box
b = [16, 8]× [24, 12] will be inserted at level 2 into the hierarchy. The cells with
respect to the tensor–product grid of level 1 covered by b are depicted in red in
Figure 4.

The execution of the algorithm is illustrated in Figure 5. At each step, we high-
light the current node Q and the corresponding box in the subdomain hierarchy
(Figure 5, right and left column, respectively). The insertion starts by consid-
ering the root of the tree, where the box b is compared with the axis–aligned
bounding box stored in the root. Since these two boxes are not the same, the
level of the root remains unchanged.

Subsequently, we have to identify which boxes between the ones stored in
the four children of the root overlap with b, see Figure 5(a). In this case b is
completely contained in the box represented by the ne child of the root. The
recursive call of INSERTBOX is therefore applied to this child only. The situation
in Figure 5(b) is similar to the previous case. After the split, the algorithm is
recursively applied to the sw child.

In the third step shown in Figure 5(c) instead, the box b overlaps with the
boxes related to two children (nw and ne) of the current node. Then, b is also
subdivided and the recursion is called on both children.

Figure 5(d) shows the last step executed by the insertion of the box b. Two
new nodes are created and inserted into the quadtree. Since these nodes coincide
with the two parts of b, we set their level to 2. Clearly, the box to be inserted
does not necessarily become a single node of the quadtree but it may be stored
into several nodes.

3.2 Queries

In order to create the characteristic matrices introduced in Section 2, we define
three query functions on the quadtree. These queries allow to understand if all
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(a) first split (left) and quadtree (right)

(b) second split (left) and quadtree (right)

(c) third split (left) and quadtree (right)

(d) two new boxes (left) are inserted into the quadtree (right)

Fig. 5. Different steps performed by the INSERTBOX function to insert the box b =
[16, 8] × [24, 12] into the subdomain hierarchy of Figure 4. The subsequent splits are
shown on the subdomain hierarchy (blue lines on the left) with respect to the visit of
the quadtree (right).
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(a) level 0 and 1 (b) QY1 for level 0 (c) QY2 for level 0 (d) results of QY3

Fig. 6. Results of the three queries functions with respect to a subdomain hierarchy
(a) with two levels. In case of QY1 (b) and QY2 (c), the green/red boxes correspond to a
positive/negative answer. QY3 (d) returns 1 for the green boxes and 0 for the red ones.

basis functions ω of a certain hierarchical level whose support is contained in a
given box b are active or passive.

Given a box b defined as a collection of cells with respect to the tensor–product
grid of level $, the first query (QY1), returns true if

b ⊆ Ω	 ∧ b ∩Ωi = ∅, i > $. (2)

Thus, if QY1 returns true, then all the basis functions of level $ whose support
is completely contained in the box b are active, i.e., they are present in the
hierarchical spline basis.

If the second query QY2 returns true then all the basis functions of level $
whose support is contained in the box b are passive, i.e., they are not present in
the hierarchical spline basis. This is characterized by the following condition:

b ∩Ω	 = ∅ ∨ b ⊆ Ω	, for some i > $. (3)

The third query QY3 returns the highest level $ with the property that Ω	

contains the box b.
All the three queries can easily be implemented with the help of the quadtree

structure described before. In particular, the structure of queries QY1 and QY2

is similar. We visit the quadtree until we find a leaf node or a node where the
result of the query changes from to true to false. At that point, we can conclude
the visit and return false. On the other hand, query QY3 requires a complete visit
of the quadtree.

Example 3. Figure 6(b–d) shows the results of the three queries with respect
to the subdomain hierarchy composed of two levels (level 0 and 1) shown on
Figure 6(a) for four sampled boxes of level 0. Figures 6(b) and (c) display the
results of QY1 and QY2 for $ = 0, respectively. The boxes in green correspond to a
positive answer to the query, the red boxes to a negative one. Finally, Figure 6(d)
shows the results for QY3. The green boxes correspond to answer 1 and the red
ones to answer 0.
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4 Characteristic Matrices

The characteristic matrices identify the tensor–product basis functions which
are present in the hierarchical basis.

4.1 Creating Characteristic Matrices

By using the quadtree structure defined in Section 3, we can generate the charac-
teristic matrices introduced in Section 2 to represent and evaluate THB–splines.
For the creation of these matrices we considered two different approaches:

– the one–by–one approach where we determine the entries of the characteristic
matrices one by one by applying QY3 to each single basis function;

– the all–at–once approach where we try to set as many values as possible in
one single step. This requires a more sophisticated algorithm.

During the creation of the characteristic matrices by the all–at–once approach,
we try to set many entries of the matrices at the same time. In order to do
this, the query functions are initially called for boxes which cover the initial
domain Ω0. The SETMAT algorithm below creates the characteristic matrices for
all subdomains in the subdomain hierarchy.

Algorithm SETMAT(qnode Q, seqmat X)

\\ qnode Q is the root of the quadtree which stores the subdomain hierarchy
\\ seqmat X is the sequence of characteristic matrices, i.e. X[L] is the char-
acteristic matrix of level L
for all levels L do {

Create the index set I for all functions of level L acting on Ω0. I is an
axis-aligned box in index space.

SETBOX(B,X[L]) }

SETMAT calls the algorithm SETBOX. When the answer active/passive cannot be
given for the current call, the considered box is split into 4 disjoint axis–aligned
bounding boxes and SETBOX function is recursively applied to them.

Algorithm SETBOX(aabbis I, mat XL)

\\ aabbis I is an axis-aligned box in index space
\\ mat XL is a characteristic matrix of level L
The level L is a global variable
Create the axis-aligned bounding box B covering all cells of level L which

belong to the supports of functions with indices in I

if QY1(B, L) then {

for all indices (i,j) in I do XL[i,j]=1 }

elseif QY2(B, L) then {

for all indices (i,j) in I do XL[i,j]=0 }

elseif I is a single pair (i,j) then {
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(a) (b) (c) (d) (e) (f)

Fig. 7. A subdomain hierarchy with two levels and some of the boxes I in index space
(shown as circles) along with the associated bounding boxes B in parameter space (grey)
considered by SETBOX when creating the characteristic matrix X0 for this subdomain
hierarchy (a–e). Active (green) and passive (red) functions of level 0 (f).

k = QY3(B, L)

if k == L then XL[i,j]=1

else XL[i,j]=0 }

else {

split I into 4 disjoint axis-aligned bounding boxes I1-I4 by subdividing
each edge (approximately) into halves in index space.

Apply SETBOX to I1-I4 and XL }

Example 4. Figure 7 shows a subdomain hierarchy with two levels, consisting of
a square Ω0 and a subdomain Ω1 in the southeastern corner, which is shown
in blue. The four pictures (a–e) visualize several index sets I (shown by circles)
and the associated boxes B (grey) which are considered by SETBOX when creating
X0 for biquadratic splines.

Initially, SETBOX considers the entire set of basis functions (a) and concludes
that it has to be subdivided. The northwestern subset is shown in (b). Query
QY1 returns 1, therefore the functions are all active; no subdivision is needed.
The northeastern and southwestern subsets (not shown) are dealt with similarly.
The southeastern subset (c), however, has to be subdivided. Considering its
northwestern subset (d) does not lead to a conclusion again, needing another
subdivision. The functions in this index set have to be analyzed one-by-one
(not shown). The northeastern and southwestern subsets (not shown) are dealt
with similarly. For the southeastern subset (e), however, query QY2 returns 1,
therefore the functions are all passive. Finally, the procedures arrives at the
correct classification of basis functions of level 0 (f).

As Example 5 shows the all–at–once approach is not necessarily faster com-
pared to the one–by–one mentioned at the beginning of this section. However,
the approach becomes considerably faster with an increasing number of levels.
This is demonstrated by the next example.

Example 5. Figure 8 compares the all–at–once setting with the one–by–one
method. The number of queries called by the one-by-one approach is the same
for the three hierarchical refinements in Figure 9 since it depends solely on the
number of basis functions. This approach is faster for small numbers of basis
functions, which typically correspond to a small numbers of hierarchical levels.
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Fig. 8. The plot visualizes the number of queries needed to create the characteristic
matrices for the three examples in Figure 2, 3 and 9. Compared to the all–at–once
approach (cyan: linear, green: curvilinear, red: square-shaped refinement), the one–by–
one approach (blue: same for all examples) is faster for small numbers of levels and
basis functions, but it becomes slower for higher ones.

Fig. 9. The three subdomain hierarchies considered in Example 6: rectangular (left),
linear (middle) and curvilinear (right) refinement, all with six levels.

On the other hand, the all–at–once approach becomes faster for higher numbers
of basis functions in all the three considered cases since the number of queries
grows sub–linearly with respect to the number of basis functions.

4.2 Using Sparse Data Structures

The representation of THB–splines in terms of characteristic matrices allows
a fast look–up during the evaluation process and a simple update of the val-
ues when the underlying subdomain hierarchy changes. The drawback of this
representation is the rather large memory consumption, which can exceed the
available physical memory even for relatively small meshes and low numbers of
levels. Indeed, it grows exponentially with the number of levels.

This problem can be solved by using a suitable sparse matrix data struc-
ture. For our experiments, we chose the compressed sparse column (CSC) data
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structure. The nonzero elements (read first by column) are stored in a one–
dimensional array. A second array stores the row indices corresponding to these
values and a third one collects the indices into the first two arrays of the leading
entry in each column [8].

As detailed in the next section, the CSC structure significantly reduces the
memory consumption of our approach (see Example 6). In fact, we will observe
that the memory consumption grows linearly with the number of degrees of
freedom, instead of exponentially with the number of levels. In addition, the
price paid for reducing the memory requirements is only a small increase of the
computational time (see Examples 7 and 8).

5 Examples

We implemented the proposed algorithms and data structures in C++. For the
manipulation of the characteristic matrices we used the sparse MATLAB rep-
resentation in terms of the compressed sparse column approach mentioned at
the end of the previous section. The experiments have been performed on a lap-
top running the Windows 7 operating system (Intel Core I5-2520 2.5GHz, 4GB
RAM, 64 bit).

Example 6. We compare the memory consumption of full characteristic matrices
with the memory consumption of the matrices represented in the CSC structure
for the three subdomain hierarchies in Figure 9 (rectangular, linear, and curvi-
linear).

The experimental results in Figure 10 show that the memory needed by the
sparse matrix data structure is considerably smaller then the one related to
the full matrix representation. Moreover, the memory consumption grows only
linearly with the numbers of degrees of freedom instead of exponentially with
the number of levels. This is the optimal result that one can expect, since a
coefficient for each active basis function needs to be stored anyway.

We observe a difference between the results related to the rectangular–shaped
refinement with respect to the linear and curvilinear case. The reason is the dif-
ferent nature of the refinement procedure. In the linear and curvilinear case, the
refined area is reduced at each new level and the coarser levels do not change (see
Figure 3). In the rectangular case, the refined area of the highest level is constant
and the size of lower level subdomains increases (see Figure 2). Thus, using the
sparse data structure does not decrease the order of memory consumption in
this case, since the number of degrees of freedom grows exponentially with the
number of levels.

The next example analyzes the influence of using the sparse data structures to
the time needed to evaluate the multilevel spline functions using the algorithm
EVAL_THB.

Example 7. Figure 11 visualizes the distribution of the computation times needed
to evaluate the multilevel spline function at 1000 points with (blue bars in the
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Fig. 10. Memory needed to represent the characteristic matrices without (blue) and
with (green) the use of sparse data structures for different numbers of degrees of freedom
related to the square (top left), the circle (top right) and the line refinement (bottom)
refinement. The dashed red line has slope 1 and indicates linear growth.

plot) and without (red bars in the plot) the use of sparse data structures for the
linear refinement shown in Figure 9. Two facts can be observed:

– the evaluation time does not depend significantly on the location of the point
with respect to the subdomain hierarchy;

– using the sparse data structure increases the evaluation time only by a very
small amount.

Note that the evaluation times in this example vary between 0.153 and 0.195
milliseconds.

Finally we analyze the relation between evaluation time and the number of
levels in the hierarchy.

Example 8. We consider the curvilinear refinement shown on the right of Fig-
ure 9. Figure 12 compares the evaluation times for 10,000 parameters obtained
by using either the full or the sparse matrix representation. We may note that
the computational time grows linearly with the increasing level of refinement
for both representations, with a small overhead caused by using the sparse data
structure. The values do not include the time necessary for creating the corre-
sponding data structures, only the evaluation algorithm EVAL_THB is considered.

6 Non–uniform Knots and General Refinement

In order to discuss more general knot configurations, we now describe the mod-
ifications of data structures and algorithms which are required to extend the
framework to non–uniform knots and different multiplicities.
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Fig. 11. The labels t1,. . . ,t20 on the horizontal axis represent uniform time intervals
between minimal (0.153 ms) and maximal (0.195 ms) time needed by the evaluation
algorithm. The vertical axis indicates the number of points whose evaluation time falls
into these intervals.
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Fig. 12. Computational time needed to evaluate the multilevel spline function at 10,000
points for curvilinear refinement with various numbers of levels with (green) and with-
out (blue) using the sparse data structure.

First of all, two vectors with strictly monotone knot values in both directions
have to be stored. Two additional arrays will register the associated multiplic-
ities. In this way, if we allow also knots with zero multiplicities, we can even
perform non–dyadic refinements by simply considering to consecutive refinement
levels where some of the newly inserted knots have multiplicity 0.

Concerning the modification of the THB–spline evaluation algorithm pre-
sented in Section 2, the only difference is in the use of B–spline subdivision
with respect to non uniform knots, namely standard knot insertion, instead of
uniform B–spline refinement. At each iteration, the knot insertion algorithm has
to be applied to the proper sub–matrix of the corresponding matrix computed
at the previous step.

In the quadtree data structure introduced in Section 3, the axis–aligned
bounding box has now to be in index space and possibly of rectangular shape. In
addition, the splitting into halves considered in the related insertion algorithm of
Section 3.1 has to be rounded to the nearest integer. No modification are needed
for the query functions described in Section 3.2.
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Finally, in order to let the characteristic matrices described in Section 4 prop-
erly identify the active B–spline functions, we just have to allow general rect-
angular structures and consider the index space of functions (instead of knots)
into the two algorithms described therein.

7 Conclusion

We proposed an efficient implementation of data structures and related algo-
rithms for the evaluation and manipulation of truncated hierarchical B–splines.
Several examples show the advantageous behavior of the data structures and
algorithms in terms of memory overheads and computational costs. Indeed, the
memory consumption grows only linearly with the number of degrees of freedom,
but there is no significant increase of the time needed to evaluate the multilevel
spline function.

The generalization of the proposed algorithms to handle the non–uniform case
and multiple knots can be addressed by considering the subdomain hierarchy
in index space rather than in the physical one as described in Section 6. We
are currently working on these more general configurations in the frame of a
new software library which we are developing. Interesting subjects for future
research include the extension to multivariate splines and the identification of
the refinement algorithm for THB–splines.
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Abstract. We introduce a novel multi-dimensional space partitioning
method. A new type of tree combines the advantages of the Octree and
the KD-tree without having their disadvantages. We present in this pa-
per a new data structure allowing local refinement, parallelization and
proper restriction of transition ratios between cells. Our technique has no
dimensional restrictions at all. The tree’s data structure is defined by a
topological algebra based on the symbols A = {L, I,R} that encode the
partitioning steps. The set of successors is restricted such that each cell
has the partition of unity property to partition domains without overlap.
With our method it is possible to construct a wide choice of spline spaces
to compress or reconstruct scientific data such as pressure and velocity
fields and multidimensional images. We present a generator function to
build a tree that represents a voxel geometry. The space partitioning sys-
tem is used as a framework to allow numerical computations. This work
is triggered by the problem of representing, in a numerically appropri-
ate way, huge three-dimensional voxel geometries that could have up to
billions of voxels.

1 Introduction

The goal of this work is to introduce and apply a novel mathematical model to
partition n-dimensional domains. We give a detailed definition and description
of the theoretical background and the algorithms. The space partitioning is done
by a tree that can be seen as a hybrid of an Octree and a KD-tree. We combine
the advantages while avoiding the disadvantages.

The basic idea of the tree is the definition of a ternary alphabet. This alphabet
is applied recursively and dimensionally independently to a system of functions.
We abstract from the geometrical properties and define an algebraic approach to
efficiently partition domains and evaluate functions recursively. Evaluation and
computation as well as proofs on these trees can be done by structural induction.

The tree can be used to compress geometries as well as scalar and multi-
dimensional fields. It is possible to access different kinds of information and
operators that are influenced by the structure of the tree, e.g. interpolation
schemes, differential operators, subsets of the given domain and neighborhoods
of cells. In this work we focus on voxel geometries. But it is also possible to
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partition different kinds of sets. In many applications it is a disadvantage if the
tree degenerates in a single direction. Therefore we introduce an input function
that is able to prevent degeneration of the tree where it leads to a disadvantage.

2 Related Work

There are many different kinds of space partitioning methods.
Regular grids are an easy commonly used way to discretize the two- and three-

dimensional space. They allow an efficient alignment of the data in the memory
and enables the user to easily formulate discretized differential operators. Data
can be accessed in constant time, but the disadvantage of the regular grids is
that the requirements for computational effort and memory grows at least with
the power of the dimension. It is also not easy to describe smooth boundaries,
e.g. the interfaces in two-phase flows and between different materials in solid
mechanics.

A way to treat this problem is to use a body-fitted mesh of tetrahedra. But
a mesh of tetrahedra requires a lot of overhead, e.g. you have to store positions,
normal vectors and topological information. This overhead significantly decreases
the number of cells that can be stored and processed.

Another way to treat this problem is to use an Octree [1] [2]. A disadvantage
of the Octree is the limited choice of partitioning. You have just the choice to do
no partitioning or to partition simultaneously in all dimensions. Therefore one is
forced to increase the number of cells even in directions where it is not necessary.
But the Octree is an important data structure in numerical mathematics. It
received attention in isogeometric analysis [3] [4] within the last years.

The latter issue is addressed by the KD-tree [5]. It is able to increase the
number of cells just in one direction. But a KD-tree is not well suited to use for
numerical calculations as it is designed for partitioning point clouds. Another
problem is the high number of interior nodes in higher dimensional settings.

A detailed description of the Octree and KD-tree can also be found in [6] and
[7] covering the latest developments and applications.

The model we describe in this paper avoids the disadvantages of the KD-tree
and Octree and combines their advantages.

3 Method

In this section we describe the basic theory of a tree structure that we call
LIR-tree and the corresponding space partitioning system. The tree arises from
dimensionally independent and recursive application of a ternary alphabet. We
also introduce a number of auxiliary tree structures that are used to construct
the LIR-tree.

3.1 Alphabet

For a one-dimensional finite interval there exist three choices: no partitioning,
partition and take the left part of the interval, or partition and take the right part
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of the interval. Similar to partitioning there exist three choices for embedding
intervals: no embedding, embed to the left or embed to the right. These choices
are used to define the alphabet:

Definition 1.
A = {L, I,R} (1)

A is called the alphabet and contains three symbols that denote: L - left, R -
right and I - identity. L and R are interpreted as complementary symbols and
I as neutral symbol. We introduce a unary minus operator defined by

−L := R −R := L − I := I (2)

that is also used vector-wise and element-wise.

Definition 2. The bold notation is used to see the symbols in A as sets by

A = {L, I,R} (3)

with the symbol sets

L = {L} I = {L,R} R = {R} (4)

and to introduce the conversion

v = (v1, · · · , vn) ∈ An ⇔ v = v1 × · · · × vn ∈ An. (5)

Definition 3. The set of vectors of symbols defined by

P := {p ⊆ An :
⋃
v∈p

v = In ∧ ∀ v,w∈p
v �=w

v ∩w = ∅} (6)

denotes all sets of vectors that are partitions of unity. The sets in P are the basis
to construct the LIR-tree.

Definition 4. We use Sn to denote the symmetric group and {1,−1}n as se-
lective inversion. Let p, q ∈ P be two partitions of unity. p ∼ q means they are
equivalent with respect to rotation and inversion. That is

p ∼ q ⇔ ∃s∈Sn∃h∈{1,−1}n{(vsi)
n
i=1 : v ∈ p} = {h · v : v ∈ q} (7)

then P/∼ describes the set of equivalence classes.

Tab. 1 shows the number of different unique and equivalent partitions of
unity. Figure 1 and Fig. 2 illustrate a choice of partitions of unity for the two-
and three-dimensional case. The number of different partitions grows very fast
but is small until n = 4.

Table 1. Number of unique and equivalent partitions of unity for n ∈ N

n 1 2 3 4 5

|P | 3 8 154 89512 71319425714
|P/∼| 2 4 15 434 > 100000



The LIR Space Partitioning System Applied to Cartesian Grids 327

Fig. 1. 8 unique and 4 equivalent partitions of unity exist for the two-dimensional
case. The last two partitions with two elements in the first row belong to the same
equivalence class and the partitions with three elements in the second row belong to
the same equivalence class.

1 3 12 6 24

3 6 8 12 24

12 6 24 12 1

Fig. 2. 154 unique and 15 equivalent partitions of unity exist for the three-dimensional
case. For a better visibility we use bold entities representing the different parts. The
bold squares represent a vector of symbols with two identity symbols, a bold line repre-
sents a vector with one identity and a bold circle represents a vector with zero identity
symbols. The numbers inside the cubes denote the cardinality of the equivalence classes.
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3.2 Space Partitioning System

Partitioning (or embedding) of sets can be described in a recursive way. Sets of
functions that are indexed by the alphabet describe how the partitioning is done.
A symbol or a vector of symbols represents the choice of partitioning function.
Composition of such functions can be described by words of symbols or vectors
of words, respectively.

Definition 5. The set of words of complementary symbols is given by the word
monoid (I∗, ·, I). The identity symbol is the neutral element, i.e. the empty word
and · is the concatenation of words. The ∗ operator constructs the set of all finite
words. The definition is used to induce a unique representation for partitioned
domains. Let w ∈ Ik be a word, then a minus operator for words is defined
by −w := (−wn−i+1)

n
i=1 such that complementary symbols are inverted and the

order is reversed.

Definition 6. Let D be a set and fA = {fL, fR, fI} be a set of functions such
that fa∈A : D → D. Then we introduce the notation

fw∈Ik := fwk
◦ · · · ◦ fw1 (8)

for the lower and the upper index to denote recursive applications, i.e. composi-
tion of functions where w is a word of symbols. A set of functions described in
that way is called a system. A vector-wise system of functions arises from

fv∈An : Dn → Dn x �→ fv1(x1)× · · · × fvn(xn) (9)

to describe the set of functions fAn .

Interval Partitioning In this work we focus on interval partitioning and use it
for voxel geometries. Therefore, we define intervals and a corresponding interval
partitioning system. Partitioning and embedding of intervals can be merged
into a group. Figure 3 illustrates multi-dimensional and recursive application
of symbols to a two-dimensional interval.

Definition 7. We use the set of all intervals given by

B := {b = [bL,bL] : (bL,bR) ∈ R2} (10)

to define the combined system

ξAA := {ξLL , ξLI , ξLR, ξIL, ξII , ξIR, ξRL , ξRI , ξRR} (11)

such that ξa∈A
b∈A : B → B where ξLA = {ξLL , ξLI , ξLR} denotes the system of parti-

tioning

ξLL(b) = [bL,
1

2
bL +

1

2
bR] ξLI (b) = b ξLR(b) = [

1

2
bL +

1

2
bR,bR] (12)
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I

L R

RLL LR

R
IL

L

L
R LR

I
LL
IL

LR

LL
LL

LR
LL

LL
RL

LR
RL

LL
RR

LR
RR

An

I∗

I∗×n

Fig. 3. Intent of the Alphabet A and its generalization to an n-dimensional domain
and recursive application. L denotes left in x-direction and bottom in y-direction while
R denotes right in x-direction and top in y-direction. The red lines indicate the par-
titioning in the first level and the blue lines indicate the partitioning in the second
level.

with the neutral system ξIA = {ξIL, ξII , ξIR} which is defined by

ξIL(b) = ξII (b) = ξIR(b) = b (13)

and ξRA = {ξRL , ξRI , ξRR} denotes the system of embedding intervals defined by

ξRL (b) = [2bL − bR,bR] ξRI (b) = b ξRR(b) = [bL, 2bR − bL] (14)

The composition of multi-dimensional interval partitioning functions is defined
by

Ξ := {ξqw : q ∈ I∗ ∧ w ∈ I∗×n} (15)

Theorem 1. (Ξ, ◦) is a group.

Proof. It is sufficient to show the existence of the neutral and inverse elements.
ξa∈I
I = ξIa∈A is the neutral function with different notations. Let ξqw ∈ Ξ then

ξ−q
−w ∈ Ξ is the inverse function.

Example 1. The vectors (L,L), (I, R) ∈ A2 applied to b ∈ B2 yield

ξL(L,LR)(b) =

⎛⎝ ξLL([bL,L,bL,R])
×

ξLLR([bR,L,bR,R])

⎞⎠ =

⎛⎝ [bL,L,
1
2bL,L + 1

2bL,R]
×

ξLR([bR,L,
1
2bR,L + 1

2bR,R])

⎞⎠ (16)

=

⎛⎝ [bL,L,
1
2bL,L + 1

2bL,R]
×

[ 34bR,L + 1
4bR,R,

1
2bR,L + 1

2bR,R]

⎞⎠ (17)
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Vectors of words describe how interval partitioning is done. They can be
understood as a set of instructions that point to a sub-interval with respect to an
initial interval. The combination of embedding and partitioning ξRL

vv with v ∈ An

corresponds to the v-neighbored domain. Figure 4 illustrates the application of
different vectors of words to the same initial domain.

ξR(L,I) ξ
L
(L,I)

ξL(R,L)

ξRL
(RR,II)

Fig. 4. Effects of Ξ on the cyan colored domain: ξR(L,I) embeds to the left, ξL(L,I) restricts

to the left, ξL(R,L) restricts to the bottom right corner and ξRL
(RR,II) defines the right

neighbor domain.

3.3 The Oracle Tree

In this section we introduce a formalism to define tree structures. The approach
is used in a recursive way to generate trees of higher order. Different kinds of
trees are described that can be used for diverse applications.

Oracles. We define tree structures by structural induction with a function that
maps the current location, i.e. the node to a set of succeeding edges. These
function are called oracles and are motivated by the memory layout of trees
inside the compuational memory.

Definition 8. Let (X,+) be a monoid with the generator set 0 �∈ T ⊆ X. The
generator set is used to define the generator function

� : X → P(T ) = {U : U ⊆ T } (18)

where the elements of X are mapped to a subset of the generator set (P denotes
the power set). Then we define the tree that is constructed with respect to � by

G = (X , E) X ⊆ X E ⊆ X × X (19)

such that there exists a root node 0 ∈ X . We construct a tree by structural
induction such that

x ∈ X ⇒ ∀t∈�(x)x+ t ∈ X ∧ (x, x+ t) ∈ E . (20)

We introduce the notation X (�) and E(�) to denote nodes and edges, respec-
tively. The generator function � generates a tree and is called an oracle if and
only if every node has exactly one predecessor except the root node, i.e.

(y, x) ∈ E(�) ⇒ 0 �= x ∧ 0 �= x ∈ X (�) ⇒ ∃!(y, x) ∈ E(�). (21)
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0

t0

t0 + t2 t0 + t3

t1

t1 + t4 · · ·

�(0) = {t0, t1}

�(t0) = {t2, t3} �(t1) = {t4, · · · }

Fig. 5. Construction of an oracle tree. The oracle function returns the edges to suc-
ceeding nodes. The nodes are defined by adding the preceding edges.

We use the definition of oracles to construct trees using the symbols in A or
vectors of symbols, respectively. An example for the general case is shown in
Fig. 5.

Ternary Oracle. In many situations we want to be able to deal with arbitrary
sets of vectors, e.g. partitions of unity or overlapping sets of vectors to store data.
The number of different vectors and the number of sets of vectors is determined
by the dimension. We introduce the ternary oracle and the range oracle that are
suited to efficiently represent and access arbitrary subsets of An.

Definition 9. Let k ∈ N, v ∈ Ak and a ∈ A then we introduce the following | · |
operators to count specified symbols in a vector:

|v| := k |v|a := |{i ∈ N : vi ∈ a}| |v|a := |{i ∈ N : vi = a}| (22)

Definition 10. A ternary oracle Υ is defined by the word monoid (A∗, ·, ε)
such that

Υ : A∗ → P(A) (23)

where all leafs are at level n, i.e.

∀v ∈ X (Υ ) |v| = n ⇒ Υ (v) = ∅ (24)

The set of all ternary oracles is denoted by Υ.

The ternary oracle is used to describe subsets of An efficiently. Since the
number of different partitions of unity is small until n = 4 (see Table 1) we use a
look-up table in the implementation to eliminate any overhead in computational
time and memory. An example of a ternary tree with three levels is shown in
Fig. 6.

Definition 11. Let j, k ∈ N with j ≤ k ≤ n then we define the range-oracle
Υ k
j ∈ Υ by

Υ k
j : A∗ → P(A) v �→ {I : |v|I ≤ k} ∪ {I : n− |v|I ≥ j} (25)
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which is a subset of the ternary oracle such that the vectors defined by

V k
j := {v ∈ An : j ≤ |v|I ≤ k} ⊂ X (Υ k

j )

are the corresponding leaf nodes. The tree constructed by Υ k
j is called range-tree

and allows the representation of vertices, edges, faces or other higher dimensional
entities in a cuboid.

Since the structure of a range tree is fixed and known at compilation time we
can eliminate any overhead similar to the ternary tree. An important applica-
tion of the range-tree is store neighborhoods of cells such that we can access a
neighbor by a vector v ∈ An.

Vector-Oracle. In this section we describe a tree structure called vector-tree
that uses vectors of symbols for construction of a tree that represents a set of
vectors of words. By restriction to partitions of unity we finally get the LIR-tree.

Definition 12. Let n ∈ N then a vector-oracle Ω is defined by the vector of
words monoid (I∗×n, ·, I) where · is the vector-wise concatenation of words and
I the vector of empty words such that

Ω : I∗×n → P(An).

The set of all vector-oracles is denoted by Ω.

L R

L

I

I
R

I

L R

Fig. 6. Example of a ternary-tree en-
coding vectors in A3

L

R

L

L

R

I

L

L

L

R

R

L

R

R

L

L

I

R

R

L

L

I

R

I

Fig. 7. Example of a vector-tree encod-
ing vectors of words in I∗×2

Definition 13. By restricting the set of successors it is possible to introduce the
partition of unity property. Therefore, the LIR-oracle is defined by

ΩP : I∗×n → P

such that ΩP constructs a vector tree and satisfies the partition of unity property
in each node. The nodes in the tree are also called cells. The set of all LIR-
oracles is denoted by ΩP . The trees that can be constructed by LIR-oracles are
called LIR-trees.
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Fig. 8. Example of a LIR-tree that is defined by the set of cells X (ΩP ) = {w0, · · · , w12}
and the set of links E(ΩP ) = {(w0, w1), · · · , (w3, w12)}. Note that the ternary trees
are realized by a look-up table and do not occupy memory. The numbers inside the
rectangles illustrate the domain and the corresponding data that is partitioned. The
red lines show how the domains are partitioned and the red dotted lines show the links
between cells.
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type index

8 bit 56 bit

Fig. 9. Memory layout of a cell in 64 bit. The type indicates either a partition of unity
or a leaf. The index either points to the start of the child cells or a data entity.

An example of a small vector-tree with two levels is shown in Fig. 7. A larger
example of a LIR-tree with a corresponding domain can be seen in Fig. 8. This
domain is partitioned using the interval partitioning system.

In our implementation we use the memory layout shown in Fig. 9 for the
cells in a LIR-tree. A cell is split into a type and an index. The type can either
point into a look-up table for partitions of unity or indicates a material. If the
type indicates a material then the cell is a leaf and the index points to the
corresponding data entity. In the other case the index points to the first child
cell. The number of remaining child cells can be determined by the type.

3.4 Partition Determination

Definition 14. The one-dimensional edges can be represented by the range tree
Υn−1
n−1 . We assign a binary value to each edge, i.e. S := Bn·2n−1

with B = {0, 1}.
We use S to determine and modify appropriate partitions to build a tree. A one
represents that the corresponding edge has to be split. A zero represents that an
edge may or may not be split.

Let p ∈ P be a partition of unity and s ∈ S. If no vector of p contains a split
then p is conform to s. We define a function ζ that takes a partition and return
a zero where ever an edge is a subset of a vector of p:

ζ : P → S p �→
({

0 if ∃v∈pe ⊆ v

1 else

)
e∈E

. (26)

with E := V n−1
n−1 . The inverse function of ζ is defined by the ζ−1 function that

takes a s ∈ S and returns a partition p ∈ P that is conform to s and has a
minimum number of vectors.

ζ−1 : S → P s �→ argmin{|p| : p ∈ P ∧ ¬ζ(p) ∧ s = 0} (27)

where ∧ and ¬ denote bit-wise operators. Since the minimum partition is not
unique, ζ−1 returns an arbitrary conforming partition that is minimal.

Similar to the ternary- and range-tree we use a look-up table for the evalu-
ation of ζ and ζ−1 in our implementation. That way we get a O(1) runtime-
complexity.
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3.5 Input Function

In this section we describe an oracle that constructs a (non-degenerative) tree
until a given threshold for partitioning is reached. It is also possible to use
overlapping sets to increase the number of cells at interfaces.

Let u ∈ Rn be a vector of real numbers that denote the limit for partitioning.
Then

ϑ : B → S b �→ (|bi| > ui)v∈E (28)

such that vi = I denotes a function that uses an interval and determines possible
edges which are candidates to be split with respect to u.

The basic idea of the actual input function is to split edges where the corre-
sponding segments of voxels contain different values. A segment of voxels is a
finite straight chain of voxels that is used for analysis, see Fig. 10. We assume
that ω : Rn → D is a given function that returns the type of material at each
x ∈ Rn where D denotes the domain of material. Then the next part of the input
function is defined by

θk∈R : B → S b �→
(
∃x, y ∈ νkv (b)

{
ω(x) �= ω(y)

xi �= yi ⇒ vi = I

)
v∈E

(29)

where we use the (overlapping) domains that are given by νk∈R

a∈A : B → B with

νka∈I([bL,bR]) = [bL − k · |b|,bR + k · |b|] (30)

νkI ([bL,bR]) = [bL − k

2
· |b|,bR +

k

2
· |b|] (31)

The range of analysis is given by k ∈ R. If only θ and ϑ are used for construction
then we get non-degenerative trees.

In a context where the domain is strongly elongated in one direction, it might
be a good idea to degenerate until a cube-like subdomain is given. Thus, we
post-process θ and ϑ by

ζk : B → S b �→ s ∧
(
|bj | >

1

2
u

)
v∈E

vj = I (32)

u = max{|bi| : ∃w∈Ewi = I ∧ sw} s = ϑ(b) ∧ θk(b) (33)

and define the oracle
ΩP (w) := ζ−1(ζk(ξLw(b)))

where we assume that b ∈ B is the initial domain we want to partition.

4 Results

In the last section we show the results of experiments where we applied the
LIR-tree to a complex dataset and compare it to the Octree and KD-tree. In our
research we focus on voxel geometries, especially on fiber geometries, see Fig. 11.
Therefore we chose a complex generated fiberglass dataset for our experiments.
We restrict to a three-dimensional context since the LIR-tree is designed for
higher dimensional partitioning.
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Fig. 10. The colored regions illustrate the domain and direction of analysis for the
edges. In the left and center case we use ν0 and in the right case we use ν1. A color
component shows the edges and its domains of analysis. The direction of the arrow
corresponds to i in Eqn. 29.

Fig. 11. 3d fibrous material used as porous media model and as composite material
models proposed in [9] and available from [8]

4.1 Generated Fiberglass

For our experiments we generated a very complex fiberglass dataset with the
GeoDict software suite [8]. The dataset is an approximation to a High-Efficiency
Particulate Air (HEPA) filter medium. HEPA filters are composed of randomly
arranged fibers on the micrometer scale.
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Fig. 12. 2D views of a fiberglass medium from [8]: (x,y)-view, (y,z)-view

Fig. 13. Cut through the fiberglass Fig. 14. LIR-tree with ν0

Fig. 15. LIR-tree with ν1 Fig. 16. 3D-View of the LIR-tree
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In the highest resolution the dataset is represented by 400×400×4000 voxels
that can either be empty or solid. The fibers have a solid-volume-fraction of 8%.
In general they have an anisotropic spatial orientation that is isotropic in (x, y)-
plane and layered in z-direction, see Fig. 12. A two-dimensional cut through the
dataset is shown in Fig. 13. We use the input function with ζ0, see Fig. 14. An
overlapping input function is used in Fig. 15 to illustrate the behavior. A three-
dimensional view of the tree structure is shown in Fig. 16. The partitioning
is done by ξLv with v ∈ An where we modified the center to meet the voxel
boundaries.

4.2 Tree Comparison

The Octree and KD-tree are special LIR-trees that can be generated by restric-
tion of P with

Poct = {∅, I3} P i
kd = {∅, {v ∈ A3 : vi ∈ I ∧ vj �=i = I}} (34)

Figure 17 shows that the general LIR-tree has fewer cells for each voxellength
compared to the Octree and KD-tree. In fact, the LIR-tree has the interior cell
complexity of the Octree and the leaf cell complexity of the KD-tree. Numerous
experiments showed that on average the LIR-tree has at least two times fewer
cells compared to other trees in the three-dimensional case.

We are interessted in efficient numerically suited representations rather then
pure binary data compression. Hence, the LIR-tree is an efficient method for
that purpose.

4.3 Number of Children

In the next experiment we investigate the distribution of the number of children.
Figure 18 shows the distribution for the fiberglass example. It turns out that in
most cases a partitioned cell has two, three or four children. The cases of two
and three children are changing their places with respect to the voxellength due
to the non-cubic dataset. On average they make up 25% of the partitions. A
five children partition occurs in 10% of the cases while the six, seven and eight
children partitions occur in up to 4% of the cases.

4.4 Error Analysis

In our last experiment we used the highest resolution of the fiberglass medium as
reference and compared a lower resolved LIR-tree with respect to the number of
incorrect voxel values and volume defect. Figure 18 shows that the relative error
has linear correlation to the voxellength. But it also shows that the relative error
has a quadratic correlation to the number of cells. Hence, it makes sense to use
the number of cells to investigate convergence orders instead of the voxellength.
The error of the volume is much lower compared to the total error. That can be
an important property for numerical computations where the same mass leads
to the same behavior.
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Fig. 18. Left: Number of children distribution, Center: Incorrect voxel values with
respect to voxellength, Right: Incorrect voxel values with respect to number of cells

5 Conclusions

We presented a novel space partitioning system based on a ternary alphabet.
Recursive and dimensional application to systems of functions leads to a tree
structure that combines the advantages of the Octree and the KD-tree without
having their disadvantages. This is also achieved by using different types of look-
up tables and compile-time generated data structures.

We compared the LIR-tree to the Octree and KD-tree and observed that the
LIR-tree needs at most half the number of cells in a three dimensional context.
This is due to the fact that the LIR-tree is a generalization and can use more
sophisticated methods to analyze and decompose the geometry. The LIR-tree
has the interior cell complexity of the Octree and the leaf complexity of the
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KD-tree. Numerous experiments showed that in a three dimensional context
most of the partitioned cells have 2-4 children. For convergence analysis it makes
sense to take the number of cells into account in addition to the spatial length.
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Abstract. In this paper we construct multilevel representations in terms
of a hierarchy of tensor-product generalized B-splines. These representa-
tions combine the positive properties of a non-rational model with the pos-
sibility of dealingwith local refinements.Wediscuss their use in the context
of isogeometric analysis.
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1 Introduction

Isogeometric Analysis (IgA) is a recent, but well established and successful,
paradigm for the analysis of problems governed by partial differential equations
[9,17]. Its main goal is to improve the connection between numerical simulation
and Computer Aided Design (CAD) systems.

In its original formulation, the main idea in IgA is to use directly the geometry
provided by CAD systems – which usually is expressed in terms of tensor-product
Non-Uniform Rational B-Splines (NURBS) – and to approximate the unknown
solutions of differential equations by the same type of functions. This results in
three principal advantages of IgA with respect to classical FEM (Finite Element
Methods). First, complicated geometries are represented more accurately and
some common profiles as conic sections are exactly described. This exact or
accurate description of the geometry has a beneficial influence on the numerical
solution of the addressed differential problem. Second, the description of the
geometry is incorporated exactly at the coarsest mesh level and mesh refinement
does not modify the geometry. This greatly simplifies the refinement process
because it eliminates the necessity of interacting with the CAD system when
mesh refinement is carried out. Finally, B-spline and NURBS representations
allow an easy treatment and refinement of spaces with high approximation order
and an inherent higher smoothness than those in classical FEM. This has been
proved to be superior in various applications, see [9,17], and references therein.

On the other hand, the three main advantages summarized above are not a
distinguishing property of NURBS. Actually, NURBS suffer from some relevant
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geometric drawbacks. For instance, they lack an exact description of transcen-
dental curves of interest in applications, and their parametrization of conic sec-
tions does not correspond to natural arc length. In addition, NURBS poorly
behave with respect to differentiation and integration which are crucial opera-
tors in analysis. On this concern, it is sufficient to have a look at the complicated
structure of the derivative of a NURBS curve of a given order.

In the CAGD (Computer Aided Geometric Design) community several al-
ternatives to the rational model have been proposed to overcome the above
mentioned drawbacks. The so-called generalized B-splines are of relevant inter-
est in this context, see [6,21,22,28,34] and references therein. They are piecewise
functions with sections in more general spaces than algebraic polynomial spaces
(like classical B-splines). Suitable selections of such spaces – typically including
trigonometric or hyperbolic functions – allow an exact representation of poly-
nomial curves, conic sections, helices and other profiles of salient interest in
applications. Moreover, generalized B-splines possess all fundamental properties
of algebraic B-splines (recurrence relation, compact minimum support, local lin-
ear independence, . . . ) which are shared by NURBS as well. Finally, contrarily
to NURBS, they behave completely similar to B-splines with respect to differ-
entiation and integration. Therefore, tensor-product generalized B-splines can
offer an interesting alternative to NURBS in IgA as investigated in [8,23,24].

Adaptive local refinement is a crucial ingredient for obtaining, in an efficient
way, an accurate solution of partial differential equations. However, NURBS rely
on a tensor-product structure, so they do not allow adequate local refinements.
This motivates the interest in alternative structures for IgA that permit local
refinements, such as T-splines [11], hierarchical splines [33], LR (Locally Refined)
splines [10], or B-splines over triangulations [32].

Hierarchical B-splines were introduced in [12] as an accumulation of tensor-
product B-splines with nested knot vectors, and they were further investigated in
[19] and [13,14,33]. Of course, the concept of hierarchical bases can be considered
for more general spaces than tensor-product B-splines, see also [14]. In particular,
a hierarchical structure can be built for tensor-product generalized B-splines,
with suitable section spaces, as they suffer from the same drawbacks of NURBS
with respect to local refinements.

Besides the classical hierarchical bases, in the literature there also exist so-
called quasi-hierarchical bases and truncated hierarchical bases. They are both
alternative bases for a hierarchical space build on a sequence of nested linear
spaces. The notion of quasi-hierachical bases for hierarchical spaces has been
introduced in [16,20] and also used in [29,30]. The concept of truncated bases
has been described in [13,14].

In this paper we define a multilevel representation in terms of a hierarchy of
tensor-product generalized B-splines, and we discuss its use in the context of
IgA. In this way, we can combine the positive properties of a non-rational model
with the possibility of dealing with local refinements. The proposed hierarchical
construction extends the classical one, because it does not necessarily require
nested sequences of spaces.



Local Hierarchical h-Refinements in IgA Based on Generalized B-Splines 343

The remainder of the paper consists of four sections. Section 2 briefly sum-
marizes the definition and main properties of generalized B-splines, while in
Section 3 we define multilevel representations for them. Section 4 illustrates the
performances of the generalized multilevel representations as a tool supporting
local refinements in IgA in two benchmark problems taken from the literature.
We end in Section 5 with some final comments.

2 Generalized B-Splines

To make the paper self contained, we devote this section to summarize the
definition and basic properties of generalized B-splines. Further details can be
found in the cited references and in [23, Section 3]. Assuming a sequence of knots
is given,

Ξ := {ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1}, n ∈ N, (1)

classical B-splines of degree p defined over (1) are a basis for piecewise polynomial
functions with a suitable smoothness, i.e. functions with sections in the space of
algebraic polynomials of degree p,

Pp := 〈1, t, . . . , tp−2, tp−1, tp〉.

Functions with a given smoothness and belonging piecewisely to more general
spaces as

Pui,vi
p := 〈1, t, . . . , tp−2, ui(t), vi(t)〉, t ∈ [ξi, ξi+1), i = 1, . . . , n+ p, (2)

can be considered as well, see [6] and references therein. In the section spaces
(2) the functions ui, vi can be selected such that salient profiles of interest are
exactly represented and/or special characteristics are obtained. Popular choices
for (2) are:

Ep,αi := 〈1, t, . . . , tp−2, exp(αit), exp(−αit)〉, 0 < αi ∈ IR, (3)

Tp,αi := 〈1, t, . . . , tp−2, cos(αit), sin(αit)〉, 0 < αi(ξi+1 − ξi) < ξ, (4)

which lead to exponential and trigonometric splines respectively. They allow an
exact representation of conic sections as well as of some transcendental curves
(helix, cycloid,. . . ), see [4]. Exponential splines are often referred to as hyperbolic
splines because the space (3) coincides with the space

〈1, t, . . . , tp−2, cosh(αit), sinh(αit)〉.

This alternative formulation shows more clearly the connection between spaces
(3) and (4). Other interesting section spaces are

VDp,αi :=

〈
1, t, . . . , tp−2,

(
ξi+1 − t

ξi+1 − ξi

)αi

,

(
t− ξi

ξi+1 − ξi

)αi
〉
, p ≤ αi ∈ IR, (5)
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Fig. 1. Generalized B-spline B
(1)
i,Ξ with knot sequence Ξ = {0, 1, 2}. Left: the classical

polynomial case. Right: the exponential case with αi = 5.

which lead to the so-called variable degree splines. Exponential and variable
degree splines are a powerful tool in shape-preserving approximation and/or
interpolation.

Results on the approximation power of the spaces (2) can be found in [6,
Section 3] (see also [5,25,28]). In particular, for fixed values of the involved
parameters, the spaces (3) and (4) have the same approximation power of Pp.

Remark 1. The section spaces in (2) may be different on each interval. Thus,
generalized B-splines allow an exact representation of profiles composed by a
sequence of curve segments of different kind: arcs of ellipses, hyperbolas, poly-
nomial curves, etc.

It is well known that it is possible to construct B-spline-like functions with
sections in spaces (2), see [5,18,21,26,27,28,34] and references therein. The so-
called generalized B-splines of degree p, defined over the knot sequence (1), will be

denoted by B
(p)
i,Ξ . To simplify the notation we omit the reference to the section

spaces (2), even though this would be more appropriate. The specific section
spaces will be clear from the context.

More precisely, we assume that1

ui, vi ∈ Cp−1[ξi, ξi+1],

and that {u(p−1)
i , v

(p−1)
i } is a Chebyshev system in [ξi, ξi+1] and an Extended

Chebyshev system in (ξi, ξi+1). Thus, without loss of generality we can assume

u
(p−1)
i (ξi) > 0, u

(p−1)
i (ξi+1) = 0, v

(p−1)
i (ξi) = 0, v

(p−1)
i (ξi+1) > 0.

According to [21] (see also [26,34] and references therein), generalized B-splines
can be defined with the following recurrence relation formula:

B
(1)
i,Ξ(t) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v
(p−1)
i (t)

v
(p−1)
i (ξi+1)

, if t ∈ [ξi, ξi+1),

u
(p−1)
i+1 (t)

u
(p−1)
i+1 (ξi+1)

, if t ∈ [ξi+1, ξi+2),

0, elsewhere;

1 For more general constructions with less restrictive hypotheses we refer to [26,27].



Local Hierarchical h-Refinements in IgA Based on Generalized B-Splines 345

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 

(a) Trigonometric B-splines with αi =
2
3
π (left) and αi = 3π (right).
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(b) Exponential B-splines with αi = 3 (left) and αi = 50 (right).
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(c) Variable degree B-splines with αi = 6 (left) and αi = 30 (right).

Fig. 2. Examples of generalized B-splines of degree 3 defined on the knot sequence
Ξ = {0, 0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1, 1}.

B
(p)
i,Ξ(t) := δ

(p−1)
i,Ξ

∫ t

−∞
B

(p−1)
i,Ξ (s)ds− δ

(p−1)
i+1,Ξ

∫ t

−∞
B

(p−1)
i+1,Ξ(s)ds, p ≥ 2,

where δ
(p)
i,Ξ := [

∫ +∞
−∞ B

(p)
i,Ξ(s)ds]

−1 and fractions with zero denominators are con-
sidered to be zero. The knot sequence (1) allows us to define n generalized

B-splines of degree p, namely B
(p)
1,Ξ , . . . , B

(p)
n,Ξ . Two generalized B-splines of de-

gree 1 are depicted in Figure 1, and some sets of cubic generalized B-splines are
illustrated in Figure 2.

Generalized B-splines possess all desirable properties of classical polynomial
B-splines [3,5,21].

Proposition 1. Let B
(p)
i,Ξ , i = 1, . . . , n, be generalized B-splines of degree p ≥ 2

associated to the knot sequence (1). Then the following properties hold:
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– piecewise structure: B
(p)
i,Ξ(t) ∈ Puj ,vj

p , t ∈ [ξj , ξj+1),

– positivity: B
(p)
i,Ξ(t) ≥ 0,

– partition of unity:
∑n

i=1B
(p)
i,Ξ(t) ≡ 1, t ∈ [ξp+1, ξn+1),

– compact support: B
(p)
i,Ξ(t) = 0, t /∈ [ξi, ξi+p+1],

– smoothness: B
(p)
i,Ξ(t) is at least p− ρj times continuously differentiable at ξj

being ρj the multiplicity of ξj in the knot sequence,

– local linear independence: B
(p)
i−p,Ξ(t), . . . , B

(p)
i−1,Ξ(t), B

(p)
i,Ξ (t) are linearly inde-

pendent on [ξi, ξi+1).

For a given degree p and a fixed knot sequence Ξ, generalized B-splines with
section spaces as in (3), (4) and (5) will be referred to as exponential, trigonometric
and variable degree B-splines of degree p, respectively. We will denote by

ESpΞ,α, TSpΞ,α, VDS
p
Ξ,α, S

p
Ξ

the spaces spanned by exponential, trigonometric, variable degree and classical
B-splines of degree p, respectively. Here α = {. . . , αi, . . .} stands for the set of
real parameters in (3), (4) and (5). The spaces ESpΞ,α, TS

p
Ξ,α, VDS

p
Ξ,α are called

exponential, trigonometric and variable degree spline spaces, respectively.
Stable evaluation algorithms are crucial for applications. It is well known

that a stable evaluation of exponential functions is a difficult task. On the other
hand, variable degree splines possess graphical properties analogous to exponen-
tial splines as the parameters αi increase, see Figure 2 (b)–(c), but they profit
of an efficient evaluation. Indeed, variable degree splines can be obtained by a
geometric construction consisting of simple corner cutting schemes which are
applied to the (generalized) de Boor control polygon and produce the (general-
ized) Bézier control polygons associated with the Bernstein-like representation
of the section spaces (5), see [5,7]. Thanks to this geometric construction, the
evaluation of the spline results in a stable computation.

Tensor-product exponential, trigonometric and variable degree splines have
been profitably used in the context of IgA, including the treatment of advection-
diffusion problems, see [8,23,24]. However, as for classical B-splines and NURBS,
the tensor-product structure prevents the possibility of local refinements. On this
concern, in the next section we address the problem of constructing multilevel
bases in terms of a hierarchy of generalized B-splines.

3 Generalized Multilevel Bases

In this section we construct multilevel bases in terms of a hierarchy of generalized
B-splines. Hierarchical tensor-product B-splines have been introduced in [12] as
an accumulation of tensor-product B-splines with nested knot vectors, in order to
allow local editing of tensor-product spline surfaces. Nevertheless, the definition
of hierarchical spaces and bases can be more general, and it is not confined to
tensor-product algebraic B-splines, see [14].
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The classical definition of hierarchical bases and spaces assumes to deal with
a sequence of nested linear spaces. Here, we extend the usual construction to
sequences of not necessarily nested spaces. We prove that, under the hypothesis
of local linear independence for the basis functions considered in each space,
the resulting set of functions still possesses the fundamental property of linear
independence.

Let Ω0 be the closure of a bounded domain in Rd. We consider a sequence of
finite-dimensional linear spaces of functions defined on Ω0,

V 0, V 1, . . . , V 	, . . . (6)

and let Ω	
0 be the closure of domains in Rd such that

Ω0 ⊃ Ω1
0 ⊃ · · · ⊃ Ω	

0 ⊃ · · · . (7)

Setting n	 := dim(V 	), we assume

B	 := {b1,	, . . . , bn�,	}

is a basis of V 	. A multilevel basis can be obtained by considering first all the
basis elements in B0 whose support overlaps Ω0, and by considering then an
iterative procedure which selects at each level $ all the basis functions of the
previous level whose support is not entirely contained in Ω	

0 and all the basis
functions in B	 whose support is entirely contained in Ω	

0, see Figure 3.
More precisely, the multilevel space associated to a hierarchy of depth L is

the space spanned by the set of functions constructed according to the following
definition, see [13,14,33]. We denote by supp(bi,	) the intersection of the support
of bi,	 with Ω0.

Definition 1. The multilevel set of basis functions H associated to a hierarchy
of domains (7) of depth L is recursively constructed as follows:

i) H0 := {bi,0 : supp(bi,0) �= ∅};
ii) for $ = 0, . . . , L− 2 :

H	+1 := H	+1
C ∪H	+1

F ,

where

H	+1
C := {bi,j ∈ H	 : supp(bi,j) �⊂ Ω	+1

0 },

H	+1
F := {bi,	+1 ∈ B	+1 : supp(bi,	+1) ⊂ Ω	+1

0 };

iii) H := HL−1.

We are focusing on (local) mesh refinements in the context of IgA – the so-
called h-refinements. Therefore, in the following we assume that each space V 	

in (6) is a space of generalized B-splines with fixed degree p defined over a given
knot sequence. For $ = 0, . . . , L− 1, we assume that the knot vectors

Ξ	 := {ξ1,	 ≤ ξ2,	 ≤ · · · ≤ ξn�+p+1,	}, n	 ∈ N, (8)
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Fig. 3. Illustration of the construction of a multilevel representation of cubic exponen-
tial B-splines with αi,	 = 50. The light blue functions are removed in the construction
of the multilevel basis.

and the section spaces

Pui,vi
p,	 := 〈1, t, . . . , tp−2, ui,	(t), vi,	(t)〉, t ∈ [ξi,	, ξi+1,	), i = 1, . . . , n	 + p, (9)

are given. Moreover, we assume that the domains Ω	
0 in (7) are selected as the

union of a number of knot intervals defined by Ξ	 in (8).
We will refer to the elements of H as generalized multilevel B-splines and

to the spaces they span as generalized multilevel spline spaces. This multilevel
construction generalizes the classical definition of hierarchical B-splines (see [33])
in the following ways:

– the multilevel basis is constructed as a hierarchy of generalized B-splines;
– different section spaces may be chosen not only on the different knot intervals

(see Remark 1) but also on the different levels;
– the different spaces V 	 are not necessarily nested.

Despite this flexibility, the generalized multilevel B-splines preserve many prop-
erties of the classical hierarchical B-splines. Thanks to the local linear indepen-
dence of generalized B-splines, the construction in Definition 1 ensures that the
obtained set H consists of linearly independent functions, as proved in the fol-
lowing theorem. Therefore, we will refer to them as generalized multilevel bases.

Theorem 1. Let H be given as in Definition 1 where V 	 are spaces of gener-
alized B-splines defined on the knot sequences (8) with section spaces as in (9).
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Then,

– the elements of H are linearly independent;
– the elements of H are non-negative.

Proof. Let us consider a linear combination of the elements of H which vanishes
in Ω0. Denoting by I	 ⊂ {1, 2, . . . , n	} the set of indices of the elements of B	

belonging to H, ∀t ∈ Ω0, we have

0 =

L−1∑
	=0

∑
k∈I�

ωk,	 bk,	(t), ωk,	 ∈ IR.

In order to show the linear independence of the elements of H, we have to prove
that all the coefficients in this representation are zero. By (7) and by Definition 1,
the only functions in H which are possibly not zero in Ω0 \ Ω1

0 belong to B0.
Therefore, ∀t ∈ Ω0 \Ω1

0 , we have

0 =

L−1∑
	=0

∑
k∈I�

ωk,	 bk,	(t) =
∑
k∈I0

ωk,0 bk,0(t).

From Proposition 1 we know that the elements of B0 are locally linearly inde-
pendent, and so we obtain that ωk,0 = 0, k ∈ I0. We now proceed in a similar
way for all levels $ = 1, . . . , L− 2 sequentially. By considering all t ∈ Ω	

0 \Ω	+1
0

for a given $, we obtain that ωk,	 = 0, k ∈ I	. Finally, imposing that the linear
combination must vanish for all t ∈ ΩL−1

0 , we obtain that ωk,L−1 = 0, k ∈ IL−1.
In addition, from Proposition 1 it follows that any bi,	 is non-negative. Hence,

the functions in H are non-negative as well. 	

The procedure described in Definition 1 allows a great flexibility in the con-

struction of generalized multilevel B-splines because spline spaces with different
section spaces and different knot sequences are allowed at different levels. Nev-
ertheless, when nested spaces are of interest, we can also consider nested spaces
of generalized B-splines defined over nested knot vectors. More precisely, the
following result can be easily proved.

Proposition 2. Let B	 := {B(p)
i,Ξ�

, i = 1, . . . , n	}. The spaces V 	 := 〈B	〉 are
nested, if the knot sequences are nested, i.e.,

Ξ	 ⊂ Ξ	+1, (10)

and if

〈1, t, . . . , tp−2, ui,	(t), vi,	(t)〉 = 〈1, t, . . . , tp−2, uj,0(t), vj,0(t)〉, (11)

for each [ξi,	, ξi+1,	) ⊂ [ξj,0, ξj+1,0).

The main advantage of nested spaces is the ensured reduction (not deterioration)
of the error.2 Moreover, as a particular case of the results in [14] (see also [33]),
we obtain that the intermediate spaces 〈H	〉 are nested in the construction of
Definition 1.
2 This is not always the case for non-nested spaces, but when particular features (as
layers) have to be detected, non-nested spaces can be powerful as well, see e.g. [32].
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Proposition 3. Let H be constructed as in Definition 1, where V 	 are spaces
of generalized B-splines defined on the knot sequences (8) with section spaces as
in (9). If (10) and (11) hold, then 〈H	〉 ⊆ 〈H	+1〉.

We now consider two multilevel spaces 〈H〉 and 〈Ĥ〉 constructed by using the
same nested generalized spline spaces V 	 over two different domain hierarchies
{Ω	

0}	=0,...,L−1 and {Ω̂	
0}	=0,...,L−1. From [14] (see also [33]) we know that, if the

second domain sequence enlarges the first one, then this property is inherited by
the corresponding generalized multilevel spline spaces.

Proposition 4. Let {Ω	
0}	=0,...,L−1 and {Ω̂	

0}	=0,...,L−1 be two domain hierar-

chies such that Ω0 = Ω̂0 and Ω	 ⊆ Ω̂	 for $ = 1, . . . , L − 1. Let H	 and Ĥ	 be
constructed as in Definition 1 on both domain hierarchies, where V 	 are spaces
of generalized B-splines defined on the knot sequences (8) with section spaces as
in (9). If (10) and (11) hold, then 〈H	〉 ⊆ 〈Ĥ	〉.

Remark 2. Exponential and trigonometric splines easily provide nested sequences
of spaces.As far as variable degree splines are concerned,wenote that, if [ξi,	, ξi+1,	)
is a proper subset of [ξj,0, ξj+1,0), but αj,0 �= p, then the space〈

1, t, . . . , tp−2,

(
ξi+1,	 − t

ξi+1,	 − ξi,	

)αj,0

,

(
t− ξi,	

ξi+1,	 − ξi,	

)αj,0
〉

is not a subspace of〈
1, t, . . . , tp−2,

(
ξj+1,0 − t

ξj+1,0 − ξj,0

)αj,0

,

(
t− ξj,0

ξj+1,0 − ξj,0

)αj,0
〉
.

In general, the elements of H do not sum up to one. When a sequence of
nested spaces is taken in (6) such that V0 contains constants, different strategies
can be considered to obtain a normalized basis in 〈H〉. For example, the so-called
truncated hierarchical bases presented in [13,14] are particularly interesting for
their stability properties. For the sake of simplicity, we just consider the elements
of H as basis elements and we are not concerned with normalization.

The results and the proofs of the previous theorem and propositions immedi-
ately extend to the multidimensional tensor-product setting.

4 Numerical Examples

For the sake of completeness, we first briefly summarize the formulation of the
isogeometric analysis approach for numerical approximation of PDE solutions.
For a more comprehensive presentation we refer to [9], see also [8,11,17] for a
short summary. For the sake of simplicity, we explain the paradigm for linear
stationary problems in two dimensions with Dirichlet boundary conditions.

Let L be a second order (elliptic) operator on the domain Ω with Lipschitz
boundary ∂Ω. Let us consider the problem{

Lu = f, in Ω,
u =g, on ∂Ω,

(12)
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for the unknown u : Ω → IR. Assuming without loss of generality homogeneous
Dirichlet boundary conditions (i.e. g = 0), the weak formulation of (12) is for-
mulated as follows:

find u ∈ VD, such that a(u, v) = F (v), ∀ v ∈ VD, (13)

where
a : V× V → IR is a bilinear form depending on L,
F : V → IR is a linear form depending on f,
V := H1(Ω), VD := H1

0 (Ω).

It is well known that the Galerkin approach to approximate the solution of (13)
consists in selecting a suitable subspace

Vh := 〈φ1, φ2, . . . , φnh
, φnh+1, . . . , φnh+nb

h
〉 ⊂ V,

and in looking for uh ∈ VDh
⊂ VD, such that

a(uh, vh) = F (vh), ∀vh ∈ VDh
. (14)

Here, we assume that an approximation (which is possibly exact) Ωh of the
physical domain Ω is given, and

VDh
:= {vh ∈ Vh : vh|∂Ωh

= 0}.

Assuming VDh
= 〈φ1, φ2, . . . , φnh

〉 and setting uh :=
∑nh

i=1 qiφi, condition (14)
gives rise to a linear system Aq = F, where A ∈ IRnh×nh is the stiffness matrix
Ai,j := a(φj , φi) and F ∈ IRnh is the data vector defined by Fi := F (φi),
i = 1, . . . , nh. Different methods correspond to different choices of Vh.

In IgA, assuming the parametric domain Ω0 := [0, 1] × [0, 1] is given, the
physical domain, Ω, is represented by a global geometry function

G : Ω0 → Ω, G(ω) =

nh+nb
h∑

i=1

Ni(ω)Pi, Pi ∈ IR2, ω ∈ Ω0, (15)

where the basis functions
{N1, . . . ,Nnh+nb

h
} (16)

have to be selected to produce an exact representation of the geometry. The
space Vh is then defined by

φi(x) := Ni ◦G−1(x) = Ni(ω), i = 1, . . . , nh + nb
h, x = G(ω).

In IgA based on NURBS, the functions in (16) are (tensor-product) NURBS.
Here we select the basis (16) as generalized multilevel B-spline bases constructed
from tensor-product exponential, trigonometric and/or variable degree general-
ized B-splines.

In the next subsections we consider two examples illustrating the potential of
these generalized multilevel spaces in IgA. For the sake of simplicity, we do not
use advanced error estimators and corresponding automatic refinement strate-
gies. Hence, the presented hierarchical meshes are constructed manually. For
automatic refinement strategies we refer to the literature, see e.g. [1,11,33].
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u = 0

u = 0 u = 0

u = 0

u = 1

u = 1

u = 1

u = 1

Fig. 4. Example 1. The domain with the boundary conditions.

4.1 Example 1: Reaction-Diffusion Problem

We consider the following problem, see [2]:{
−κ(u+ u = f, in Ω,
u = g, on ∂Ω,

(17)

with κ = 10−3 and Dirichlet boundary conditions as depicted in Figure 4.
We consider the approximated solutions in the bivariate spaces spanned by

the tensor-product of three different univariate bases, all with sections in four-
dimensional spaces: cubic exponential B-splines (EXP3 BSP), cubic variable de-
gree B-splines (VDP3 BSP) and classical cubic B-splines. Moreover, we also
consider the solutions in the bivariate spaces spanned by generalized multilevel
bases built from the same tensor-product spaces mentioned before, defined on
the hierarchical meshes shown in Figure 5.

The discontinuous Dirichlet boundary conditions have been approximated by
a continuous function: a Schoenberg-like quasi-interpolant obtained by using the
values of the boundary data at the Greville abscissas of the cubic B-splines as
depicted in Figure 5 (right). The “true” Greville abscissas could have been used
(dealing with cubic-like spaces) but for the sake of simplicity the standard ones
have been considered.

We compute in all cases the condition number of the corresponding stiffness
matrices in the 2-norm and the minimum value of the solution evaluated on a
regular 400×400 grid. We observe that all the solutions have 1.000 as maximum
value on the same evaluation grid.

Table 1 shows the results obtained on uniform refinements of the initial rect-
angular 5×5 mesh, and the parameters of the spaces of generalized B-splines are
fixed for all refinement levels: αi,	 = 50 for all sections i and all levels $ in case
of the exponential B-splines and αi,	 = 5 for all i and all $ in case of the variable
degree B-splines. On the other hand, the results in Table 2 are obtained by vary-
ing the values of the tension parameters for different refinement levels. Tables 3
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Table 1. The results for Example 1 using tensor-products of cubic exponential B-
splines (EXP3 BSP) with αi,	 = 50 for all sections i and all levels �, cubic variable
degree B-splines (VDP3 BSP) with αi,	 = 5 for all i and all �, and cubic B-splines.
They are all defined on uniformly refined meshes with h-length intervals per side.

Example 1, uniform mesh refinements

EXP3 BSP, αi,	 = 50 VDP3 BSP, αi,	 = 5 Cubic BSP
h dof min cond min cond min cond

0.2 36 -4.982 10−3 13.04 -1.048 10−2 30.99 -8.352 10−2 250.77
0.1 121 -6.452 10−4 14.21 -6.648 10−4 13.84 -1.603 10−3 121.99

0.05 441 -9.312 10−5 14.81 -1.017 10−4 5.50 -1.061 10−4 40.76
0.025 1681 -3.743 10−8 21.34 0.000 10 0 4.95 -1.306 10−7 29.67

Table 2. The results for Example 1 using tensor-products of cubic exponential B-
splines (EXP3 BSP) and cubic variable degree B-splines (VDP3 BSP) with different
values of the tension parameters αi,	 for each refinement level � in Table 1.

Example 1, uniform mesh refinements

EXP3 BSP VDP3 BSP
h dof αi,	 min cond αi,	 min cond

0.2 36 35 -3.102 10−3 20.30 6 -3.296 10−3 22.02
0.1 121 35 -1.304 10−4 25.95 4 -1.171 10−4 26.41

0.05 441 60 -9.187 10−5 10.96 4 -9.283 10−5 9.14
0.025 1681 100 -9.080 10−18 11.06 4 0.000 10 0 7.81

Table 3. The results for Example 1 using tensor-products of cubic exponential B-
splines (EXP3 BSP), cubic variable degree B-splines (VDP3 BSP) and cubic B-splines,
defined on the hierarchical meshes shown in Figure 5 and consisting of quadrilaterals
with hmin as minimum side length.

Example 1, hierarchical mesh refinements

EXP3 BSP, αi,	 = 50 VDP3 BSP, αi,	 = 5 Cubic BSP
hmin dof min cond min cond min cond

0.2 36 -4.982 10−3 13.04 -1.048 10−2 30.99 -8.352 10−2 250.77
0.1 56 -6.576 10−4 489.46 -6.648 10−4 172.44 -1.423 10−3 484.56

0.05 92 -1.062 10−4 957.39 -1.017 10−4 352.45 -4.782 10−4 1092.37
0.025 144 -2.382 10−6 1784.63 -6.789 10−6 520.76 -1.215 10−5 1434.21

Table 4. The results for Example 1 using tensor-products of cubic exponential B-
splines (EXP3 BSP) and cubic variable degree B-splines (VDP3 BSP) with different
values of the tension parameters αi,	 for each refinement level � and defined on the
same four hierarchical meshes as in Table 3.

Example 1, hierarchical mesh refinements

EXP3 BSP VDP3 BSP
hmin dof αi,	 min cond αi,	 min cond

0.2 36 35 -3.102 10−3 20.30 6 -3.296 10−3 22.02
0.1 56 35 -4.431 10−4 556.82 4 -5.171 10−4 172.71

0.05 92 60 -8.703 10−5 1351.18 4 -9.581 10−5 352.78
0.025 144 100 -9.881 10−7 2085.02 4 -1.063 10−6 522.41
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Fig. 5. Example 1. Hierarchical meshes (left) and Greville abscissas of cubic tensor-
product B-splines (right) for different refinement levels.
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Fig. 6. Example 1. Generalized multilevel cubic exponential B-spline solutions on the
first and last mesh shown in Figure 5 with tension parameters αi,	 = 35, 35, 60, 100 at
the levels � = 0, 1, 2, 3 for all i.

and 4 report the corresponding results obtained in the considered locally refined
multilevel space setting.

Figures 6 and 7 show the computed approximate solutions and their contour
plots using cubic exponential B-splines and cubic variable degree B-splines re-
spectively, defined on the first and last hierarchical mesh given in Figure 5 and
with the parameters given in Table 4. Figure 8 shows the reduction of under-
shoots versus the number of degrees of freedom (dof), in the cases of uniform
and local hierarchical refinements with the different considered generalized spline
spaces.

As illustrated by the numerical and graphical results, exponential and variable
degree B-splines have a similar behavior, and they provide a good identification
of the boundary layer with less undershoots than in the case of classical B-
splines. Considering their similar performances, variable degree B-splines appear
to be particularly attractive because of their reduced computational cost and the
available stable evaluation algorithms.

Finally, we remark that the increase in the condition number of the stiffness
matrices (see Tables 3 and 4) is a common behavior when dealing with local
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Fig. 7. Example 1. Generalized multilevel cubic variable degree B-spline solutions on
the first and last mesh shown in Figure 5 with tension parameters αi,0 = 6 at level 0
and αi,	 = 4 at the other levels � = 1, 2, 3 for all i.
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Fig. 8. Example 1. Min values (as absolute value) of the solution using cubic exponen-
tial B-splines (red), cubic variable degree B-splines (black) and classical cubic B-splines
(blue) versus the number of degrees of freedom, defined on locally refined hierarchical
meshes (solid) and uniformly refined meshes (dashed). Left: the tension parameters are
fixed as in Tables 1 and 3. Right: see Tables 2 and 4 for the tension parameters used
at each level.
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Fig. 9. Example 2. Elastic plate with a circular hole: problem setting.

refinements. Other results with alternative spaces and local refinement strategies
for this problem can be found in [2,32].

4.2 Example 2: a Problem in Solid Mechanics

This example aims to illustrate the performances of local refinements based on
multilevel trigonometric B-splines by solving a classical problem in solid mechan-
ics [11,17,23,31]. We consider an infinite plate with a circular hole of radius r,
subject to an in-plane uniform tension Tx in x-direction, see Figure 9 (left). For
a homogeneous and isotropic material this problem features an exact solution
which can be found in [15, Section 7.6]. The infinite plate is modeled by a finite
circular domain with radius R. Due to the symmetry, the computational domain
Ω is restricted to a quarter, see Figure 9 (right). We study the linear elastic
behavior of the displacement field w : Ω → IR2 described by

div σ(w) = 0 in Ω.

The exact solution is applied as a Neumann boundary condition, see Figure 9
(right). For the sake of completeness we recall that σ(w) := {σij(w)}i,j=1,2 with

σij(w) := λdiv(w)δij + 2μεij(w), εij(w) :=
1

2

(
∂wi

∂xj
+
∂wj

∂xi

)
, i, j = 1, 2,

w := (w1, w2), (x, y) := (x1, x2), λ :=
Eν

(1 + ν)(1− 2ν)
, μ :=

E

2(1 + ν)
,

where E denotes the Young modulus and ν the Poisson ratio. In our computed
example we have taken

r = 1, R = 4, E = 105, ν = 0.3, Tx = 10.

Without the hole, the stress would be uniform

σ1,1 = Tx, σ1,2 = σ2,2 = 0.
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Table 5. Example 2. Control points of the geometry function.

k Pk,1 Pk,2 Pk,3

1 (-1,0) (-2.5,0) (-4,0)
2 (-1,1) (-2.5,2.5) (-4,4)
3 (0,1) (0,2.5) (0,4)

Table 6. The results for Example 2 using tensor-product quadratic trigonometric B-
splines and tensor-product quadratic B-splines defined on uniformly refined meshes.
The error is computed for the displacement w of the exact solution in the L2-norm,
and the approximated value of σ1,1 is given at the upper side of the hole.

Example 2, uniform mesh refinements

TRG2 BSP Quadratic BSP
dof error of w σ1,1(0, 1) cond error of w σ1,1(0, 1) cond

96 4.421 10−5 26.722 25.02 8.564 10−5 26.931 23.43
300 8.881 10−6 28.921 33.24 1.893 10−5 28.243 33.02

1044 2.612 10−6 29.502 151.81 5.563 10−6 28.905 151.35
3876 9.341 10−8 29.996 693.45 1.371 10−7 29.802 691.34

Table 7. The results for Example 2 using quadratic trigonometric B-splines and
quadratic B-splines defined on the hierarchical meshes shown in Figure 10. The er-
ror is computed for the displacement w of the exact solution in the L2-norm, and the
approximated value of σ1,1 is given at the upper side of the hole.

Example 2, hierarchical mesh refinements

TRG2 BSP Quadratic BSP
dof error of w σ1,1(0, 1) cond error of w σ1,1(0, 1) cond

96 4.421 10−5 26.722 25.02 8.564 10−5 26.931 23.43
230 5.025 10−6 28.993 31.42 1.423 10−5 28.762 29.34
574 6.703 10−7 29.745 101.04 1.758 10−6 29.243 96.13

1122 8.052 10−8 30.012 245.25 2.132 10−7 29.962 231.81

This distribution will alter only in the vicinity on the hole. More precisely, we get
a peak stress concentration at the upper side of the hole: the stress component
σ1,1 takes the value 30 at the point (0, 1).

To exactly represent the geometry we construct a global geometry function
as in (15) considering the tensor-product space TS2Ξ,α ⊗ S2Ξ with αi =

π
2 . The

control points Pi = Pk,j , k, j = 1, 2, 3, are depicted in Table 5 for a coarse
grid consisting of one interval per edge. Then we approximate both components
of the displacement in the bivariate tensor-product spaces TS2Ξ,α ⊗ S2Ξ (TRG2

BSP) with αi =
π
2 . Classical quadratic B-splines S

2
Ξ ⊗ S2Ξ (quadratic BSP) have

also been considered for the sake of comparison. Next, we also consider bivari-
ate spaces spanned by generalized multilevel bases built from the same tensor-
product spaces mentioned before, defined on the hierarchical meshes shown in
Figure 10. Note that all the considered spaces are nested. We compute in all cases
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Fig. 10. Example 2. Hierarchical meshes (left) and Greville abscissas for quadratic
tensor-product B-splines (right) for four refinement levels.
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Fig. 11. Example 2. Left: control net of the geometry function. Right: exact σ1,1.
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Fig. 12. Example 2. Multilevel quadratic trigonometric B-spline approximations of σ1,1

with αi,	 = π/2 on the first mesh (left) and last mesh (right) shown in Figure 10.
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Fig. 13. Example 2. L2-norm of the error for the displacement using quadratic trigono-
metric B-splines (red line) and classical quadratic B-splines (blue line) versus the num-
ber of degrees of freedom, computed on locally refined hierarchical meshes (solid) and
uniformly refined meshes (dashed).
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the condition number of the corresponding stiffness matrices in the 2-norm and
the error with respect to the exact displacement in the L2-norm.

Table 6 shows the results obtained on uniform refinements of the initial rect-
angular mesh, see Figure 10 (top). Table 7 reports the corresponding results
obtained in the locally refined multilevel space setting using the meshes given
in Figure 10. Figure 13 shows the reduction of the computed error versus the
number of degrees of freedom, in the cases of uniform and local hierarchical
refinements with the different considered spaces. Finally, Figure 12 shows the
computed stress component σ1,1 on the hierarchical meshes as in Figure 10.

Other results with different spaces and local refinement strategies for this
problem can be found in [11,31,33].

5 Closure

Generalized B-splines have been used as an alternative to standard NURBS as
an efficient problem-oriented tool in isogeometric analysis. However, they share
with NURBS a tensor-product structure. This prevents the possibility of local
refinements, which are a crucial ingredient for obtaining, in an efficient way, an
accurate solution of partial differential equations.

Multilevel bases – originally introduced for tensor-product B-splines – offer
a natural structure to obtain local refinements and can be extended to tensor-
product generalized B-splines with suitable section spaces.

Moreover, multilevel bases can be constructed from not necessarily nested
sequences of spaces. Combining this with the flexibility of generalized B-splines
results in a variety of generalized multilevel spaces, whose characteristics can be
tuned according to the considered problem.

In particular, generalized multilevel spaces based on variable degree B-splines
present interesting performances because they couple the ability of modeling
sharp features of exponential B-splines, with the low computational cost and
stable evaluation algorithms of classical algebraic B-splines.

Of course, if non-nested spaces are considered to build the hierarchy, finer
levels do not result in a nested sequence of (multilevel) discretization spaces.
Nested spaces are not a necessary ingredient in IgA, see for example [31,32].
Nevertheless, nested hierarchical structures can be obtained with generalized B-
splines as well, whenever preferred. In this case, at each level of the hierarchy,
generalized B-spline spaces defined over nested sequences of knots and with
sections in nested spaces have to be considered.

Finally, we have focused on local mesh refinements (h-refinements), but as for
classical B-splines hierarchical p- and k-refinements can be considered as well.
Since the section spaces (2) support degree-raising, nested hierarchical structures
can be obtained also in this case if preferred.
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Abstract. An important step in simulation via isogeometric analysis
(IGA) is the assembly step, where the coefficients of the final linear sys-
tem are generated. Typically, these coefficients are integrals of products
of shape functions and their derivatives. Similarly to the finite element
analysis (FEA), the standard choice for integral evaluation in IGA is
Gaussian quadrature. Recent developments propose different quadrature
rules, that reduce the number of quadrature points and weights used.
We experiment with the existing methods for matrix generation. Fur-
thermore we propose a new, quadrature-free approach, based on inter-
polation of the geometry factor and fast look-up operations for values
of B-spline integrals. Our method builds upon the observation that ex-
act integration is not required to achieve the optimal convergence rate
of the solution. In particular, it suffices to generate the linear system
within the order of accuracy matching the approximation order of the
discretization space. We demonstrate that the best strategy is one that
follows the above principle, resulting in expected accuracy and improved
computational time.

Keywords: isogeometric analysis, stiffness matrix, mass matrix,
numerical integration, quadrature.

1 Introduction

The advent of IGA by Hughes et al. [11] has motivated new approaches to the en-
tire process of simulation and numerical solving of partial differential equations
(PDEs). The benefits of the isogeometric paradigm include the exact represen-
tation of the geometry by using flexible B-spline representations as a basis for
analysis. In this realm, the whole of the analysis process is revisited to exploit
the new possibilities. Lately special focus has been given to the matrix genera-
tion step, since it is one of the sub-processes that is likely to admit considerable
improvement in this new analysis environment. Indeed, e.g. in [8] the authors
perform simulations on the deformation of turbine blades using both IGA and
FEA and conclude that even though IGA has a clear advantage regarding the
number of degrees of freedom, matrix generation (by means of quadrature) con-
stitutes a bottleneck in the overall running times.
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During the analysis process, several approximate computational steps are ex-
ecuted, while computing an unknown field over the given geometry. Typically,
given a geometry (or physical domain) and a boundary value problem, the un-
known solution field is projected onto a finite-dimensional sub-space, i.e. we
restrict ourselves to finding a solution in that space. Then a linear system is
generated, consisting of a matrix with e.g. mass, stiffness terms, as well as a
load vector containing the moments with respect to the right-hand side. The so-
lution of the resulting linear system yields the coefficients of the unknown field
in the chosen discretization space. In each of these steps, errors are introduced
and accumulate in the final solution. In most cases the principal error sources
during the process are the discretization error coming from projection of the
solution and the integration error made in the generation step.

Typically, the discretization of a differential equation leads to matrices with
entries being integrals of products of shape functions and their derivatives. These
integrals over elements in the physical domain are transformed to integrals over
the support of the basis functions, resulting in integrands involving the (inverse
of the) Jacobian of the geometry map. The most we can hope for is a good
approximation of these quantities, since the integrals of rational functions in the
best case lead to non-rational expressions.

When it comes to convergence, a main parameter is the order of accuracy of
the entire process. We shall confirm that a minimal order of accuracy has to
be maintained throughout the analysis pipeline in order to obtain the expected
convergence. Similarly, an intermediate step with a higher order of convergence
is unnecessary, since a current super-convergence is likely to be canceled by a
subsequent step.

Numerical integration by use of evaluations of the integrand alone is often
referred to as quadrature in one dimension and as cubature in higher dimensions.
The problem of deriving quadrature rules for integrals involving B-splines was
first considered over thirty years ago. Indeed, in [10] the authors computed rules
for the moments of (linear, quadratic and cubic) B-spline functions, in order
to solve a parabolic PDE using Galerkin’s method. The interest in the topic is
revived lately, after the introduction of IGA.

In [12] the authors present optimal quadrature rules for the mass and stiffness
of uniform B-spline discretizations, i.e. rules with the minimum number of nodes
that are exact for the product of two B-splines, upto a fixed degree. The number
of nodes (points) plus the number of weights in this minimal rule coincides with
the dimension of the spline space of integrands, and this is why it is known as the
half-point rule. The optimal rule is defined over the whole domain of the B-spline
space, and the computation of the nodes and weights leads to a global, non-linear
system of equations, which is tackled with a Newton iteration. This limits the
practical ability to derive of the rule to small degree and to small number of
elements. The authors anticipate this constraint by splitting big domains into
macro-elements, thus resorting to a non-optimal strategy.

In [1] the spline space of the product of two uniform B-spline basis functions is
further investigated, in order to produce a feasible, computable rule. The basis
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functions are grouped with respect to the size of their support. In particular,
basis functions have support over at most two elements and are translates of
a small group of distinct basis functionals. This allows to derive a rule which
is defined over one or two elements, and can be obtained as the solution of a
“local” non-linear system that, unlike [12], does not depend on the number of
elements.

An experimental study of the Gauss rule, and the optimal rule on macro-
elements of [12] is done in the recent work [15]. They perform experiments on
a Poisson problem over a domain given by the identity mapping, with a unit
Jacobian determinant. Their focus is on the degree of exactness of different rules
as well as their practical computational cost. Since the parameterization is the
identity, the shape functions are simply B-splines, therefore exact evaluation of
the stiffness matrix is feasible when using quadrature rules that integrate exactly
the respective integrands.

Throughout this paper we consider uniform knot vectors; we note that any
mesh can be properly refined so that it becomes uniform almost everywhere.
We focus on the univariate case, since for higher dimensions the tensor-product
structure allows re-using the same technique coordinate-wise.

We set up a model Poisson problem, and use it firstly to briefly review the
different available approaches for matrix generation in IGA. We elaborate on a
new approach based on (quasi-)interpolation of the geometry factor in the inte-
grand. An ingredient needed for our method is the exact evaluation of integrals
of tri-products of B-splines, which can be done symbolically. We experiment with
the different approaches, and demonstrate that the requirement for a method
having high degree of exactness is not crucial, in the sense that this exactness
does not propagate to the final solution, since the accuracy of the final solution
is limited by the discretization error. Instead we verify that it suffices to adopt
a method whose accuracy matches the discretization error, in order to maintain
all essential information that is contained in the stiffness matrix regarding the
problem. The proposed quadrature-free method has the above property, while
avoiding the use Newton iteration for deriving quadrature nodes and weights.
Contrarily to high-accuracy quadrature it requires less evaluations, therefore it
partially overcomes a common bottleneck in terms of computational cost.

In the next section we describe the model problem, its discretization and the
expected numerical error. Then we look at different quadrature-based assembly
strategies in Section 3 and we introduce our method in Section 4. Experimental
results are presented in Section 5 and short conclusions follow in Section 6.

2 The Model Problem

In this section we present the model problem that is used to present the different
assembly methods and perform experiments in Section 5.

We consider a homogeneous bar of length L = 5, subject to a distributed load
f(x) that is acting along the x−axis (Figure 1). The longitudinal displacement
u(x) that is produced by the force is the solution of the one-dimensional Poisson
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L = 5

x u(x)

u(0) = c0

f

u′(L) = c1

Fig. 1. A homogeneous bar problem with zero-displacement boundary on the left. A
horizontal line force f is applied and an end condition.

equation

−u′′(x) = f(x) , x ∈ Ω, (1)

with physical domain being a real interval Ω = [0, L]. For an isogeometric model,
we parameterize the bar by a B-spline geometry map G : [0, 1] → Ω,

G(t) =

n∑
i=0

giNi,p(t),

supported on a uniform, open knot vector (Figure 2). The B-Spline basis func-
tionsNi,p are piece-wise polynomials of degree p, and have continuity Cp−1 across
the interior knots, provided that the knot vector has only simple knots. We refer
the reader to standard textbooks, e.g. [6] for an introduction to spline theory.
For parameterizing this one-dimensional problem, an identity map would be the
best choice. However, when we use the tensor-product of univariate B-spline
spaces for 2D or 3D problems, a linear geometry map for non-trivial geometries
is no longer possible. Our aim is to simulate this fact, and therefore we shall
consider non-trivial mappings (of several degrees) for the bar. In particular, the
integrands that we aim at treating are rational functions, so that we shall access
the full effects of a geometry mapping on the simulation process.

We impose a Dirichlet boundary condition on the left end and a Neumann
condition on the right end of the bar,

u(0) = c0 and u′(L) = c1, (2)

where c0, c1 are constants. The physical interpretation is that we have an initial
displacement c0 in the fixed end of the bar, and we know the magnitude c1 of
the force acting at the free end.

First we derive the weak formulation. We multiply (1) by a test function v(x),
and after integration by parts we get∫

Ω

u′(x)v′(x)dx =

∫
Ω

v(x)f(x)dx + c1v(1) or a(u, v) = 〈f, φi〉+ φi(1)c1 ,

(3)
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Fig. 2. Parameterization of the bar using B-splines of degree 6

using trial and test spaces

U = {u : u(0) = c0} and V = {v : v(0) = 0},

for u and v respectively. One can show that a(·, ·) is bi-linear, symmetric, co-
ercive, and bounded. Hence, the theory of abstract boundary value problems
can be applied to show the existence of a unique weak solution in the infinite-
dimensional Hilbert space H1(Ω).

2.1 Discretization

We restrict test functions and trial solutions to the push forward of the (finite
dimensional) B-spline space V h ⊂ H1(Ω), i.e. we apply Galerkin approximation:

vh(x) =

n∑
i=1

viφi(x) ∈ Vh and (4)

uh(x) =

n∑
i=1

uiφi(x) + c0φ0(x) ∈ Uh , (5)

with φi = Ni,p ◦G−1 and φi(0) = 1 for i = 0, and 0 otherwise. Using the weak
form (3) we arrive at a linear system of equations

n∑
j=0

uia(φi, φj) = $(φi) + φi(1)c1 − c0a(φi, φ0) , i = 1, . . . , n (6)
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with a(φi, φj) :=

∫
Ω

φ′i(x)φ
′
j(x)dx and $(φi) := 〈f, φi〉 =

∫
Ω

φi(t)f(t)dx. The

coefficients of the solution uh are described by the linear system

Ku = b , (7)

where Kij = a(φi, φj), bi = 〈f, φi〉 + φi(1)c1 − c0a(φi, φ0) and u stands for the
vector of unknown coefficients (u1, . . . , un). Plugging in B-splines of degree p,
we arrive at the stiffness entries

Kij = a(φi, φj) =

∫
Ω

φ′i(x)φ
′
j(x)dx =

∫
Ω0

N ′
i,p(t)N

′
j,p(t)

dt

G′(t)
, (8)

whereas the right-hand side involves the inner product

$(φi) = 〈f, φi〉 =
∫
Ω

f(x)φi(x) dx =

∫
Ω0

f(G(t))Ni,p(t)|G′(t)| dt . (9)

Finally, it is useful to mention the mass term, that may also appear in the
variational form,

〈φi, φj〉 =
∫
Ω0

φi(x)φj(x) dx =

∫
Ω

Ni,p(t)Nj,p(t)|G′(t)| dt . (10)

2.2 A Priori Error Considerations

In this section we recall some facts regarding the numerical error that is expected
to appear during the analysis pipeline. Looking at every individual step of the
process, we see that the following error factors are likely to occur:

1. The approximation error for the geometry representation, e.g. in case of
polynomial B-spline discretization of planar domains with circular boundary,
or the use of linear splines on domains with curved boundaries.

2. The discretization error, coming from the projection of the unknown solution
field onto the solution space V h.

3. The error coming from interpolating non-constant Dirichlet boundary con-
ditions.

4. The numerical integration or consistency error appearing during the gene-
ration of K and b in (7), involving integrals of products of shape functions
and moments of the source function respectively.

5. The possible numerical inaccuracy introduced when solving the linear sys-
tem (7).

Therefore, the quality of the final solution is determined as a combination of
all intermediate strategies chosen for these steps.

1. Geometry approximation error in the context of IGA can be safely assumed
zero, since we shall be using for analysis (a refinement of) the same basis in
which the geometry is given in the first place.
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2. Discretization error is of order p + 1 if measured in the L2−norm, when
B-splines of degree p are used [2,21]. Consequently, this is the optimal con-
vergence rate that we expect to obtain in the final solution.

3. The error factor coming from incorporating Dirichlet boundary is usually
zero, e.g. for constant or polynomial conditions on the boundary; in partic-
ular it is always zero in the 1D case we are considering [3].

4. The consistency error influences greatly the quality of the numerical solution,
since the computed values of the bi-linear form a(·, ·) and inner product
〈·, ·〉 can deviate significantly from theoretical values. Indeed, the consistency
error stems from approximating the stiffness matrix and the load vector by
some computed (perturbed) versions ah ∼= a and $h ∼= $, e.g. we actually
compute K̃ij = ah(φi, φj) instead of (7). These quantities are in general
rational and could be evaluated exactly only if the geometry transformation
is linear (i.e. the Jacobian determinant is a constant) and the PDE has
constant coefficients.

Consequently, when approximating the (matrix of the) bilinear form a by a
numerically computed ah, we replace the original problem (3) by the per-
turbed one ah(uh, vh) = $h(vh). The effect of this perturbation on the so-
lution of the original problem is captured by Strang’s first lemma Strang’s
first lemma [16,17]:

‖u− uh‖V ≤C
(

inf
vh∈Vh

{
‖u− vh‖+ sup

wh∈Vh

a(vh, wh)− ah(vh, wh)

‖wh‖V

}
+

+ sup
wh∈Vh

$(wh)− $h(wh)

‖wh‖V

)
, (11)

with a(·, ·) and $(·) as in (6) and C being a constant that does not depend
on the discretization step-size h.

The lemma describes (under reasonable assumptions, e.g. smoothness and
Vh-ellipticity) the accumulation of discretization and consistency errors on
the solution. It states that the variation of the computed solution is bounded
by the a best approximation error infvh∈Vh

‖u−vh‖ and the consistency error
present in the bi-linear form and load vector. We expect to observe the same
type of behavior in our isogeometric setting.

5. Finally, the error introduced while solving the resulting linear system K̃u =
b̃ is negligible, when iterative solvers are utilized. Indeed, the quality of the
solution will depend on the number of iteration steps executed, therefore
in practice at the point where we have generated the linear system we can
approach its solution up to high precision using stable solvers with precon-
ditioning and sufficiently many iteration steps. We also mention that the
condition number of the stiffness matrix for uniform knot-meshes is known
to be of order O

(
h−2
)
for mesh-size h, which is analogous to the case of the

traditional finite element method (see [7] for more details).



Exploring Matrix Generation Strategies in Isogeometric Analysis 371

3 Quadrature-Based Approaches

We now consider our main topic of interest, the assembly step. We need to
compute the quantities (8)–(10) in order to form (7). In the present section
we discuss existing quadrature methods in order to prepare the ground for a
quadrature-free approach that follows right after.

As already mentioned, we focus on the 1D case, since the derivation of quadra-
ture rules for 2D or 3D is done by taking the tensor product of univariate rules.
We introduce two notations; we denote by Pm the space of polynomials of degree
m and by Smq the space of piece-wise polynomial (spline) functions of degree m
and continuity q at the knots.

Numerical integration is typically based on a quadrature (or, in higher dimen-
sion, cubature) formula:∫ 1

−1

g(x) dx =

r∑
i=1

wig(xi) + eg , (12)

with weightswi, nodes (or integration points) xi, and error term eg. A quadrature
formula is specified by providing weights wi and nodes xi for the integration
domain [−1, 1]. Then the weights and nodes can be mapped to any other interval
with a linear change of variables.

When designing or choosing quadrature rules for a problem, an important
parameter is the trade-off between the number of evaluations of the integrand
used and the quality of the approximation of the integral in question. In the frame
of IGA, locality of the support of basis functions favors quadrature approaches: at
a given point, it suffices to evaluate only those functions whose support contains
the point.

3.1 Gauss Quadrature

The most commonly used quadrature rule is the Gauss integration rule [18]. We
shall briefly describe its advantages.

We define the degree of exactness (or algebraic precision) of a rule to be equal
to p, if all polynomial functions of degree at most p are exactly integrated by
the rule, i.e. in (12) eg = 0 for all g in the polynomial space Pp and there
exists g ∈ Pp+1 such that eg �= 0. Under certain smoothness assumptions on the
integrand, applying a rule of degree of exactness p guarantees an approximation
error of p+1, where p is its degree of exactness. A formula of the form (12) can
be chosen to be exact on a polynomial space of degree p if it has at least p+ 1
“quadrature degrees of freedom”, ie. 2r ≥ p+ 1.

The nodes are the at roots of the r-th Legendre polynomial mapped onto the
integration interval, and the weights follow from a simple formula. This choice
of nodes (and weights) is minimal (or optimal) with respect to the degree of
exactness; they provide the unique rule with r nodes that is exact on P2r−1.

The approximation power for sufficiently regular integrands is 2r [13]; this
error bound is based on the fact that all the weights are positive. This means
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that if we are interested in approximating an integral within an order of accuracy
p+1, then it suffices to evaluate the integrand on r = �(p+ 1)/2� Gauss nodes.

3.2 The Half-point Rule

The half-point rule of [12] is an attempt to specify minimal exact rules for Smr , i.e.
the analogue of Gauss rules for Pm. For a spline space of dimension n, an optimal
quadrature formula is one with �n/2� nodes. Note the limit case of discontinuous
splines, where dim Sm−1 = k dimPm, with k being the number of knot-spans; this
equality implies that the optimal rule for Sm−1 is the Gauss rule, as expected. But
if the continuity is bigger then the spline space dimension drops, and we should
be able to do better.

The derivation of such rules requires solution of a global non-linear problem,
expressing the exactness of the rule on the basis functions. Since the Newton
solver is only applicable for a limited number of unknowns, this computation
can only be carried out for small n, or equivalently for a small number of ele-
ments. However, the authors succeeded in using the rule in an non-optimal way
by computing the node values for problems with a small number of elements and
then tiling the rule along larger meshes, that is, they consider rules on so called
macro-elements. The rules where derived numerically for B-spline discretizations
of degree up to three. In addition, the node values for degree four are computed
in [15]. Questions regarding uniqueness and stability of these numerically com-
puted rules (for example weight positivity, approximation power) are still open.

3.3 A Local, Feasible Rule

In the recent work [1] the authors explore quadrature rules for specific product-
spline spaces, where the stiffness or mass integrands belong to. The B-spline
space (of higher degree) of the product of two uniform B-spline basis functions
(or derivatives) is further investigated, in order to produce a feasible, computable
rule. It is observed that the basis functions of the product-spline space S2pp−2 are
supported in at most two knot-spans, and the basis functions are grouped with
respect to the size of their support.

Using the periodicity of uniform basis functions supported on one or two
elements, they derive a system of equations expressing exactness on the basis,
this time mapped back to a reference interval. This allows to setup a rule which
can be obtained as the solution of a “local” non-linear system that, unlike [12],
does not depend on the number of degrees of freedom. An additional system
of equations is set up for deriving a rule for boundary basis functions, where
multiple knots are present. The number of variables in these Newton systems
depends on the degree and the smoothness, but not on the number of elements.
Moreover, the number of quadrature nodes taken for this rule is close to the half-
point rule. The quadrature nodes and weights can be computed for any degree
using GeoPDEs [5].
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4 Quadrature-free Assembly

In this section we explore a quadrature-free method for the assembly task. We
shall replace the quadrature by an approximation, by means of interpolation or
quasi-interpolation, of the part of the integrands (8), (9) or (10) that contains
the geometry mapping G and its derivatives. This strategy aims at reducing
the number of evaluations needed in quadrature-based approaches as well as
avoiding the need to solve non-linear systems in order to derive quadrature
rules. The proposed method consists in an initial approximation of the geometry
factor that appears in the integrand (for example G′ or 1/G′) and a fast look-up
operation for the resulting integrals, involving only products of B-splines. The
idea is to approximate the integrand within the order of accuracy that matches
the discretization error and consequently exploit the periodic nature of uniform
B-spline bases. Similarly to quadrature-based approaches, with our approach the
tensor product of 1D instances can be used to apply our technique to 2D or 3D
patches. The only change is that the interpolation of the geometry factor needs
to be carried out in higher dimension, which is also done by the tensor-product
of 1D interpolation operators.

We shall use the stiffness term (8) for presentation purposes. The scheme is
as follows:

1. First we approximate the geometry factor G by projecting it onto Sp−1
p−2.

Applying an interpolation operator Q to 1/G′, we get

Kij
∼=
∫
Ω

N ′
i,pN

′
j,pQ

(
1

G′

)
dt =

n∑
k=0

qk

∫
Ω

N ′
i,pN

′
j,pNk,p−1 dt . (13)

The geometry factor is thereafter expressed in the B-spline space and stiffness
entries break down to a sum of tri-product integrals of B-splines.

2. Consequently we construct (or load) a look-up table Ip−1,p−1,p−1
i,j,k for the

integrals of tri-products Ni,p−1 · Nj,p−1 · Nk,p−1 of basis functions of Sp−1
p−2

that appear in (13), after eliminating derivatives.
3. At this point we are able to assemble the matrix K by summing up contri-

butions from the look-up tables.

A similar formula can be deduced for the load vector, by applying Q on f ◦G.
Note that the approximation of the “geometry factor” does not interfere with

the exactness of the geometry representation, that is, the preservation of the
boundary of the physical domain after discretization, as known in IGA. Indeed,
this factor refers to the contribution of the integral transformation from the
physical to the parameter domain and of possibly non-constant coefficients of
the PDE. For the numerical evaluation of integrals of rational function approx-
imating is inevitable, and usually some kind of interpolation takes place, e.g.
polynomial interpolation in the case of Gaussian quadrature. In our approach
we restrict this interpolation to the actual non-polynomial part of the integrand.

When using open knot vectors, a number of special B-Splines appear at the
boundaries of the parametric domain, due to the multiplicity of the boundary
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knots. We may incorporate these cases in our setting by including the corre-
sponding integral values in a lookup table that is used for all boundaries. Their
values may be obtained exactly by means of Gaussian quadrature. In the one-
dimensional case, however, we employ directly Gaussian quadrature for the two
boundaries, since the potential savings in this case are negligible. Note that
having only uniform B-Splines also on the boundaries would still need special
treatment, since the integration domain would be in that case a genuine subset
of the intersection of the supports of the B-Splines that are involved.

The ingredients required are a suitable interpolation operatorQ and a look-up
table for the integral of B-spline tri-products. We address these two requirements
in the following paragraphs.

4.1 Approximating the Geometry Factor

The first ingredient of the proposed method is an approximation operator Q to
be applied on the geometry factor denoted hereafter η(t).

There are at least two options for Q; one can use a global interpolation
scheme, that would require solving a linear system, or a local quasi-interpolation
scheme [4,14]. The interpolation points used in Q are directly available, for in-
stance one can use the Greville abscissae or any other point-set given by the
quasi-interpolation scheme. This way we replace η(t) by a B-spline function

Qη(t) =

n∑
i=1

ηiNi,m(t) . (14)

Strang-Fix conditions (cf. [17]) hold for the B-spline basis, which implies that
quasi-interpolation can be applied to approximate η within order m + 1 when
Smm−1 is used for interpolation, that is, halving the knot-spans should decrease
the error by 2m+1 .

The geometry map (and the geometry factor) is almost everywhere smooth
except from the knots of the coarse mesh. Therefore approximation on the fine
grid is expected to behave nice; this is confirmed by the experiments in Section 5.
Since in the case of the stiffness matrix the denominator of η(t) is a B-Spline
function of degree p−1, we choose m = p−1 to match the continuity of η at the
knots. Another strategy is to add double knots and use Spp−2, but experiments
indicate that the degree m = p− 1 is sufficient.

4.2 Exact Integrals of Products of B-Splines

The scheme requires look-up tables for the integral over their support of product
of two or three B-spline functions. For this, we consider uniform splines of degree
p over the infinite knot vector hZ, for some length h ∈ R. Note that all formulas
presented in this section refer to B-Splines without repeated knots; integrals that
involve “boundary” B-Splines, e.g. the few ones appearing at the two endpoints
of the basis shown in Figure 2 will need special care and are not covered.
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The computation of integrals of inner products of B-splines is studied in [19].
Furthermore, a formula for the inner product 〈Ni,p(t), Ni+j,p〉 of two uniform
B-splines of the same degree (i.e. entries of the Gramian matrix), the second
being a shift by j knots, seems to be known to the B-spline community, even
though we were not able to locate a proof of that formula in the literature. More
generally, for different degrees we discovered that the integral (Figure 3 left):∫ mh

0

Ni,m(t)Ni+j,n(t) dt = hIm,n
j , j = 1− n, . . . ,m− 1 , (15)

where Im,n
j corresponds to h = 1 can be computed explicitly by the formula

Im,n
j =

E(m+ n− 1, n+ j − 1)

(m+ n− 1)!
, (16)

for all j = 1−n, . . . ,m− 1. Here E(i, j) denotes the so-called Eulerian numbers
(cf. [20]):

E(i, j) =

j∑
k=0

(−1)k
(
i+ 1

k

)
(j − k + 1)i , i, j ∈ Z .

Eulerians can be computed by the recursion:

E(i, j) = (i− j)E(i − 1, j − 1) + (j + 1)E(i− 1, j),

which is in fact quite close to the B-spline recursion. The relation between Eu-
lerian numbers and B-splines seems to be a deep one, see [9,20] for more in-
formation. By symmetry Ip,pj = Ip,p−j , therefore assembling the Gramian matrix
of uniform B-splines involves essentially computing p distinct integrals, namely
Ip,p0 , Ip,p1 , . . . , Ip,pp−1.

Fig. 3. Overlap of the support of 2 and 3 uniform B-splines after shifting

For the tri-product integral we write down the factors in terms of shifts, and
analogously to (15) we have (Figure 3 right):∫ mh

0

Ni,m(t)Ni+j,n(t)Ni+j+k,p(t) dt = hIm,n,p
j,k . (17)
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In this case there is no closed formula available, however, since these are just in-
tegrals of piece-wise polynomials, we can compute their values by an exact Gauss
rule in every knot-span, or by using symbolic integration. A closed formula for
Im,n,p
j,k might also exist; nevertheless up to now computing these values symboli-
cally has not been a problem. In particular, a small Mathematica worksheet can
produce the values for degrees up to 10 in less than one second. Table 1 provides
these data for degrees 2 to 4.

Table 1. Values for B-spline tri-products for B-spline degrees 2 to 4. The rows corre-
spond to the degree and the values correspond to Ip,p,pj,k .

j, k 0,0 0,1 0,2 0,3 0,4 1,1 1,2 1,3 2,2

2 12
35

43
420

1
840

0 0 1
168

0 0 0

3 1979
7560

18871
181440

31
6480

1
181440

0 85
6048

17
181440

0 0

4 4393189
20756736

3465461
34594560

129119
14152320

13411
155675520

1
88957440

6474701
311351040

376723
622702080

349
622702080

251
155675520

5 Experimental Results

We use the problem of Section 2, considering a bar described by the geometry
map G : [0, 1] → [0, 5], using B-splines of degrees up to 10, and exact solution

u =
(
7 t+ 2 t2 − 3 t3

)
sin (t) cos (t) .

For this solution we get a right-hand side

f =
(
18 t2 − 8 t− 14

)
cos (2 t)−

(
6 t3 − 4 t2 − 23 t+ 2

)
sin (2 t) ,

an boundary conditions u(0) = 0, u′(1) = sin(2) + 6 cos(2).
The control points for the experiments are chosen randomly, with some care

to avoid singular parametrizations, e.g. for degree 6 we used the geometry func-
tion of Figure 2. For our new method, the interpolation of the geometry factor
was performed using a simple global interpolation operator using the Greville
abscissae as interpolation points.

The methods considered are

– Gauss(m): Gauss rule with m nodes.
We take m = p+ 1 (“full” Gauss), as well as m = p− 1, p− 2, p− 3.

– ACHRS: The exact integration rule of [1].
– Quadrature-free: The method of Section 4.

Full Gauss quadrature Gauss(p + 1), is the exact rule for mass and stiffness
integrands, since they have degree upto 2p. Also, the Gauss rule matching the
approximation order of the discretization has p−1 quadrature points. We choose
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Fig. 4. Number of evaluations for fixed degree p = 5 (left) and for fixed number of
elements (right). Legend: � ACHRS, � Gauss(p+ 1), � Gauss(p− 1), � Quad-free.

to employ the ACHRS rule of [1] in our experiments, since it is defined for any
degree, and an implementation to derive the rules is available in GeoPDEs [5].
Lastly, we test the strategy presented here-in using interpolation of a part of the
integrand.

Convergence depends greatly on the assembly of the load vector. To access the
effect of the quadrature on the stiffness matrix alone, we used a high precision
rule for the load vector in all experiments. We present plots for degrees 5 and
6 in figures 5 and 6 respectively. We have experimented with degrees up to 10,
and in all cases the results follow the same pattern.

Our first task is to investigate the order of convergence and the convergence
threshold using different assembly strategies. Monotonic convergence of order 6
(resp. 7) for degree 5 (resp. 6) of the overall error is confirmed for Gauss(p+1),
ACHRS and Quadrature-free, as seen in 5(a) and 6(a). Since the discretization
error is known, the result we get is in agreement with the prediction of Strang’s
lemma (11). Note that using Gauss quadrature with �(p+ 1)/2� points or less,
the order or convergence drops, as expected.

The second experiment studies the consistency error. We look at a central en-
try of the stiffness matrix in terms of numerical accuracy, and the results are pre-
sented in figures 5(b) and 6(b). Interestingly, the accuracy in terms of the relative
error, in which we estimate the bi-linear formKij = a(φi, φj) using Gauss(p−1),
Gauss(p − 2) or Gauss(p − 3) remains constant under h−refinement. This can
be justified by the fact that refinement shrinks both the integrand and the in-
tegration interval, i.e. this is not an adaptive quadrature, where the integrand
is fixed and the integration interval is subdivided. The rule ACHRS behaves
very similarly to full Gauss quadrature with p+1 points. Using quadrature-free
assembly, we gain adaptivity, since the function that is approximated is fixed
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Fig. 5. Relative L2 error of the solution (a) and relative numerical error of an entry of
K (b) plotted against the DoFs of the problem. In (c), we plot the relative L2 error of
the solution against the number of evaluations performed during stiffness generation,
for different strategies. Discretization is done using uniform B-splines of degree 5.
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Fig. 6. Relative L2 error of the solution (a) and relative numerical error of an entry of
K (b) plotted against the DoFs of the problem. In (c), we plot the relative L2 error of
the solution against the number of evaluations performed during stiffness generation,
for different strategies. Discretization is done using uniform B-splines of degree 6.
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(because the geometry map is fixed), therefore refinement improves the approx-
imation accuracy in the stiffness matrix. Indeed, when refining the mesh, we are
not re-computing the same stiffness, or load vector entries. On the other hand,
we enrich the solution space with finer elements, and consequently quadrature-
free assembly takes advantage of this refinement in approximating the (geometry
factor and) integrals with higher precision, while quadrature approaches deliver
a roughly constant order of accuracy in the approximation of stiffness and mo-
ments for the refined set of functions.

To estimate the computational load, we choose a qualitative approach. In Fig-
ures 5(c) and 6(c) we plotted the relative L2 error that we obtained in relation to
the number of evaluations invested, i.e. the number of evaluations performed for
computing an entry of the the stiffness matrix versus the error that is observed
in the final solution. The same error with less evaluations implies a more efficient
strategy, whereas the slope reveals the convergence of each strategy. We see that
the first four strategies converge with the same rate, but each one uses a differ-
ent number of evaluations, with the ones of the Quadrature-free technique being
at a minimum. Let k be the number of elements. The number of evaluations
performed by full Gauss quadrature is k(p + 1). The ACHRS quadrature re-
quires roughly (k − 2)(p+ 2)/2 evaluations, while the Quadrature-free approach
requires evaluation on an interpolation point-set of cardinality k. In Figure 4 we
plot the number of evaluations performed for the different methods with respect
to k and p. In both cases the advantage of the new method is clear.

6 Conclusions

In the context of IGA, we explored the computational load for matrix generation
and the related consistency error of different techniques. As expected, apart
from discretization, the order of accuracy in the entries of the stiffness matrix
influenced crucially the quality of the final result.

The experiments indicated that the quadrature-free technique is promising,
since it is flexible (e.g. in choosing the interpolation operator), adaptive ( the
accuracy in the computation of the integrals is improved after refinement of the
basis), and has a lower complexity when compared to quadrature approaches. In
particular, we replaced the set of quadrature points for the stiffness integrand,
which are usually solutions of non-linear systems of equations that are not known
in advance, with a set of interpolation points for the geometry factor of clearly
lower cardinality, that are straight-forward to compute. By exploiting intrinsic
properties of B-splines, we showed how one can precompute integrals of shifted
tri-products and therefore avoid duplicated computations. We believe that there
exist closed formulas, or even better, recurrences, that compute these integral
values, at least in the uniform case; this is a topic for further research.

The behaviour of Gauss quadrature ruleswith decreasingnumber of points, that
we experimented with, demonstrates that an optimal assembly strategy with re-
spect to computational load is to generate the system within the order of accuracy
implied by the discretization error. The quadrature-free approach presented here-
in follows this principle while using a minimum number of evaluations.
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Finally, we think that it is a worthy challenge to extend the rules of [1,12]
to spaces such as Spp−2 and prove good approximation properties, as in the case
of Gauss quadrature where the degree of exactness is closely connected to the
approximation order.
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1. Auricchio, F., Calabrò, F., Hughes, T., Reali, A., Sangalli, G.: A simple algorithm
for obtaining nearly optimal quadrature rules for NURBS-based isogeometric anal-
ysis. Comput. Meth. Appl. Mech. Eng. (2012)

2. Beirão da Veiga, L., Buffa, A., Rivas, J., Sangalli, G.: Some estimates for h-p-k-
refinement in isogeometric analysis. Numerische Mathematik 118, 271–305 (2011)

3. Costantini, P., Manni, C., Pelosi, F., Sampoli, M.L.: Quasi-interpolation in isogeo-
metric analysis based on generalized B-splines. Comput. Aided Geom. Des. 27(8),
656–668 (2010)

4. de Boor, C., Fix, G.: Spline approximation by quasi-interpolants. J. Approx. The-
ory 8, 19–45 (1973)

5. de Falco, C., Reali, A., Vázquez, R.: GeoPDEs: A research tool for isogeometric
analysis of PDEs. Advances in Engineering Software 42(12), 1020–1034 (2011)

6. Farin, G.: Curves and surfaces for CAGD: A practical guide. Morgan Kaufmann
Publishers Inc., San Francisco (2002)

7. Gahalaut, K., Tomar, S.: Condition number estimates for matrices arising in
the isogeometric discretizations. Technical Report RR-2012-23, Johann Radon
Institute for Computational and Applied Mathematics, Linz (December 2012),
https://www.ricam.oeaw.ac.at/publications/reports/12/rep12-23.pdf
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Abstract. Nonlinear multiscale algorithms often involve nonlinear per-
turbations of linear coarse-to-fine prediction operators S (also called sub-
division operators). In order to control these perturbations, estimates of
the “commutator” SF − FS of S with a sufficiently smooth map F are
needed. Such estimates in terms of bounds on higher-order differences of
the underlying mesh sequences have already appeared in the literature,
in particular in connection with manifold-valued multiscale schemes. In
this paper we give a compact (and in our opinion technically less tedious)
proof of commutator estimates in terms of local best approximation by
polynomials instead of bounds on differences covering multivariate S
with general dilation matrix M . An application to the analysis of nor-
mal multiscale algorithms for surface representation is outlined.

Keywords: subdivision operators, polynomial reproduction, local
polynomial best approximation, nonlinear multiscale transforms.

1 Introduction

Throughout this paper, we assume familiarity with the basics of the theory and
applications of subdivision schemes [1,5,12,17]. Let M ∈ Zs×s be a dilation
matrix, i.e., M has integer entries and every eigenvalue is of modulus > 1. We
consider linear subdivision operators S : $∞(Zs) → $∞(Zs) with dilation matrix
M acting on sequences x = (xφ)φ∈Zs ∈ $∞(Zs) according to

(Sx)ψ =
∑
φ∈Zs

aψ−Mφxφ, ζ ∈ Zs, (1)

where (aφ)φ∈Zs is a fixed finitely supported sequence, called the mask of S. The
case M = 2Id, where Id is the s × s identity matrix, corresponds to dyadic
subdivision and is important for many applications. If we consider vector-valued
sequences x = (x(1), . . . , x(n)) ∈ $n∞(Zs) then S acts on them componentwise, i.e.,
Sx = (Sx(1), . . . , Sx(n)). Other situations, such as vector subdivision operators
and non-shift-invariant mesh topologies, are not considered.

We are interested in estimating the commutator term SF (x)−F (Sx) in terms
of “smoothness” properties of the vector-valued sequence x ∈ $n∞(Zs), where
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x = (x(1), . . . , x(n)), under generic assumptions on S and the nonlinear map F :
Rn → R belonging to the Hölder class CK,ρ. The estimates of the commutator
map are local in nature due to the finite support of the mask associated with S,
and should therefore be formulated using local smoothness measures of x. We pre-
fer to use local polynomial best approximations to the vector-valued sequence x
restricted to finite index sets Iα ⊂ Zs (so-called invariant neighborhoods of S)
associated with each α ∈ Zs. The role of the family of invariant neighborhoods
{Iα}α∈Zs for a given S is roughly speaking as follows: Fix a set ΓM of represen-
tatives for the factor space Zs/MZs, obviously |ΓM | = | detM |. Then the restric-
tion of x ∈ $∞(Zs) to Iα fully determines the values of Sx restricted to any of the
| det(M)| invariant neighborhoods IMα+ε, ε ∈ ΓM . Throughout the paper, it is
assumed that {Iα}α∈Zs is shift-invariant, i.e., Iα = I0 + α. This defines a bijec-
tion on {Iα}α∈Zs , and recursively a | det(M)|-ary tree which can be conveniently
used to study the subdivision process Sjx, j ≥ 0, in terms of local subdivision
maps Sε : $∞(I0) → $∞(I0) acting according to Sε(x|I0) = (Sx)Iε , ε ∈ ΓM . E.g.,
the joint spectral radius of the family {Sε}ε∈ΓM (restricted to certain subspaces of
$∞(I0)) will determine the convergence of the subdivision process to a continuous
limit function and the Hölder smoothness class the latter belongs to.

The paper is organized as follows. In Section 2, we collect auxiliary results
on S, F , and the smoothness measures based on local polynomial best approxi-
mations. In particular, the notion of the order of exact polynomial reproduction
Pe of a subdivision operator S is emphasized and related to other notions of
polynomial reproduction or generation used in the literature. Our main results,
local and global estimates for the commutator SF (x) − F (Sx) in terms of the
introduced smoothness measures for x, and their dependence on Pe, are formu-
lated and proved in Section 3. In various generality, similar results can be found
in [3,4,6,7,10,13,16,18,19], where estimates are stated in terms of finite difference
norms of x. Our contributions are in emphasizing local estimates via local poly-
nomial best approximations as an alternative approach in multivariate situations
(which will also be useful in the case of semi-regular, non-shift-invariant mesh
topologies and adaptive subdivision), in formulating results for F ∈ CK,ρ rather
than for F ∈ C∞, and in clarifying the role of the order of exact polynomial
reproduction Pe of a subdivision operator (see Section 2.1).

In the concluding Section 4 we discuss an application of the commutator
estimate to the smoothness analysis of normal multiscale transforms, a nonlinear
wavelet-type transform for the representation and re-parametrization of smooth
two-dimensional surfaces in R3 introduced in [8,11]. This analysis is conditional
on the well-posedness of the transform on regular, shift-invariant topologies,
which will be investigated in a forthcoming paper [15].

2 Definitions and Preliminary Facts

2.1 Properties of S

We recall the properties of linear subdivision operators S given by (1) which will
be of use.
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Definition 1. The operator S has polynomial reproduction order P if for any
polynomial p of degree deg p < P there exists a polynomial pS := p+ q, where q
is a polynomial of degree deg q < deg p, such that

S (p(M ·)|Zs) = pS |Zs . (2)

This definition is standard (see [1,5]), P is also called order of polynomial gen-
eration of S, see, e.g., [2]. It is equivalent to assuming that S leaves the space of
polynomial sequences p|Zs of total degree < P invariant. Any meaningful sub-
division operator must preserve constant sequences, i.e., S1 = 1. Hence, we will
always assume that P ≥ 1.

Definition 2. The operator S has exact polynomial reproduction order Pe with
shift cS ∈ Rs if for any polynomial p of degree deg p < Pe we have

S (p(M ·)|Zs) = p(·+ cS)|Zs . (3)

In special cases, this definition appeared in [10], and independently in [2], where
it is called step-wise polynomial reproduction. It is also equivalent to the notion
of polynomial generation degree (0, Pe) introduced in [7], see below. Introducing
a shift cS �= 0 is useful to cover certain dual subdivision schemes (also called
cell-centered in contrast to vertex-centered subdivision schemes). It is assumed
that P and Pe denote the largest possible order for a given S. It is easy to see
that 1 ≤ Pe ≤ P . The equality Pe = P holds for instance if P = 1 or if S is
interpolating, i.e., if (Sx)Mφ = xφ, φ ∈ Zs (in this case cS = 0). Furthermore,
we observe that if P ≥ 2, then Pe ≥ 2. Indeed, let P ≥ 2. Then taking the
monomials p(·) = xi in (2), we have

S
(
xi|(MZ)s

)
= xi|Zs + ci, i = 1, . . . , s.

Letting cS = (c1, . . . , cs), we see that (3) holds for all linear functions, i.e.,
Pe ≥ 2. It turns out that for the commutator estimates considered in this paper,
the exact polynomial reproduction order Pe, and not P , is relevant.

Definition 3. The operator S is of class (d, f) if there exists cS ∈ Rs such that

S (p(M ·)|Zs)− p(·+ cS)|Zs ∈ Πd|Zs (4)

for all p ∈ Πf . Here 0 ≤ d < f ≤ P .

Note that in order to establish the class (d, f) condition, it is sufficient to verify
it on monomials of total degree < f . Indeed, let

qγ |Zs := S ((Mx)γ |Zs) , |γ| < f, (5)

satisfy (4). In this subsection, x stands for points in Rs which should not cause
confusion. As to multivariate exponents γ = (γ1, . . . , γs) ∈ Ns

0, where N0 denotes
the set of all non-negative integers, we use the usual notation such as |γ| =
γ1 + . . . + γs, γ! = γ1! . . . γs!, and xγ = xγ1

1 . . . xγs
s , while for x ∈ Rn, we set

|x| = maxi=1,...,s |xi|.
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Then for any polynomial p(x) =
∑

|γ|<f

cγx
γ ,

S (p(Mx)|Zs) = S

⎛⎝∑
|γ|<f

cγ(Mx)γ |Zs

⎞⎠ =
∑
γ

cγqγ(x)|Zs

=
∑
γ

cγ(x+ cS)
γ |Zs + r(x)|Zs = p(x+ cS)|Zs + r(x)|Zs ,

where r is a polynomial of total degree < d. The next theorem demonstrates the
relation between the class (d, f) condition for the subdivision operator S and
the preceding definitions of polynomial reproduction. In particular, we will see
that the quantity Pe plays a key role in verifying the class (d, f) condition.

Theorem 1. The subdivision operator is of class (d, f), f ≤ P , if and only
if 0 < f − d ≤ Pe, and min(2, P ) ≤ Pe ≤ P . Here, Pe is the order of exact
polynomial reproduction for the subdivision operator S and P is the order of
polynomial reproduction according to (2), (3).

Proof. We need the following two lemmas. The first one is a simple consequence
of Definitions 2 and 3, and stated without proof.

Lemma 1. The operator S is of class (0, f) if and only if f ≤ Pe.

Lemma 2. For 0 < f < P , the subdivision operator S is of class (d, f) if and
only if it is of class (d+ 1, f + 1).

Proof. The proof easily follows from the following auxiliary result. Recall formula
(5) for qγ . For {ei}si=1 denoting the standard unit coordinate basis in Rs, and
γ ∈ Ns

0, |γ| < P , the following relation holds,

∂

∂xi
qγ(x) = γiqγ−ei(x), i = 1, . . . , s. (6)

By shift-invariance,

qγ(x+My)|Zs = S ((M(x+ y))γ |Zs) =
∑

0≤β≤γ

(
γ
ω

)
(My)γ−βqβ(x)|Zs .

The above equality can be regarded as a polynomial identity on the latticeMZs.
The identity still holds when x|Zs , My|Zs are replaced by x|Rs , t|Rs respectively.
Thus,

qγ(x+ t)− qγ(x) =
∑

0≤β<γ

(
γ
ω

)
tγ−βqβ(x).

Consequently, taking t = hei, h → 0, we establish (6).
Next, assume that the subdivision operator is of class (d, f). We would like to

show that it is of class (d+1, f+1). Let cS=(c1, . . . , cs) andx
′=(x1, . . . , vi, . . . , xs)
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with vi varying and the remaining xj with j �= i being fixed. We integrate (6) from
−ci to xi. Thus,

xi∫
−ci

∂

∂vi
qγ(x

′)dvi =

xi∫
−ci

γiqγ−ei(x
′)dvi

= γi

xi∫
−ci

(x′ + cS)
γ−eidvi +

xi∫
−ci

r(x′)dvi.

Hence,
qγ(x) = (x+ cS)

γ + r̃(x), (7)

where r̃(x) is a polynomial of degree < d + 1 by integration rules. Since the
above condition holds for any monomial of degree |γ| < P , the class (d+1, f+1)
condition is established. The inverse statement, that (d+1, f +1) implies (d, f),
follows easily by differentiating (7) and again invoking formula (5). Thus, the
statement of Lemma 2 is fully proved. �

With these lemmas at hand, the proof of Theorem 1 is now immediate. It
was noted earlier that if P ≥ 2, then Pe ≥ 2, and otherwise, P = Pe = 1.
Thus, min(2, P ) ≤ Pe ≤ P . Further by Lemma 2, the class (d, f) condition is
equivalent to the class (d− 1, f − 1) condition, and proceeding by induction, to
the class (0, f − d) condition. It remains to apply Lemma 1, by which the latter
is equivalent to 0 < f − d ≤ Pe. �

The class (d, f) condition appeared before in the context of proximity anal-
ysis. In particular, in [7], a polynomial generation/reproduction property for S,
referred to as polynomial generation degree (d, f), was introduced by requiring
that whenever p =

∏m
j=1 qj ∈ Πf is in factorized form with polynomials of lower

degree then

pS −
m∏
j=1

qSj ∈ Πd|Zs , (8)

where pS , qSj are as in Definition 1. We note that our Definition 3 is equivalent to
(8), and the reader is referred to Lemma 3.5 in [7] for the proof of this fact. To be
self-contained, here is the simple proof that (4) implies (8), a fact which we need
later. By linearity of S, it is again enough to verify the implication for monomials,
i.e., let us consider p(x) = xγ and qj(x) = xγj , where |γ| = |γ1|+ . . .+ |γm| < f
for some 0 �= γ ∈ Ns

0, j = 1, . . . ,m. By (4) we can assume that

pS(x) = (x+ cS)
γ + r(x), qSj (x) = (x+ cS)

γj + rj(x),

where r ∈ Πd and rj ∈ Π|γj|+1−(f−d) if |γj | ≥ f − d, and rj(x) = 0 otherwise,
compare to Lemma 2. Consequently,

pS(x) −
m∏
j=1

qSj (x) = r(x) −Σ(x),
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where Σ(x) represents a large linear combination of products of m polynomial
factors each, consisting of shifted monomials (x+ cS)

γj and (at least one!) non-
zero rj(x). It is easy to see that all these products must have overall degree

≤ |γ1|+ . . .+ |γm| − (f − d) = |γ| − (f − d) < f − (f − d) = d.

This proves (8) for monomials, and thus in the general case.

2.2 Local Smoothness Measures

Estimates of the commutator map are local in nature due to the finite support
of the mask associated with S, and should therefore be formulated using lo-
cal smoothness measures of vector-valued sequences x ∈ $n∞(Zs). We prefer to
use local polynomial best approximations to x restricted to the finite index sets
Iα ⊂ Zs, α ∈ Zs, of a shift-invariant family of invariant neighborhoods of S
as introduced before. More precisely, let p = (p(1), . . . , p(n)) denote a vector-
polynomial with entries from Πm, by which we denote the set of all algebraic
polynomials p of total degree < m on Rs, assuming Π0 = {0}. We will use the
quantities

Em(x, Iα) := inf
p1,...,ps∈Πm

‖x|Iα − p|Iα‖, m ≥ 0, (9)

as local polynomial best approximations, where

‖x|Iα‖ = max
i=1,...,n

max
φ∈Iα

|x(i)φ |.

Obviously,

E0(x, Iα) = ‖x|Iα‖ ≥ E1(x, Iα) ≥ E2(x, Iα) ≥ . . . , α ∈ Zs. (10)

Note that for any S with order P of polynomial reproduction, m = 0, . . . , P ,
and ε ∈ ΓM , we have

Em(Sx, IMα+ε) ≤ CEm(x, Iα), α ∈ Zs, x ∈ $∞(Zs). (11)

This follows from (2), according to which for any p ∈ Πm we have (Sp|I)Iε =
pS |Iε for some polynomial pS ∈ Πm, and the boundedness of the linear maps
Sε : RI → RIε (called local subdivision maps). Indeed, for α = 0

Em(Sx, Iε) ≤ ‖(Sx)|Iε − pS |Iε‖ = ‖(S(x|I0 − p|I0))|Iε‖ ≤ ‖Sε‖‖x|I0 − p|I0‖.

It remains to take the infimum with respect to all p ∈ Πm to establish (11), by
shift-invariance, the result remains true for arbitrary α ∈ Zs.

Due to the consistent use of maximum norms, in the following proofs it is
enough to consider a scalar-valued sequence x ∈ $∞(Zs) in place of x. As before,
we denote the restriction of a polynomial p ∈ Πm and a sequence x ∈ $∞(Zs) to
an index set J ⊂ Zs by p|J and x|J respectively. Let RJ denote the space of all
finite sequences with index set J , equipped with the maximum norm which we
also denote by ‖ · ‖.

We start with some simple observations on equivalent norms.
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Lemma 3. Let m = 0, 1, . . . be given. If Z is a finite-dimensional normed space
with norm ‖ · ‖Z , and T : RJ → Z is a linear operator with kerT = Πm|J , then

c‖T (x|J)‖Z ≤ Em(x, J) ≤ C‖T (x|J)‖Z , x ∈ $∞(Zs), (12)

where c, C do not depend on x. More generally, if kerT ⊂ Πm|J then the upper
estimate in (12) holds, if Πm|J ⊂ kerT then the lower estimate in (12) holds.

The proof of this lemma is a simple exercise on factor norms on finite-dimensional
spaces, and is omitted. Examples of operators to which Lemma 3 applies are
T = Id−P , where P : RJ → RJ is any projector onto Πm|J ⊂ RJ . In particular,
if p|J = 0 implies p = 0 for any p ∈ Πm (we call such a J a unicity set for Πm),
then Πm is unisolvent on a subset J ′ ⊂ J , and defining P (x|J ) by the values
on J of the interpolation polynomial to the data (J ′, x|J′) is a possible choice.
Alternatively, taking as P the least-squares projector onto Πm|J will do as well.
Equivalent norms in terms of the maximum norm of the vector of all m-th order
differences of x|J that are well-defined on J follow under the same assumption.

For this paper, we need only the following consequence of Lemma 3 which is
at the core of the technical part of our main result. Without loss of generality,
from now on we will assume that 0 ∈ ΓM and 0 ∈ I0, where I0 is a set of unicity
for Πf . Let S be of class (d, f), where 0 ≤ d < f ≤ P , as defined in (4). For given
x ∈ RI0 , consider a sequence of polynomials pm of degree < m, m = 1, . . . , f ,
such that p1(·) = x0, and

‖x− pm|I0‖ ≤ CEm(x, I0), m = 1, . . . , f.

E.g., the polynomials pm could be defined by interpolation on appropriate sub-
sets of I0 containing 0. Set q1(M · −cS) = p1(·) = x0, and qm(M · −cS) =
pm(·)− pm−1(·), m = 2, . . . , f , and

dφ :=

f∑
m=2

qm(Mφ− cS), rφ := xφ − x0 − dφ, φ ∈ I0. (13)

Since d, r ∈ RI0 , the vectors (Sd)ψ and (Sr)ψ are well-defined for all ζ ∈ Iε,
ε ∈ ΓM . The following formulas and estimates are needed in the sequel:

Lemma 4. Under the assumptions outlined above, we have for all x ∈ RI0 ,
m = 2, . . . , f , and ε ∈ ΓM

(qm(M · −cS))S − qm ∈ Πmax(0,m−(f−d)), (14)

‖S(qm(M · −cS)|I0)|Iε‖ ≤ C‖qm(M · −cS)|I0‖

≤ CEm−1(x, I0) ≤ CE1(x, I0),
(15)

and
‖(Sr)|Iε‖ ≤ C‖r‖ ≤ CEf (x, I0) ≤ CE1(x, I0). (16)

The constants C > 0 do not depend on x, m, and ε. �
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Proof. The first and last estimates in (15) and (16) trivially follow from the
boundedness of the local subdivision operators Sε, and (10), respectively. In
order to establish (15), we use the definition of qm(M · −cS) = pm − pm−1 ∈
Πm ⊂ Πf and the fact that any two norms on the finite-dimensional space Πf

are equivalent:

‖qm(M · −cS)|I0‖ = ‖(pm − pm−1)|I0‖
≤ ‖x− pm|I0‖+ ‖x− pm−1|I0‖ ≤ CEm−1(x, I0),

The last step in the above inequality follows from the definition of the polynomi-
als pm and (11). For the estimate in (16), observe that r = x−pf |I0 by definition
of r and the polynomials pm, qm. �

2.3 Properties of F

From now on, we assume without loss of generality that F : Rn → R belongs to
the Hölder smoothness class CK,ρ, where K = 0, 1, . . ., and 0 < ρ ≤ 1. By this
we mean that F possesses continuous partial derivatives DγF up to order K,
and that DγF of order |γ| = K are Lipschitz continuous on Rn with exponent
ρ, with uniform bounds on all occurring derivatives and Lipschitz constants. As
a consequence, by Taylor’s formula we have

F (t) =

K∑
k=0

Dk
aF (t− a) +RK

a (t, a), t, a ∈ Rn, (17)

where

D0
aF (t− a) = F (a), Dk

aF (t− a) =
∑

γ∈Zn
+: |γ|=k

DγF (a)

γ!
(t− a)γ ,

are multi-linear forms of degree k = 0, . . . ,K with argument t− a, and

|Dk
aF (t− a)| ≤ C|t− a|k, k = 0, . . . ,K, |RK

a (t, a)| ≤ C|t− a|K+ρ, (18)

uniformly in t, a ∈ Rn, respectively. The assumption that the constant C in
(18) is independent of t, a ∈ Rn is not as stringent as it looks, as in typical
applications one can always show that values t, a of interest belong to a compact
subset of Rn.

3 Main Result

For given S of class (d, f) with 0 ≤ d < f ≤ P , where P > 0 is the order of
polynomial reproduction, and F ∈ CK,ρ(Rn), define

K̃ := min(K, f − 1), ρ̃ := min(1,K + ρ− K̃) ≥ ρ, (19)
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and

Ωf,K,ρ(x, I) := E1(x, I)
K̃+ρ̃ +

∑
(ν1,...,νf−1)∈Ξf,K̃

f−1∏
l=1

El(x, I)
νl , (20)

where Ξf,K̃ = ∅ if K̃ < 2, and

Ξf,K̃ := {(ν1, . . . , νf−1) ∈ Nf−1
0 : 2 ≤

f−1∑
m=1

νm ≤ K̃,

f−1∑
m=1

mνm = f} (21)

for K̃ ≥ 2 (in this case f ≥ 3). Note that K̃ + ρ̃ = min(K + ρ, f) by definition
(19).

The main result of this paper is the following theorem. Even though the
exact polynomial reproduction order Pe of S does not explicitly surface in its
formulation, it is implicit due to Theorem 1.

Theorem 2. Let F : Rn → R belong to the Hölder smoothness class CK,ρ,
where K = 0, 1, . . ., and 0 < ρ ≤ 1. Let S be a linear subdivision operator
(1) of class (d, f) with a finitely supported mask, as defined in (4). Assume that
the associated family of invariant neighborhoods {Iα}α∈Zs satisfies the properties
listed in the previous sections, in particular I0 contains 0 and is a set of unicity
for Πf . Then, with K̃, ρ̃, and Ωf,K,ρ(x, I) defined as above, for any x ∈ $n∞(Zs))
and α ∈ Zs we have the estimate

Ed (SF (x)− F (Sx), IMα+ε) ≤ CΩf,K,ρ(x, Iα), ε ∈ ΓM . (22)

Proof. The proof is modeled after results for s = n = 1 given in [3] for in-
terpolating S, and later in [10] for general dyadic S. Similar results obtained
in the context of manifold subdivision are contained in [4,6,7,10,13,16,18,19],
all these earlier results use smoothness measures in terms of finite differences
of sequences rather than local polynomial best approximations. Due to shift-
invariance, it is sufficient to consider the case α = 0. To simplify the notation,
let I := I0 and Ĩ := Iε, where ε ∈ ΓM is arbitrarily fixed. Consider the difference
SF (x)ψ − F ((Sx)ψ) for arbitrarily fixed ζ ∈ Ĩ. In order to estimate the error
of best approximation of this quantity by polynomials of degree < d, we use the
Taylor formula (17) for F with arguments a = x0 ∈ Rn and t = xφ, φ ∈ I, and

with parameters K̃ ≤ K and ρ̃ from (19) instead of K and ρ, respectively. This
gives with t = xφ, φ ∈ I,

F (xφ) = x0 +D1
aF (xφ − x0) +

K̃∑
k=2

Dk
aF (xφ − x0) +RK̃(xφ,x0),

and with t = Sxψ for ζ ∈ I

F (Sxψ) = x0 +D1
aF (Sxψ − x0) +

K̃∑
k=2

Dk
aF (Sxψ − x0) +RK̃(Sxψ,x0).
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Next, we apply the linear subdivision operator S to the first equation, and use
the fact that S reproduces constants and that D1

aF (·) is a linear form. This
shows that the first two terms in the sum expression for SF (x)ψ and F (Sxψ)

coincide. Consequently, for all ζ ∈ Ĩ

(SF (x)− F (Sx))ψ =
K̃∑

k=2

{(SDk
aF (x|I − x0)ψ −Dk

aF (Sxψ − x0)} + R̃ψ. (23)

By (18), and the boundedness of the local subdivision operators Sε, the remain-
der term

R̃ψ = SRK̃(x,x0)ψ −RK̃(Sxψ ,x0)

can be bounded by

|R̃ψ| ≤ C(‖x|I − x0‖ − ‖(Sx)|Ĩ − x0‖K̃+ρ̃) ≤ CE1(x, I)
K̃+ρ̃,

where the last step follows by observing that (Sx)|Ĩ − x0 = Sε(x|I − x0) and
p1(·) = x0 (see Lemma 4, when applied componentwise to x). Note that if
K̃ < 2, we would not have the summation term in (23), and the proof would be
complete. Thus, from now on we consider K̃ > 2. Recall from (13) and Lemma
4 applied componentwise to x that

xφ − x0 = dφ + rφ =

f∑
m=2

qm(Mφ− cS) + rφ, φ ∈ I,

and consider the terms in

K̃∑
k=2

{(SDk
aF (d+ r))ψ −Dk

aF (S(d+ r)ψ)}. (24)

Since Dk
aF (·) are k-linear forms on the vector space Rn, where k = 2, . . . , K̃, the

sum (24) can be expressed as a large, yet finite sum of terms of the form

S(g1|I . . . gk|I)ψ − S(g1|I)ψ · . . . · S(gk|I)ψ

of differences of products with 2 ≤ k ≤ K̃ functions resp. sequences gl of the

form either gl = q
(i)
m (M ·−cS) or gl = r(i), where i = 1, . . . , n, m = 2, . . . , f vary

arbitrarily within the respective limits. The coefficients in this linear combination
do not depend on ζ ∈ Ĩ, they can also be bounded independently of x under the
assumptions on F , outlined in Section 2.3. We group these products into three
cases:

i) Products that contain at least one remainder term gl = r
(i)
φ : Due to (15)

and (16), all these products are uniformly bounded from above by

C
K̃∑

k=2

Ef (x, I)E1(x, I)
k−1 ≤ CEf (x, I)

(
E1(x, I) + E1(x, I)

K̃−1
)
. (25)
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ii) Products that contain only “polynomial” terms gl := q
(il)
ml (M · −cS), l =

1, . . . , k, with overall degree deg(q
(i1)
m1 . . . q

(ik)
mk ) =

∑k
l=1(ml − 1) < f . Since

S is of class (d, f), Lemma 2 holds, and (4) implies (8), we have

(g1 . . . gk)
S =

k∏
l=1

q(il)ml
(·) + g̃

where g̃ is a polynomial of degree < d, and

gSl = (q(il)ml
(M · −cS))S = q(il)ml

(·) + g̃l,

where g̃l is a polynomial of degree < deg q
(il)
ml − (f − d), l = 1, . . . , k. Obvi-

ously, a certain number of these polynomials may vanish, this happens when-
ever ml − (f − d) ≤ 0. If g̃l does not vanish then deg g̃l ≤ deg gl − (f − d) =
(ml − 1)− (f − d). Thus

S((g1 . . . gk)|I))ψ − S(g1|I)ψ . . . S(gk|I)ψ
= (g1 . . . gk)

S(ζ)− gS1 (ζ) . . . g
S
k (ζ)

= g̃(ζ)−Σ(gS1 , . . . , g
S
k , g̃1, . . . , g̃k)(ζ),

where Σ(·) is a finite linear combination of all possible products of at most
k polynomials of the form gSl or g̃l, with the condition, that at least one
factor is of the form g̃l �≡ 0 (if all g̃l vanish then Σ(·) = 0). Therefore, each
of these products has degree

≤
k∑

l=1

(ml − 1)− (f − d) = deg g1 . . . gk − (f − d) < f − (f − d) = d.

Consequently, this group of products contributes an overall term p̃(ζ) to
(24), where p̃ ∈ Πd (which can be neglected in the overall estimation).

iii) The last group corresponds to products of only “polynomial” terms gl :=

q
(il)
ml (M · −cS), l = 1, . . . , k, with overall degree

∑k
l=1(ml − 1) ≥ f . Since by

(15),

|S((g1 . . . gk)|I))ψ − S(g1|I)ψ . . . S(gk|I)ψ |

≤ C‖
k∏

l=1

q(il)ml
(M · −cS)|I‖ ≤ C

k∏
l=1

Eml−1(x, I),

the sum of all these terms is bounded from above by the expression

≤ C

K̃∑
k=2

∑
1≤μl<f∑k
l=1

μl≥f

k∏
l=1

Eμl
(x, I),
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where we have set μl = ml − 1 for convenience. By (10), it is evident that

this bound can be simplified by including only terms with
∑k

l=1 μl = f in
the summation. Then it can be rewritten as

≤ C
∑

2≤
∑f−1

m=1 νm≤K̃∑f−1
m=1

mνm=f

f−1∏
l=1

El(x, I)
νl = C

∑
(ν1,...,νf−1)∈Ξf,K̃

f−1∏
l=1

El(x, I)
νl . (26)

The desired estimate for K̃ > 2 follows from

Ed (SF (x) − F (Sx), Iε) ≤ ‖(SF (x)− F (Sx))|Iε − p̃Iε‖,

where the polynomial p̃ of degree < d addresses the contributions of group ii)
products to (24), if one takes into consideration the estimates obtained in i) and
iii) for the remaining terms contributing to (24). Indeed, by definition of K̃ and
ρ̃, the terms in the bound (25) are bounded either by terms appearing in (26),

or by CE1(x, I)
K̃+ρ̃. �

For the ease of referencing, we formulate the ”global” version of Theorem 2
which follows immediately if we define global smoothness measures of sequences
x ∈ $n∞(Zs) according to

‖x‖m := sup
α∈Zs

Em(x, Iα). (27)

We have suppressed the dependence on the choice of the family of invariant neigh-
borhoods {Iα} in the notation, it is not difficult to check by invoking Lemma 3
that under the assumptions of Theorem 2 these smoothness measures are equiv-
alent for different families.

Theorem 3. Under the conditions of Theorem 2, for any x ∈ $n∞(Zs), we have
the estimate

‖SF (x)− F (Sx)‖d ≤ CΩ̃f,K,ρ(x), (28)

where, similar to (20),

Ω̃f,K,ρ(x) := ‖x‖K̃+ρ̃
1 +

∑
(ν1,...,νf−1)∈Ξf,K̃

f−1∏
l=1

‖x‖νll . (29)

If, as mentioned after Lemma 3, best approximations Em(x, Iα) are replaced
by equivalent expressions max |Δγx| using finite differences of order m = |γ|
(the maximum is taken with respect to all those finite differences defined on Iα)
then we recover the results implicitly or explicitly proved in, e.g., [16,19], and in
greater generality in [7].
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4 Application to Normal Multiscale Transforms

4.1 Smoothness of Normal Reparameterization

Roughly speaking, normal multiscale transforms of a given two-dimensional sur-
face Σ embedded in R3 start from a coarse mesh v0 of points on Σ, with a mesh
topology for which a surface subdivision process governed by a linear subdivision
operator S is well-defined. The analysis step of the transform recursively creates
finer meshes vj , j ≥ 1, by predicting a mesh of base points Svj−1 (usually not
on Σ) and associated unit normal vectors nj using only information from the
previous mesh vj−1, and then intersecting the resulting lines through the base
points in the direction of the associated normal vectors with Σ. For short, this
process can be written as

vj = Svj−1 + djnj , j ≥ 0, (30)

where the vectors dj are scalar sequences of signed distances from the base points
in Svj−1 to the associated surface intersection points in vj , called details (they
correspond to wavelet coefficients). Here, the formal product djnj is understood
entry-wise. In other words, the resulting transform

(Σ ↔ ) {v0,v1,v2, . . .} ↔ {v0, d1, d2, . . .}

needs storage for v0 and scalar rather than vector-valued detail sequences dj ,
j ≥ 1. The reconstruction from the latter can be done using (30) and the fixed
rules for predicting base points and approximate unit normals. We refer to [8,11]
for details on the algorithms and surface compression applications.

In this section, our goal is to illustrate how the above commutator estimate is
used to analyze the smoothness of the re-parametrization of Σ induced by the
meshes vj . We do this under the assumption that the two-dimensional dilation
matrixM is isotropic, i.e., all its eigenvalues have the same modulus

√
| det(M)|,

and that the mesh topologies are regular, i.e., equivalent to Z2. We consider a
graph surface ΣF = {(x, z) : z = F (x), x ∈ R2}, where F : R2 → R belongs
to the Hölder class CK,ρ with some K ≥ 1, see Subsection 2.3. We also assume
that (under certain conditions on the density and regularity of the coarsest mesh
v0) the existence of a normal multiscale transform for all j ≥ 1 with properties
which will be detailed below has been settled (this step, called well-posedness
of the transform, is non-trivial; we refer to our forthcoming paper [15]). To
define the smoothness question, it is natural to identify the mesh sequences vj =
(xj , F (xj)) generated by the normal multiscale transform with grid functions on
the lattices M−jZ2, and define convergence of this transform by the existence
of an at least continuous vector function v∞ : R2 → R3, such that

lim
j→∞

‖v∞|M−jZ2 − vj‖ = 0.

How much Hölder smoothness does v∞ possess? Since vj = (xj , F (xj)), we can
equivalently talk about the Hölder smoothness of the limit function x∞ for {xj}
mapping from R2 into R2.



396 P. Oswald and T. Shingel

The answer depends on three parameters: The Hölder smoothness sF := K+ρ
of the surface ΣF , the Hölder smoothness exponent sS of the linear subdivision
scheme associated with S, and the order of exact polynomial reproduction Pe of
S. What we want to establish is the fact that

v∞,x∞ ∈ CsN−, sN := min(Pe, sΣ, sS), (31)

where we denoted Cs− := ∪K+ρ<sC
K,ρ. Thus, limit functions of the normal

multiscale transform are guaranteed to be in CK,ρ whenever K + ρ < sN but
not necessarily for K + ρ = sN . The restrictions by sΣ and sS are natural,
the appearance of Pe is also expected due to similar results for the curve case,
see [10].

4.2 Assumed Facts

Here are the assumptions and facts that we need to prove (31). Let a :=√
| det(M)|, and assume that the invariant neighborhoods of S used to define

mesh norms in Section 2.2 are large enough. Also, assume 2 ≤ Pe ≤ P for the
orders of polynomial reproduction of S, and sS > 1. Finally, concerning the
graph surface ΣF , we assume sF > 1 as well.

(a) From the well-posedness proof we need that the sequences vj = (xj , F (xj)),
and dj are well-defined for all j ≥ 1 and satisfy (30). For xj , we need

‖xj‖1 ≤ Cx0a−j , j ≥ 0. (32)

For (32) to hold, the coarsest mesh v0 must satisfy certain density and
regularity requirements (see [3], [10], [14] for examples in the curve and
surface case) which also determine the exact dependency of the constant on
x0.

For the approximate normals we require (similar to the curve case [10]) that
the nj

α coincide with the true unit normal to ΣF at a nearby point: There
exists a sequence x̃j of points in R2 such that for all α ∈ Z2

nj
α = nΣ(x̃

j
α) := (1 + |∇F |2)−1/2(−∇F, 1)|x̃j

α
, |xj

α − x̃j
α| ≤ C‖xj‖1. (33)

The standard construction of approximate normals that satisfies these con-
ditions under mild conditions on the meshes xj can be found in [14]. Note
that ‖xj‖1 represents (within constant factors) the largest distance between
neighboring xj

α, i.e., the mesh-size of the mesh xj in R2.

(b) We have

‖dj‖ ≤ C‖SF (xj−1)− F (Sxj−1)‖. (34)

The proof uses (a), in particular the assumption (33) on the approximate nor-
mals, the uniform boundedness of ∇F , and repeats the reasoning of Lemma
3.3 in [10] almost without change.
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(c) For m = 1, . . . , P , we can define numbers

γm := min(m, sup{γ > 0 : ‖Sjx‖m = O(a−γj), j → ∞, ∀x ∈ $∞(Z2)}).

It is well known that γ1 > 0 is a necessary condition for convergence, and
that the γm provide lower bounds for the limit smoothness of the linear sub-
division scheme governed by S, moreover, under mild additional conditions
on S, γP coincides with the Hölder exponent of S. For the purpose of this
paper, set

sS := max
m=1,...,P

γm = γP .

The numbers γm, and in particular sS = γP , can be identified as joint
spectral radii of families of operators {Sε,m}ε∈ΓM representing restrictions
of the local subdivision operators Sε to certain finite-dimensional operators
acting on subspaces of RI0 . As detailed in [15], using the theory of joint
spectral radii and the connection of the Sε,m with the definition of ‖ · ‖m,
we have the following two facts of relevance for our derivation of (31):

γm = min(m, sS) = min(m, γP ), m = 1, . . . , P, (35)

and for every δ > 0, there exists a semi-norm ‖ · ‖∗m depending on S and δ
such that for all x ∈ $∞(Z2) and m = 1, . . . , P ,

‖Sx‖∗m ≤ a−(γm−δ)‖x‖∗m, ‖x‖∗m ≈ ‖x‖m. (36)

Naturally, the statement of (36) also holds for vector-valued meshes x.
(d) To link with the limit smoothness problem, the following theorem is help-

ful. It is proved in [15] and originated from a similar perturbation result
established in [3].

Theorem 4. Let S be a fixed subdivision operator, and assume γm > 0 for
some m = 1, . . . , P . Assume that {xj ∈ $∞(Z2)}j≥0 is such that

‖xj − Sxj−1‖ ≤ Ca−jβ , j ≥ 1,

for some ω > 0. Then the limit function x∞ for the mesh sequences xj exists
and belongs to Cmin(γm,β)−. Applied componentwise, the statement holds for
vector-valued mesh sequences {xj}j≥0 as well.

4.3 Proof of (31)

The proof of (31) proceeds by induction in m = 2, . . . ,m0, where m0 is the
smallest integer ≥ sN . Since 1 < sN ≤ Pe, we have 2 ≤ m0 ≤ Pe, and thus we
have that S is of class (0,m) for all m = 2, . . . ,m0. Consequently, if m = 2, by
(34), and Theorem 3 with d = 0 and f = 2, we have

‖xj − Sxj−1‖ ≤ ‖dj‖ ≤ C‖xj−1‖min(sF ,2)
1 ≤ Cx0a−jmin(sF ,2), j ≥ 1.
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By Theorem 4 this implies x∞ ∈ Cmin(sF ,sS ,2)− which is the desired result of
(31) if Pe = 2 or if min(sF , sS) ≤ 2 which is equivalent to sN ≤ m0 = 2.

Before we can proceed with induction in m, we need an estimate for ‖xj‖2 in
the case sN > 2 (such an estimate is also integral part of the proof of Theorem
4). Invoking (36), (34), and Theorem 3 with d = 0 and f = 2, we get

‖xj‖∗2 ≤ ‖Sxj−1‖∗2 + C‖dj‖ ≤ a−(γ2−δ)‖xj−1‖∗2 + C‖xj−1‖min(sF ,2)
1

≤ a−(γ2−δ)‖xj−1‖∗2 + Cx0a−j min(sF ,2), j ≥ 1,

where the last step is justified by (32). Recursing in j and using the norm
equivalence in (36), we get

‖xj‖2 ≤ C‖xj‖∗2

≤ Cx0(a−(γ2−δ)j‖x0‖∗2 +
j−1∑
k=0

a−k(γ2−δ)−(j−k) min(sF ,2)‖x0‖min(sF ,2)
1 )

≤ Cx0a−j min(γ2−δ,sF ) = Cx0a−j(2−δ), j ≥ 0,

where δ > 0 is arbitrary. The simplification of the exponent in the last estimation
step is justified since from sN = min(sF , sS , Pe) > 2 and (35), we have

min(γ2 − δ, sF ) = min(sS , 2)− δ = 2− δ.

The correct formulation of the induction step is as follows. Suppose that for a
given m ≥ 2 satisfying 2 ≤ m < m0 ≤ Pe and m < sN we have established that

‖xj‖r ≤ Cx0a−j(r−δ), j ≥ 0, (37)

holds for all r = 2, . . . ,m and any δ > 0 (naturally, the constants also depend
on the concrete value of δ, and may generally grow as δ → 0). For r = 1, we
have the similar, slightly stronger estimate (32). With this at hand, we repeat
the two steps shown above for m = 2 for m + 1. First, we use (34) and apply
Theorem 4 with d = 0 and f = m+ 1:

‖xj − Sxj−1‖ = ‖dj‖ ≤ CΩ̃m+1,K,ρ(x
j−1).

Examining the definition (29), and plugging in (37) and (32), we see that

Ω̃m+1,K,ρ(x
j−1) ≤ Cx0(a−j min(sF ,m+1) +

∑
(ν1,...,νm)∈Ξm+1,K̃

m∏
l=1

a−j(l−δ)νl)

≤ Cx0(a−j min(sF ,m+1) + Cma
−j(m+1−K̃δ))

≤ Cx0a−j min(sF ,m+1−δ̃), j ≥ 1,

where δ̃ = K̃δ is again any positive constant. Thus, substituting into the bound
for ‖dj‖, by Theorem 4 we can conclude that x∞ ∈ Cmin(sF ,sS,m+1)−. This
proves the claim of (31) for m0 = m+1 which is equivalent to m < sN ≤ m+1.



Commutator Estimate for Nonlinear Subdivision 399

To finish the induction step, we consider now the case sN > m+1, and establish
(37) for r = m+1 repeating the same strategy as demonstrated above form = 2:
By using (36) and repeating the application of Theorem 3, we arrive at

‖xj‖∗m+1 ≤ ‖Sxj−1‖∗m+1 + C‖dj‖
≤ a−(γm+1−δ)‖xj−1‖∗m+1 + CΩ̃m+1,K,ρ(x

j−1)

≤ a−(m+1−δ)‖xj−1‖∗m+1 + Cx0a−j min(sF ,m+1−δ̃)

≤ . . . ≤ Cx0a−j(m+1−δ̃), j ≥ 1,

since sN > m+1 implies both sF > m+1 and γm+1 = min(m+1, sS) = m+1.
This shows (37) for r = m + 1 because ‖xj‖m+1 ≤ C‖xj‖∗m+1 holds according
to (36). This concludes the induction, and establishes (31) under the mentioned
assumptions on the well-posedness of the normal multiscale transform.

4.4 Remarks

First, the above considerations based on Theorem 4 also deliver an asymptotic
estimate for the detail decay,

‖dj‖ ≤ Cx0a−j(min(sF ,sS+1,Pe)−δ), j ≥ 1, (38)

where δ > 0 is arbitrary (as can be seen from the argument below, in some cases
we can set δ = 0 as well). Indeed, the above proof delivers the estimate

‖dj‖ ≤ Cx0a−j min(sF ,m0−δ̃), j ≥ 1,

with arbitrarily small δ̃ > 0, where m0 was the smallest integer ≥ sN , in other
words m0 − 1 < sN ≤ m0. If the minimum defining the exponent in (38) is
attained for Pe or sF then the latter estimate is identical with (38). Suppose now
that sS +1 < min(sF , Pe). In this case, m0 − 1 < sN = sS = γm0 ≤ m0 < Pe by
definition of sN and m0. This implies two things: An estimate of the form

‖xj‖m0 ≤ Cx0a−j(sS−δ̃), j ≥ 1,

from the last induction step (semi-norms ‖xj‖r with r < m0 satisfy (37) and (32),
respectively), and the possibility of applying Theorem 3 with d = 0, f = m0+1.
This gives

‖dj‖ ≤ CΩ̃m0+1,K,ρ(x
j−1)

≤ Cx0(a−j min(sF ,m0+1) + a−j(1+sS−δ) +
∑

ν∈Ξm0+1,K̃ : νm0=0

m∏
l=1

a−j(l−δ)νl )

≤ Cx0a−j(sS+1−δ̃), j ≥ 1.

In the estimation of Ω̃m0+1,K,ρ(x
j−1), we have used the fact that there is a sin-

gle multi-index (ν1, . . . , νm0) ∈ Ξm0+1,K̃ with νm0 �= 1, namely (1, 0, . . . , 0, 1).
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The corresponding term in Ω̃m0+1,K,ρ(x
j−1) is treated by substituting the es-

timate for ‖xj‖m0 and results in the separate, asymptotically dominant term
Cx0a−j(1+sS−δ) in the above estimation, all other product terms are served by
(37) and (32). This establishes (38).

Secondly, the statement (31) on the smoothness of the re-parametrization and
the detail decay estimate (38) of normal multiscale transforms are backed by nu-
merical experiments reported earlier [14] for some standard S, such as Loop,
Butterfly, and linear subdivision schemes. Here, topologies are triangular, and re-
finement is by quadrisection (thus, M = 2Id and a = 2). On the one hand, they
show that under the formulated conditions no better results should be expected,
on the other hand, for certain combinations of S and the prediction scheme for ap-
proximate normals they point towards possible improvements in the smoothness of
re-parametrization. To illustrate this fact, we have applied the Loop-based normal
multiscale transform to a non-polynomialC∞ graph surfacewith two different ver-
sions of approximate normals, andmonitored the behavior of the norms of discrete
derivativesΔj

m := 2−jm sup|γ|=m ‖Δγvj‖ over a compact region ofR2 of order≤ 3

(in all tests, the initial v0 was obtained by sampling the underlying function F on
a random perturbation of the lattice Z2). Since for the Loop subdivision operator
S we have Pe = 2 and sS = 3, our result (31) guarantees smoothness in the Hölder
scale up to sN = 2 only. In other words, we expect the Δj

m to stay bounded as j
increases form = 1, 2, but not necessarily form = 3.

The standard version of normal prediction for triangular subdivision schemes
is to compute first normal vectors nt to each triangular face t from its vertices
given by vj−1 (obviously, these nt have length proportional to the area of t).
Normals nv and ne at vertices v and midpoints of edges e are created by aver-
aging the nt of triangles adjacent to vertices and edges, respectively. Depending
on the type of topology refinement, the sequence of approximate normals nj for
determining vj is then obtained by normalizing to unit length an appropriate
subset of these triangle-, vertex-, and edge-attached normals. To find vj from
vj−1 in the Loop-based normal multiscale transform, this would be the nv for
relocating the old point positions given by vj−1, and the ne for inserting new
vertices associated with edge midpoints into the mesh represented by vj . Inter-
polating transforms with triangle quadrisection as topology refinement, e.g., the
one based on the Butterfly subdivision scheme as advocated in [8,11], need only
normalized ne since the old point positions from vj−1 are kept in vj (this also
leads to reduced storage for the detail sequences dj). The first 3 columns of Table
1 below show the values for Δj

m for j = 3, . . . , 8, and m = 1, 2, 3, obtained for
a smooth C∞ graph surface (given by a non-polynomial F ) with this standard
choice of approximate normals. As one can see, norms of first and second order
discrete derivatives stay bounded, as expected by theory, but also third-order
discrete derivatives seem to behave nicely. This observation is independent of
the particular choice of F , as long as sF > 3. That we should not expect higher
than smoothness order 3 is clear since the normal multiscale transform coincides
with the linear Loop subdivision scheme if F is linear for which sS = 3 is known
to be the best possible Hölder smoothness exponent for regular mesh topologies.
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Table 1. Growth of norms of discrete derivatives for Loop-based normal multiscale
transform

Level Standard normals Perturbed normals

j Δj
1 Δj

2 Δj
3 Δj

1 Δj
2 Δj

3

3 0.9429 2.9408 14.0567 2.3954 7.2715 12.11
4 0.9550 3.4326 17.9330 2.4835 11.8531 32.82
5 0.9587 3.5028 19.9322 2.4310 14.0084 112.74
6 0.9601 3.5235 20.6469 2.4106 17.1809 168.35
7 0.9603 3.5299 20.9226 2.4095 17.6150 262.57
8 0.9603 3.5323 21.0369 2.4086 17.7224 332.21

To check if this observed extra smoothness is related to the specific choice
of standard normals, or if we missed out on a possible improvement of (31),
we have run a test with perturbed normals. More precisely, instead of the nj

containing the standard unit normals we have used ñj whose elements are given
by ñj

α = nj
α′ , where the index α′ is taken randomly from a small neighborhood

|α′ −α| ≤ C of α ∈ Z2, with C independent of α. Since nj satisfies the property
(33) needed for the proof of (31) then so does ñj . As can be seen from the re-
sults in the last 3 columns of Table 1, this time we record a significant growth
of discrete derivative norms Δj

3 of order 3 which indicates (but not necessarily
implies!) that we probably cannot expect improvements in (31) under the stated
assumptions. It is an interesting open question to theoretically understand for
which choices of approximate normals nj improved smoothness of the normal
re-parametrization can be expected. In particular, if sF ≥ 3, do we always ob-
tain C3− smooth limits for the Loop-based normal multiscale transform if we
use the standard normals? Similar questions arose in connection with B-spline
based normal multiscale transforms for curves, see [10], and have been partially
answered in [9]. Addressing this question might also be key to explaining the
numerically observed improved detail decay rates for the combined normal mul-
tiscale transforms proposed in [14].
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Abstract. In this article we study the problem of constructing an in-
termediate surface between two other surfaces defined by different iter-
ative construction processes. This problem is formalised with Boundary
Controlled Iterated Function System model. The formalism allows us to
distinguish between subdivision of the topology and subdivision of the
mesh. Although our method can be applied to surfaces with quadran-
gular topology subdivision, it can be used with any mesh subdivision
(primal scheme, dual scheme or other.) Conditions that guarantee conti-
nuity of the intermediate surface determine the structure of subdivision
matrices. Depending on the nature of the initial surfaces and coefficients
of the subdivision matrices we can characterise the differential behaviour
at the connection points between the initial surfaces and the intermediate
one. Finally we study the differential behaviour of the constructed sur-
face and show the necessary conditions to obtain an almost everywhere
differentiable surface.

Keywords: Iterative function system, attractor, surface, subdivision,
differentiability.

1 Introduction

The global objective of our work is to develop a geometric modeller based on
the paradigm of fractal geometry. More precisely we aim for modelling shapes
with iterative processes. Our formalism covers traditional models like NURBS
and subdivision surfaces and also a new world of shapes, not accessible by the
polynomial models and having a particular aesthetic.

In this article we focus on the problem of connecting two shapes built by
two different iterative processes. This problem often arises in context of sub-
division curves and surfaces. Different biregular subdivision schemes have been
studied for primal schemes ([SL03], [LL03], [SW05], [JLZ09], [BLND11]). Still
now, no biregular subdivision have been performed on primal/dual schemes be-
cause the subdivision surface process is based on the mesh subdivision. The
study of [KSD12] to transform a primal scheme into a dual scheme may open
new perspectives for subdivision surfaces.

Our approach is based on the BCIFS model that explicitly code (implement)
the topological subdivision of the limit surface. We describe the way to deal
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with surfaces that has quadrangular topological subdivision, but any mesh sub-
division (primal scheme, dual scheme, etc.) We are not limited by any type of
meshes (quads, triangles, etc.) since with the BCIFS model the limit surface
is defined as an attractor. As with classical Iterated Function System we can
choose any starting shape (or type of mesh) to construct a precise enough ap-
proximation. We also study the differential properties of the surfaces generated
by our method. We use the formalism of Boundary Controlled Iterated Function
System [TBSG+06],[SGB12] to describe two surfaces and construct the inter-
mediate surface. An automaton describes the construction process. Adjacency
and incidence equations guarantee the continuity and define the structure of the
subdivision matrices.

2 Background on IFS, CIFS and BCIFS

2.1 IFS and Projected IFS

Given a complete metric space (E, d) an Iterated Function System (IFS) is a
finite set of contractive operators T = {Ti}N−1

i=0 acting on points of E.
It is possible to define an operator T : H(E) → H(E), called Hutchinson

operator. It maps non-empty compact subset K to
N−1⋃
i=0

Ti(K).

If operators Ti are contracting in the space (E, d), then operator T is con-
tracting in (H(E), dH), the space of non-empty compact subsets in E with the
Hausdorff distance [Bar88].

According to [Hut81], there exists a unique compact A such that T(A) = A,
i.e., the fixed point of T. Furthermore, due to the contractivity of T, A can
be calculated as the limit: A = lim

i→∞
Ti(K). This limit does not depend on the

initial compact K as long as it is not empty. This property is illustrated by the
sequence of images in figure 2 (top).

The idea of projective IFS was introduced by Zair and Tosan [ZT96]. By
separating the iterative space from the modelling space, it is possible to construct
fractal shapes with control points. Similar to splines determined by the basic
functions defined in a barycentric space, attractors are defined in barycentric
space whose dimensions correspond to the number of control points: A ⊂ BIn =
{λ ∈ Rn|

∑n−1
i=0 λi = 1}, where n is the number of control points. Then the

attractor is projected to the modelling space with the transformation defined
by control points PA = {

∑n−1
i=0 Piλi|λi ∈ A}, where P = [P0 P1 · · ·Pn−1] is the

vector composed of control points.
We limit our study to linear operator acting in the barycentric spaces. The

operators on the barycentric space can be written as linear operators on Rn, with
a specific constraint on its matrix representation: each column of the matrix must
have the sum of its elements equal to 1. The fixed point of such operator, as well
as an attractor of the IFS composed of such operators, always belong to the
barycentric plane.
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2.2 Controlled IFS (CIFS)

It is possible to extend this model by adding rules controlling the iterative pro-
cess. These rules can described with an automaton [PH94], [TT95], [MW88].
States of the automaton are associated with iterative spaces and arcs represent
transformation applicable at the current state. This gives a new way to control
the shape of the attractor. The left scheme in figure 1 represents the automaton
for the classic IFS which generates the Barnsley fern. The fern is self-similar,
i.e., it is built from an infinite number of copies of itself.

Fern Fern Sierpinski

T0

T1

T2

T3

T0

T1

T2

T3

T4

T5

T6

Fig. 1. The automatons giving the transformation applying rules. Left: simple automa-
ton corresponding to the ordinary IFS. Right: Modified automaton with two states. The
attractor of the Fern state include the attractor of the Sierpinski state.

We can add a new state with three transformations defining the Sierpinski
triangle. We also change the destination of the arc T1 (see right part in figure 1).
After the transformation T1 is applied once, next steps will then follow the
Sierpinski subdivision. The attractor of the new controlled IFS is composed of
an infinite number of the Sierpinski triangles (see bottom row in figure 2).

2.3 Boundary Controlled IFS (BCIFS)

The Boundary Controlled IFS (BCIFS) model enhances the CIFS model by
adding the B-Rep notion [TBSG+06], [SGB12]. It gives a way to explicitly state
the face-edge-vertex structure of the attractor [Gen92]. We can also write the
incidence and adjacency constraints on the subdivision process and thus control
the topology: classic (curve, surface, . . . ) or fractal topology.

B-Rep concepts used here are more general than the classical B-Rep con-
cepts. Topological elements can be fractal objects. For example, a face can be a
Sierpinski triangle, or an edge can be a Cantor set, but the B-Rep structure
remains consistent. This approach differs from the traditional model by the abil-
ity to clarify the relation of incidence and adjacency with the subdivision process
of the given topological structure. For the sake of simplicity we will present its
application to curves.
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Fig. 2. Top: Barnsley fern; Bottom: with a C-IFS we can mix attractors of different
nature. The Barnsley fern is self-similar, it is built of an infinite number of copies of
itself, while the fern on the bottom is built of an infinite number of the Sierpinski
triangles.

To describe a curve with BCIFS, it is necessary to distinguish the different
spaces in which different cells will be defined. Each cell of the B-Rep structure
(here an edge or a vertex) is defined by:

– A state which represents this cell in the automaton
– An iterative space associated with it, more specifically a barycentric space.

The dimension of this space is equal to the number of control points of the
cell

– An IFS reflecting the subdivision of the cell

For the curve defined by n control points and whose vertices depend on p
control points we obtain the following structure:

– For the edge:
• a state called e
• an iterative space = a barycentric space of dimension n
• an IFS = a set of at least two matrices (n × n) representing edge sub-
division

– For each vertex (which can be different):
• two states vl and vr (for the left and right vertices respectively)
• an iterative space = a barycentric space of dimension p
• an IFS = a set of one matrix (p× p) representing vertex subdivision

At this point we have a set of iterated function systems, where each IFS
describes a cell of the B-Rep structure. If the IFS are composed of arbitrary
operators there is no guarantee that the edge is really bordered by vertices and
that subdivision of the edge does result in continuous curve. To address this
issue we will use additional constraints on BCIFS matrices, but before that we
need to add relations between different cells.

To do so we introduce boundary operators. In our example, different IFS
associated with the edge and the vertices are defined in the barycentric spaces.



Joining Primal/Dual Subdivision Surfaces 407

Boundary operators create a link between the space defining the system of the
nested subspaces, i.e., the space for the vertex is a subspace of the space for the
edge. As an edge has two vertices we use two boundary operators.

For example, consider a curve with three control points. If the first vertex
depends on the first two control points and while the second one depends on the
last two, then their respective boundary operators are:

b0 =

⎛⎝1 0
0 1
0 0

⎞⎠ , b1 =

⎛⎝0 0
1 0
0 1

⎞⎠ .

The general automaton for the curve with an edge subdivided in two parts
and two different vertex subdivisions is presented in figure 3.

� e

vl

vr

P

b0

b1T1

T0 T vl

T vr

Fig. 3. An automaton representing a curve with two edge subdivision T0,1 and two

different vertex subdivisions T vl

, T vr

.

2.4 Topological Constraints

Incidence and adjacency constraints can be easily identified from the graph rep-
resenting the progression of the automaton. The first level of subdivision is de-
picted in figure 4.

Adjacency constraints The edge is subdivided in two parts, so the “left” part
has to be connected to the “right” one through the intermediate vertices (see
figure 4). First of all the states vl and vr have to be identical, or in other
word the “left” and the “right” vertices need to have the same “nature” and
be subdivided by the same operator, otherwise the continuity is not ensured. So

equality T vl

= T vr

= T v is necessary.
Another condition is deduced by writing the equivalence of paths in the graph:

the left vertex of the right subdivision has to correspond to the right vertex of
the left subdivision:

T0b1 = T1b0.
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vl e vr

vl vr

vl e vr vl e vr

b0 b1

T vl

T vr

T0 T1

b0 b1 b0 b1

Fig. 4. The unfolding of the automaton generating subdivision system. This system is
built in such way, that it guarantees the topological structure. The incidence constraints
on the sides (in yellow) and adjacency constraints in the middle (in blue.)

= T1 =

((n − p) × p)

¼

¼

(n × (n − p))

T V

(p × p)

T V

(p × p)
(n × (n − p))

((n − p) × p)

Fig. 5. General structure of the subdivision matrices for the curve with n control
points, whose vertices are controlled by p control points.

Incidence constraints In the same manner, incidence constraints express the fact
that vertices must remain at the ends of the edge during the subdivision process:
subdivision of the left vertex of the edge has to correspond to the left vertex of
the left subdivision of the edge (see figure 4). Writing down equivalences between
paths gives the following equations:

b0T
v = T0b0,

b1T
v = T1b1.

Resolving the constraints, adjacency and incidence determine structures in the
subdivision matrices in the form of equalities between columns and sub-matrices
(see figure 5). Two examples of curves that can be described by a BCIFS are
presented in figure 6.
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Fig. 6. Left: a cubic spline with 4 control points. Right: a fractal curve with 3 control
points.

2.5 Regular Quadrangular Surface Subdivision

The same principle can be used to describe the subdivision process for quadran-
gular surfaces. An automaton for such surface has three states: F for the face,
E for the edges that are bordering the face (in this case all the edges have the
same nature, i.e., are defined by the same iterative procedure) and V for the
vertices (see figure 7).

For surfaces a larger number of the incidence and adjacency constraints is
required than for curves, but the underlying principle is the same. Subdividing
an edge should be equal to an edge of the patch subdivision, while neighbouring
patches should share common edges. All the constraints can be illustrated by
figure 8. Full list of constraints can be found in appendix A.

� F E V
P bF1,2,3,4 bE1,2

TF
1,2,3,4 TE

1,2 T V

Fig. 7. An automaton for the surface with four edges

2.6 Irregular Quadrangular Surface Subdivision

Although in this article we focus on regular patches, our method can be modified
work with irregular patches as well. Here we show how to modify the automaton
to change the regular patch into a patch with one irregular vertex. Consider a
quadrangular patch with one irregular vertex. Such patch is subdivided into three
regular patches and one irregular. The corresponding automaton is presented in
figure 9. Note that the irregular patch (F ir) has two irregular edges (Eir) as well

as two regular ones (E). The irregular edge is subdivided (TEir

1,2 ) into a regular
and irregular edge. Conditions that guarantee the continuity of the irregular
patch can be deduced in the same manned as for its regular counterpart.

In this article we focus only on regular subdivisions, but the example above
shows that our approach can be tailored to irregular surfaces as well.
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TF TF

TF TF

b1 b1

b1b1

b4 b4

b4 b4

b2 b2

b2b2

b3 b3

b3b3

b1

b2

b3

b4

TE

TE

TE

TE

TE

TE

TE

TE

1

1

1

1

2

2

2

2 1 2

3 4

TETETE

F

F F

F

F

F F

F

F

F F

F

F

F

F

F

F

F

F

F

Fig. 8. Incidence and adjacency constraints for quadrangular surface subdivision. Each
subdivided face has to be connected with neighbouring faces by sharing respective edges
(represented by ellipses in solid), while edge subdivision must be an edge for one of the
subdivided faces (dotted ellipses).

�

F E V

bF1,2,3,4 bE1,2

TF
1,2,3,4 TE

1,2 T V

F ir Eir V ir

P bF
ir

1,2 bE
ir

1

TF ir

1 TEir

1 T V ir

TF ir

2,3,4 TEir

2
F ir

F F

F F ir

Fig. 9. Left: An automaton for the irregular patch. Right: a schematic subdivision of
the irregular patch.

3 Construction of the Intermediate Surface.

At first we consider the automaton that defines two initial surfaces. To keep
thing simple we consider the initial surface to be a square patches with four
edges and four vertices, but the same method can be easily applied to surfaces
with more complex configuration. The initial automaton is presented in figure 10.
The initial state is denoted by ), while L and R denote state corresponding to
the respective respective initial surfaces.
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�

L R

eL eR

vL vR

P
R

P
L

L1,2,3,4 R1,2,3,4

bL1,2,3,4 bR1,2,3,4

EL
1,2 ER

1,2

bv
L

1,2 bv
R

1,2

Fig. 10. Initial BCIFS. Each branch of the automaton corresponds to an initial surface.

Now we introduce a state I for the intermediate surface. And for this surface
we propose the following subdivision. The intermediate surface is subdivided into
six parts: two of them have the same nature as the first initial surface, another
two as the second initial surface and the last two are similar to the intermediate
surface itself. This subdivision and a graph representing it is shown in figure 11.
Here we use the BCIFS to deduce the condition on the transformations of the
intermediate patch to ensure its continuity. To do this we need to guarantee that
the edges of the patch are continuous curves and that patches obtained after the
subdivision are connected with each other, as described below.

�

L R

P
R

P
L

L1,2,3,4 R1,2,3,4I

P I

T IL
1,2 T IR

1,2

T I
1,2

I
I

I

L

L

R

R

eItop

eL eR

eIbottom

eL

eL

eL

eL

eR

eR

eR

eR

eI

eI

Fig. 11. Top: Automaton describing the subdivision of the intermediate patch. Note
that edge and vertex states are omitted for conserving space. Bottom: Schematic rep-
resentation of the same subdivision.
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3.1 Outer Edges

The intermediate surface has four edges: eL, eR (for the left and right edges
respectively) and eItop, eIbot (for top and bottom edges) as can be seen in fig-
ure 11. Note that eL (and eR) is actually subdivided into two smaller edges,
while each of them is the edge of an L-patch (or R-patch respectively). We can
use the subdivision of the edges of the initial patches for eL and eR guarantee
their continuity, as well as provided us an easy we to connect the intermediate
surface with initial ones (see section 3.3).

�

I

eIeL eR

P I

bI1,3

T eIL T eIR

T eI T eR

1,2T eL

1,2

Fig. 12. The automaton depicting top and bottom edges subdivision of the interme-
diate patch.

Edges eItop, eIbot differ from eL and eR as they are subdivided into three
parts different instead of two uniform parts. Also note that after one iteration
two intermediate are produced and they share a common edge (see figure 11).
This means that eItop, eIbot must have the same subdivision, so that that the
surface is indeed continuous. Thus eItop = eIbot = eI .

Now we want to deduce the constraints on the subdivision of eI . It is presented
in figure 12. Here bI1,3 are the boundary operators that selects the edges in ques-

tion, eI is the state corresponding to them, T eIL, T eIR and T eI are the operators

of the edge subdivision, while T eR

1,2 and T eL

1,2 are the subdivision operators for the
edges of respected initial surfaces.

To guarantee the continuity of the edge we use the same method as in section
2.4. We can deduce both adjacency and incidence constraints from the graph
representing one step of the edge subdivision (see figure 13). Using the equivalent
paths in this graph we can deduce the following constraints:

T eILbe
L

2 = T eI be
I

1 ,

T eI be
I

2 = T eIRbe
R

1 ,

be
I

1 T
v
1 = T eILbL1 ,

be
I

2 T
v
2 = T eIRbR2 .



Joining Primal/Dual Subdivision Surfaces 413

eI

eIeL eRv1 v2

v1 v2

v1 v2

T e I
R

T
e
I L

T eI

be
L

2 be
I

1 be
I

2 be
R

1

be
I

1 be
I

2

T v
1 T v

2

bL1 bR2

Fig. 13. Part of the graph representing one iteration of the automaton.

3.2 Inner Edges

There are 7 shared edges between the patches obtained after the first iteration
(see figure 11). For each of them we need to write a constraint on the subdivision
operators.

At first we consider two R-patches. One step of the subdivision that pro-
duces this two patches is presented in figure 14. (Note that nodes not related
to the considered patches or to the common edge are not presented). From the

I

R ReR

eI eI

eR eR

T
IR

1

T IR2

bR3 bR1

bI1 bI3

T eIR T eIR

bR1 bR3

Fig. 14. Part of the graph representing one step of the subdivision. This part focuses
on two R patches and the common edge between them.

equivalent paths in this graph we can deduce the following equations:

T IR
1 bR3 = T IR

2 bR1 ,

bI1T
eIR = T IR

1 bR1 ,

bI3T
eIR = T IR

2 bR3 .

In the similar ways the condition on edges between the I-patches:

T I
1 b

I
3 = T I

2 b
I
1,

bI1T
eI = T I

1 b
I
1,

bI3T
eI = T I

2 b
I
3.

And between the L-patches:

T IL
1 bL3 = T IL

2 bL1 ,
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bI1T
eIL = T IL

1 bL1 ,

bI3T
eIL = T IL

2 bL3 .

Now we proceed to treat edges between the different patches. At first we
consider the top row of the patches (see figure 11). The corresponding graph is
presented in figure 15. From that graph we deduce the following equations:

I

IL ReL eR

T IR
1T IL

1

T I
1

bL2 bI4 bI2 bR4

Fig. 15. Part of the graph representing one step of the subdivision. This part focuses
on top row of three patches and edges between them.

T IL
1 bL2 = T I

1 b
I
4,

T I
1 b

I
2 = T IR

1 bR4 .

Note the top row of the intermediate patch is similar to the bottom one. This
means that to obtain the condition on the last two inner edges, we need to
substitute T IL

1 , T I
1 and T IR

1 with T IL
2 , T I

2 and T IR
2 respectively. This way we

obtain the following equations:

T IL
2 bL2 = T I

2 b
I
4,

T I
2 b

I
2 = T IR

2 bR4 .

3.3 Connection to the Initial Surfaces

Finally we need to ensure that the intermediate patch actually connects two
initial surfaces. Since we chose to use the subdivision of the initial surfaces edges
for eL and eR, we can connect the initial surface to the intermediate one by using
the same control points for respective edges. This can be written as following:

P IbI2 = PRbR4 ,

P IbI4 = PLbL2 ,

where P I , PR, PL are vectors of control points for respective surfaces. From
these condition we can also deduce the minimum dimension of BII . That is a
sum of dimension for initial surfaces respective edges. The said dimension can
be increased, therefore introducing additional control points to the intermediate
patch.
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3.4 Approximation of the Limit Surface

The adjacency and incidence condition described above only guarantee the con-
tinuity of the limit shape. Hence the iterations with arbitrary compact set as a
starting point are not necessary continuous. However with correct starting set,
we can obtain a continuous surface that approximate the limit shape as the num-
ber of iterations increases. For each face state a quad is chosen as a compact set
to be transformed accordingly with the rules of the BCIFS. Said quads of course
lie within the corresponding barycentric space. The vertices of each quad must
be chosen specifically that incidence and adjacency condition are conserved with
each iteration. This is true if each vertex of the tetragon lies within barycentric
subspace which corresponds to that vertex iterative subspace and have the same
coordinates within the subspaces. One way to satisfy that condition is to choose
the fixed points of respective transformations as quads vertices.

Different steps of approximation of the intermediate surface is presented in
figure 16. Different quads are color coded to show their “origin” from different
barycentric spaces. Green is for an image of the quad from BII (barycentric
space corresponding to the state I), red is for BIR and blue is for BIL.

Fig. 16. Continuous approximation of the limit surface

Here we choose quads for convenience, but choosing any other configuration
will yield the sequence of approximations that converge to the same limit surface.

4 Differentiability

In this section we study the differential properties of the surfaces that was de-
scribed in the previous section.

It is easy to see that as the subdivision process goes on, the intermediate patch
is tasselled with patches that has the same subdivision as the initial surfaces.
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In this paragraph we show that there exists a self similar curve between two
different areas tiled with images of the first initial patch or the second one.
If we discard the states L,R, eR, eL and corresponding transitions, we obtain
the following automaton (see figure 17). Note that state eI lost two of three

� I eI
P I bI1,3

T eIT I
1,2

Fig. 17. BCIFS without states L,R, eR, eL and respective transitions

transition leading from it. This means that it has become a vertex state. Similar
thing has happened with state I. This state now represents not a face, but an
edge. So we obtained an edge, that is bounded by two vertices, and now we show
that it is continuous.

Previously in section 3.1 we have already derived constraints on T I
1,2, when

we dealt with two I-patches. Then states I and eI represented other topological
cells, but the respective operators hasn’t changed. Indeed, if we refer to the
graph depicting one step of the BCIFS (see figure 18) we would obtain the same
constraints as before.

eI I eI

eI I eI I eI

bI1 bI3

T eI T eIT I
1 T I

2

bI1 bI3 bI1 bI3

Fig. 18. Graph representing one iteration of the automaton from figure 17

So with exception of one continuous curve, the whole intermediate surface is
tiled with images of the initial surfaces. This means, that said area inherits its
differential properties from the initial surfaces.

Now we proceed to study the differential properties of the constructed surface
along and across the special curve we described previously. At first we study the
differential behaviour at the endpoint of this curve. Note that the said endpoints
are the fixed points of T I

1 and T I
2 respectively.

At first we consider the fixed point of T I
1 . Let us denote the intermediate

surface with S. Without the loss of generality we can assume that the fixed
point of T I

1 is 0, i.e., T I
1 (0) = 0. Let {λj}nj=0 be a set of eigenvalues of T I

1 such
that 1 = λ0 > |λ1| = |λ2| > |λ3| ≥ . . . ≥ |λn|, λ0 = 1 and λ1, λ2 are positive.
We want to prove the hypothesis, that the eigenvectors v1 and v2 are the basis
of tangent space. To prove that we need to demonstrate, that for any sequence
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{yn}∞n=0 such that yn → 0, ∀n yn ∈ S the following is true: fn = f(yn) → 0

where f(x) = dist(x,p)
|Prp(x)| → 0, p = {y|y = av1 + bv2, ∀a, b ∈ R} and Prp is a

projection onto plane p.
Let us consider a sequence of compact sets An where A0 = S and An =

T I
1 (An−1), ∀n > 0. Let us also define another sequence Bn = An \An+1, a

closure of the difference between An and An+1. Note that ∀n ≥ 0 Bn is also a
compact set and 0 /∈ Bn. Also the following is true:

∪∞
n=0Bn = A0.

Here is the more general version of the previous equality:

∪∞
n=kBn = Ak

Without the loss of generality we can consider the plane p to be the plane Oxy.
Then:

f(x) =
|x− Prp(x)|

|Prp(x)|
=

|(0, 0, 0, x3, . . . , xn)|
|(0, x1, x2, 0, . . . , 0)|

.

Let x1 ∈ B1, then ∃x0 ∈ B0 such that T0(x0) = x1.

f(x1) = f(T I
1 (x0)) =

|(0, 0, 0, λ3x3, . . . , λnxn)|
|(0, λ1x1, λ2x2, 0, . . . , 0)|

≤

≤ |λ3 · (0, 0, 0, x3, . . . , xn)|
|λ1 · (0, x1, x2, 0, . . . , 0)|

=
|λ3|
|λ1|

f(x0).

So for any n we can write the following:

max
x∈Bn

f(x) =
|λ3|
|λ1|

max
x∈Bn−1

f(x) =

(
|λ3|
|λ1|

)n

max
x∈B0

f(x).

Since |λ3|
|λ1| < 1:

lim
n→∞

max
x∈Bn

f(x) = 0.

This also implies that maxx∈An f(x) → 0. Therefore ∀yn such that
limn→∞ f(yn) = 0.

So the sufficient condition for existence of tangent plane at the fixed point of
T I
1 are the following two statements:

– T I
1 have two equal positive sub-dominant eigenvalues.

– The corresponding eigenspaces are not the same.

Same conditions can be applied for the fixed point of T I
2 .

Let us assume, that tangent planes exist at the fixed point of T I
1 and T I

2 . Since
the curve in question is continuous, applying T I

1 to the fixed point of T I
2 yields

the same result as applying T I
2 to the fixed point of T I

1 . If the results of applying
these operator to the normals of the respective tangent planes are collinear, then
the tangent plane also exists at the “middle point”.

Applying different finite combinations of T I
1,2 we can obtain a set of points

along the curve such that the tangent plane to the surface exists at any such
point. Such set is dense within the curve (see [Ben09].)
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5 Refining the BCIFS

So far we have deduced a BCIFS that produces a variety of limit surfaces sat-
isfying the initial conditions. A specific surface can be chosen by specifying the
parameter values for the BCIFS operators. Unfortunately, specifying parame-
ter directly can have a somewhat unpredictable effect on the final shape. In
the previous section we have shown, that the shape of the surface depends on
the sub-dominant eigenvectors of the operators T I

1,2. Now we are going to show
how control points can be added to provide more intuitive way of designing the
intermediate surface.

As was already noted before a special curve (an attractor of T I
1,2) runs across

the intermediate surface. We are going to reflect this in the BCIFS and assign
new control points to directly influence the shape of this curve and therefore
the surface itself. Explicit specification of the special curve allows us to view the
intermediate surface as two quadrangular patches that share the common edge.
This allows us to redefine its subdivision as presented in figure 19. As these two
patches are mirrored copies of each other we can use the same automaton to
resolve the adjacency and incidence constraints.

�
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L1,2,3,4 R1,2,3,4
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bIL2 bIR1

P IL P IR
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1,2
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1,2 T IR
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IL

L

L

IR

IR

R

R

Fig. 19. Top: Refined BCIFS with two intermediate states. Bottom: Corresponding
subdivision scheme.

But before we can resolve the constraints we need to specify the subdivision
of the common edge. Virtually any subdivision may be chosen, but our goal is
to build a smooth surface, so some restrictions apply. First of all the curve needs
to be C1 itself. For more studies on differentiability of self-similar curves please
refer to [BGN09], [PGSL13] and [SGB12].
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In the previous section we showed that existence of the tangent quarter-planes
depend on the eigenvalues of T IL

1,2 or T IR
1,2 respectively. If two positive equal

sub-dominant eigenvalues exist then the tangent plane will be collinear with
respective eigenspace. In turn, tangent plane position in the modelling space
depends on those control points which correspond to the smallest subspace that
contains the tangent plane. So to be able to guarantee C1-continuity between
two patches the tangent planes must depend on the control points shared by two
patches - control points of the common edge.

These can be further exploited if we consider the structure of the subdivision
matrices. When we consider two matrices that are constrained by a boundary
condition, e.g., a face and an edge subdivision, the face subdivision will always
have block-triangular structure, with one block equal to the edge subdivision.
For example:

T IL
1 =

(
eI1 A1

0 B1

)
, T IL

2 =

(
eI2 A2

0 B2

)
where eI1 and B1, B2 are square blocks.

The eigenvalues of the edge subdivision are also eigenvalues of the face sub-
division, while the corresponding eigenvector are embedded into the higher di-
mensional space. Note that if two patches share the same edge and hence the
same edge subdivision, their face subdivision will have common blocks. In our
case:

T IR
1 =

(
eI1 A3

0 B3

)
, T IR

2 =

(
eI2 A4

0 B4

)
.

So to guarantee the C1-continuity the edge subdivision block must provide
two sub-dominant eigenvalues, so that the same tangent plane can be obtain on
both sides of the special curve.

6 Examples

In this section we provide some examples of the surfaces constructed by the
proposed method. The first example (see figure 20) is an intermediate surface
between a Doo-Sabin and Catmull-Clark surfaces. The intermediate curve subdi-
vision is obtained by tensor product of cubic b-spline subdivision and quadratic
b-spline vertex subdivision. Hence 4× 2 = 8 control points for the intermediate
curve. The subdivision matrices used to generate this image can be found in
appendices B and C. Note that in this particular case a complete basis of eigen-
vectors does not exist, so to check the differentiability generalised eigenvectors
were used. Because proof is similar to one presented is section 4 we omit it to
preserve space.

Our method can also be applied to fractal surfaces, and even spline patches
can be connected to fractal surfaces (see figure 21).



420 S. Podkorytov et al.

Fig. 20. An intermediate surface between the Doo-Sabin and Catmull-Clark surfaces
with control polygons for initial edges of initial surfaces and intermediate curve

Fig. 21. An intermediate surface between a fractal surfaces and spline patch

7 Conclusion

Using the BCIFS model we have proposed a method of constructing the inter-
mediate surface between two surfaces build by different iterative processes. We
used the fact, that BCIFS distinguishes the topology and mesh subdivision, and
were able to work around the differences between primal and dual subdivision
schemes. With the chosen topology subdivision of the intermediate surface we
guaranteed continuity with adjacency and incidence constraints.

After that we proceeded to analyse the differential behaviour of the inter-
mediate surface. We were able to show, that the surface can be split into two
different areas, that shares the differential behaviour with respective initial sur-
face. We showed that the border between these two areas has specific differential
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behaviour, and that existence of the tangent plane at the curves points depend
on the eigenvalues and eigenvector of the subdivision operators.

Finally we modified the automaton and explicitly specify the special curve
on the intermediate surface. New control were added to control the shape of
the curve and therefore shape of the surface. Condition that guarantee the C1-
continuity along that curve were also derived.

A Appendix 1

List of conditions for quadrangular subdivision from figure 8.
Adjacency constraints:

– Top edge:
bF1 T

E
1 = TF

1 b
F
1

bF1 T
E
2 = TF

2 b
F
1

– Right edge:
bF2 T

E
1 = TF

2 b
F
2

bF2 T
E
2 = TF

4 b
F
2

– Bottom edge:
bF3 T

E
1 = TF

3 b
F
3

bF3 T
E
2 = TF

4 b
F
3

– Left edge:
bF4 T

E
2 = TF

1 b
F
4

bF4 T
E
1 = TF

3 b
F
4

Incidence constraints:
TF
1 b

F
2 = TF

2 b
F
4

TF
2 b

F
3 = TF

4 b
F
1

TF
4 b

F
4 = TF

3 b
F
2

TF
3 b

F
1 = TF

1 b
F
3

B Doo-Sabin Side Subdivision Matrices

The following matrices were used to generate Doo-Sabin side of the surface from
figure 20:

TL
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

9/16 3/16 0 3/16 1/16 0 a b 0
3/16 9/16 9/16 1/16 3/16 3/16 b a a

0 0 3/16 0 0 1/16 0 0 b
3/16 1/16 0 9/16 3/16 0 d e 0
1/16 3/16 3/16 3/16 9/16 9/16 e d d

0 0 1/16 0 0 3/16 0 0 e
0 0 0 0 0 0 g i 0
0 0 0 0 0 0 h h g
0 0 0 0 0 0 i g h
0 0 0 0 0 0 0 0 i
0 0 0 0 0 0 k m 0
0 0 0 0 0 0 l l k
0 0 0 0 0 0 m k l
0 0 0 0 0 0 0 0 m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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TL
2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

3/16 0 0 1/16 0 0 b 0 0
9/16 9/16 3/16 3/16 3/16 1/16 a a b

0 3/16 9/16 0 1/16 3/16 0 b a
1/16 0 0 3/16 0 0 e 0 0
3/16 3/16 1/16 9/16 9/16 3/16 d d e

0 1/16 3/16 0 3/16 9/16 0 e d
0 0 0 0 0 0 i 0 0
0 0 0 0 0 0 h g i
0 0 0 0 0 0 g h h
0 0 0 0 0 0 0 i g
0 0 0 0 0 0 m 0 0
0 0 0 0 0 0 l k m
0 0 0 0 0 0 k l l
0 0 0 0 0 0 0 m k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

T IL
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

3/16 1/16 0 a b 0 0 0 0 0 0 0 0 0
1/16 3/16 3/16 b a a 0 0 0 0 0 0 0 0

0 0 1/16 0 0 b 0 0 0 0 0 0 0 0
9/16 3/16 0 d e 0 0 0 0 0 0 0 0 0
3/16 9/16 9/16 e d d 0 0 0 0 0 0 0 0

0 0 3/16 0 0 e 0 0 0 0 0 0 0 0
0 0 0 g i 0 3/8 3/32 0 0 1/8 1/32 0 0
0 0 0 h h g 3/8 9/16 3/8 3/32 1/8 3/16 1/8 1/32
0 0 0 i g h 0 3/32 3/8 9/16 0 1/32 1/8 3/16
0 0 0 0 0 i 0 0 0 3/32 0 0 0 1/32
0 0 0 k m 0 1/8 1/32 0 0 3/8 3/32 0 0
0 0 0 l l k 1/8 3/16 1/8 1/32 3/8 9/16 3/8 3/32
0 0 0 m k l 0 1/32 1/8 3/16 0 3/32 3/8 9/16
0 0 0 0 0 m 0 0 0 1/32 0 0 0 3/32

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

T IL
2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/16 0 0 b 0 0 0 0 0 0 0 0 0 0
3/16 3/16 1/16 a a b 0 0 0 0 0 0 0 0

0 1/16 3/16 0 b a 0 0 0 0 0 0 0 0
3/16 0 0 e 0 0 0 0 0 0 0 0 0 0
9/16 9/16 3/16 d d e 0 0 0 0 0 0 0 0

0 3/16 9/16 0 e d 0 0 0 0 0 0 0 0
0 0 0 i 0 0 3/32 0 0 0 1/32 0 0 0
0 0 0 h g i 9/16 3/8 3/32 0 3/16 1/8 1/32 0
0 0 0 g h h 3/32 3/8 9/16 3/8 1/32 1/8 3/16 1/8
0 0 0 0 i g 0 0 3/32 3/8 0 0 1/32 1/8
0 0 0 m 0 0 1/32 0 0 0 3/32 0 0 0
0 0 0 l k m 3/16 1/8 1/32 0 9/16 3/8 3/32 0
0 0 0 k l l 1/32 1/8 3/16 1/8 3/32 3/8 9/16 3/8
0 0 0 0 m k 0 0 1/32 1/8 0 0 3/32 3/8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
The following values were substituted to obtain a C1-continuous surface: a =

0, b = 0, d = 1/4, e = 1/4, g = 1/4, h = 1/4, i = 0, k = 0, l = 0,m = 0.

C Catmull-Clark Side Subdivision Matrices

The following matrices were used to generate Catmull-Clark side of the surface
from figure 20:

TR
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/4 1/16 0 0 1/16 1/64 0 0 0 0 0 0 ma na 0 0
1/4 3/8 1/4 1/16 1/16 3/32 1/16 1/64 0 0 0 0 mb nb ma na
0 1/16 1/4 3/8 0 1/64 1/16 3/32 0 0 0 0 0 nc mb nb
0 0 0 1/16 0 0 0 1/64 0 0 0 0 0 0 0 nc

1/4 1/16 0 0 3/8 3/32 0 0 1/4 1/16 0 0 me ne 0 0
1/4 3/8 1/4 1/16 3/8 9/16 3/8 3/32 1/4 3/8 1/4 1/16 mf nf me ne
0 1/16 1/4 3/8 0 3/32 3/8 9/16 0 1/16 1/4 3/8 0 ng mf nf
0 0 0 1/16 0 0 0 3/32 0 0 0 1/16 0 0 0 ng
0 0 0 0 1/16 1/64 0 0 1/4 1/16 0 0 mi ni 0 0
0 0 0 0 1/16 3/32 1/16 1/64 1/4 3/8 1/4 1/16 mj nj mi ni
0 0 0 0 0 1/64 1/16 3/32 0 1/16 1/4 3/8 0 nk mj nj
0 0 0 0 0 0 0 1/64 0 0 0 1/16 0 0 0 nk
0 0 0 0 0 0 0 0 0 0 0 0 mm nm 0 0
0 0 0 0 0 0 0 0 0 0 0 0 mn nn mm nm
0 0 0 0 0 0 0 0 0 0 0 0 0 no mn nn
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 no
0 0 0 0 0 0 0 0 0 0 0 0 mq nq 0 0
0 0 0 0 0 0 0 0 0 0 0 0 mr nr mq nq
0 0 0 0 0 0 0 0 0 0 0 0 0 ns mr nr
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ns

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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TR
2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/16 0 0 0 1/64 0 0 0 0 0 0 0 na 0 0 0
3/8 1/4 1/16 0 3/32 1/16 1/64 0 0 0 0 0 nb ma na 0
1/16 1/4 3/8 1/4 1/64 1/16 3/32 1/16 0 0 0 0 nc mb nb ma

0 0 1/16 1/4 0 0 1/64 1/16 0 0 0 0 0 0 nc mb
1/16 0 0 0 3/32 0 0 0 1/16 0 0 0 ne 0 0 0
3/8 1/4 1/16 0 9/16 3/8 3/32 0 3/8 1/4 1/16 0 nf me ne 0
1/16 1/4 3/8 1/4 3/32 3/8 9/16 3/8 1/16 1/4 3/8 1/4 ng mf nf me

0 0 1/16 1/4 0 0 3/32 3/8 0 0 1/16 1/4 0 0 ng mf
0 0 0 0 1/64 0 0 0 1/16 0 0 0 ni 0 0 0
0 0 0 0 3/32 1/16 1/64 0 3/8 1/4 1/16 0 nj mi ni 0
0 0 0 0 1/64 1/16 3/32 1/16 1/16 1/4 3/8 1/4 nk mj nj mi
0 0 0 0 0 0 1/64 1/16 0 0 1/16 1/4 0 0 nk mj
0 0 0 0 0 0 0 0 0 0 0 0 nm 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 nn mm nm 0
0 0 0 0 0 0 0 0 0 0 0 0 no mn nn mm
0 0 0 0 0 0 0 0 0 0 0 0 0 0 no mn
0 0 0 0 0 0 0 0 0 0 0 0 nq 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 nr mq nq 0
0 0 0 0 0 0 0 0 0 0 0 0 ns mr nr mq
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ns mr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T IR
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/16 1/64 0 0 0 0 0 0 ma na 0 0 0 0 0 0 0 0 0 0
1/16 3/32 1/16 1/64 0 0 0 0 mb nb ma na 0 0 0 0 0 0 0 0

0 1/64 1/16 3/32 0 0 0 0 0 nc mb nb 0 0 0 0 0 0 0 0
0 0 0 1/64 0 0 0 0 0 0 0 nc 0 0 0 0 0 0 0 0

3/8 3/32 0 0 1/4 1/16 0 0 me ne 0 0 0 0 0 0 0 0 0 0
3/8 9/16 3/8 3/32 1/4 3/8 1/4 1/16 mf nf me ne 0 0 0 0 0 0 0 0
0 3/32 3/8 9/16 0 1/16 1/4 3/8 0 ng mf nf 0 0 0 0 0 0 0 0
0 0 0 3/32 0 0 0 1/16 0 0 0 ng 0 0 0 0 0 0 0 0

1/16 1/64 0 0 1/4 1/16 0 0 mi ni 0 0 0 0 0 0 0 0 0 0
1/16 3/32 1/16 1/64 1/4 3/8 1/4 1/16 mj nj mi ni 0 0 0 0 0 0 0 0

0 1/64 1/16 3/32 0 1/16 1/4 3/8 0 nk mj nj 0 0 0 0 0 0 0 0
0 0 0 1/64 0 0 0 1/16 0 0 0 nk 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 mm nm 0 0 3/8 3/32 0 0 1/8 1/32 0 0
0 0 0 0 0 0 0 0 mn nn mm nm 3/8 9/16 3/8 3/32 1/8 3/16 1/8 1/32
0 0 0 0 0 0 0 0 0 no mn nn 0 3/32 3/8 9/16 0 1/32 1/8 3/16
0 0 0 0 0 0 0 0 0 0 0 no 0 0 0 3/32 0 0 0 1/32
0 0 0 0 0 0 0 0 mq nq 0 0 1/8 1/32 0 0 3/8 3/32 0 0
0 0 0 0 0 0 0 0 mr nr mq nq 1/8 3/16 1/8 1/32 3/8 9/16 3/8 3/32
0 0 0 0 0 0 0 0 0 ns mr nr 0 1/32 1/8 3/16 0 3/32 3/8 9/16
0 0 0 0 0 0 0 0 0 0 0 ns 0 0 0 1/32 0 0 0 3/32

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T IR
2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/64 0 0 0 0 0 0 0 na 0 0 0 0 0 0 0 0 0 0 0
3/32 1/16 1/64 0 0 0 0 0 nb ma na 0 0 0 0 0 0 0 0 0
1/64 1/16 3/32 1/16 0 0 0 0 nc mb nb ma 0 0 0 0 0 0 0 0

0 0 1/64 1/16 0 0 0 0 0 0 nc mb 0 0 0 0 0 0 0 0
3/32 0 0 0 1/16 0 0 0 ne 0 0 0 0 0 0 0 0 0 0 0
9/16 3/8 3/32 0 3/8 1/4 1/16 0 nf me ne 0 0 0 0 0 0 0 0 0
3/32 3/8 9/16 3/8 1/16 1/4 3/8 1/4 ng mf nf me 0 0 0 0 0 0 0 0

0 0 3/32 3/8 0 0 1/16 1/4 0 0 ng mf 0 0 0 0 0 0 0 0
1/64 0 0 0 1/16 0 0 0 ni 0 0 0 0 0 0 0 0 0 0 0
3/32 1/16 1/64 0 3/8 1/4 1/16 0 nj mi ni 0 0 0 0 0 0 0 0 0
1/64 1/16 3/32 1/16 1/16 1/4 3/8 1/4 nk mj nj mi 0 0 0 0 0 0 0 0

0 0 1/64 1/16 0 0 1/16 1/4 0 0 nk mj 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 nm 0 0 0 3/32 0 0 0 1/32 0 0 0
0 0 0 0 0 0 0 0 nn mm nm 0 9/16 3/8 3/32 0 3/16 1/8 1/32 0
0 0 0 0 0 0 0 0 no mn nn mm 3/32 3/8 9/16 3/8 1/32 1/8 3/16 1/8
0 0 0 0 0 0 0 0 0 0 no mn 0 0 3/32 3/8 0 0 1/32 1/8
0 0 0 0 0 0 0 0 nq 0 0 0 1/32 0 0 0 3/32 0 0 0
0 0 0 0 0 0 0 0 nr mq nq 0 3/16 1/8 1/32 0 9/16 3/8 3/32 0
0 0 0 0 0 0 0 0 ns mr nr mq 1/32 1/8 3/16 1/8 3/32 3/8 9/16 3/8
0 0 0 0 0 0 0 0 0 0 ns mr 0 0 1/32 1/8 0 0 3/32 3/8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The following values were substituted to obtain a C1-continuous surface:

ma = 0,mb = 0,me = 0,mf = 0,mi = 1/8,mj = 1/8,mm = 3/8,mn = 3/8,

mq = 0,mr = 0, na = 0, nb = 0, nc = 0, ne = 0, nf = 0, ng = 0, ni = 1/32,

nj = 3/16, nk = 1/32, nm = 3/32, nn = 9/16, no = 3/32, nq = 0, nr = 0,

ns = 0.
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Université LYON 1 (1992)

[Hut81] Hutchinson, J.: Fractals and self-similarity. Indiana University Journal of
Mathematics 30(5), 713–747 (1981)

[JLZ09] Jiang, Q., Li, B., Zhu, W.: Interpolatory quad/triangle subdivision
schemes for surface design. Computer Aided Geometric Design 26(8),
904–922 (2009)

[KSD12] Kosinka, J., Sabin, M., Dodgson, N.: Cubic subdivision schemes with
double knots. Computer Aided Geometric Design (2012)

[LL03] Levin, A., Levin, D.: Analysis of quasi uniform subdivision. Applied and
Computational Harmonic Analysis 15(1), 18–32 (2003)

[MW88] Daniel Mauldin, R., Williams, S.C.: Hausdorff dimension in graph
directed constructions. Transactions of the American Mathematical Soci-
ety 309(2), 811–829 (1988)

[PGSL13] Podkorytov, S., Gentil, C., Sokolov, D., Lanquetin, S.: Geometry control
of the junction between two fractal curves. Computer-Aided Design 45(2),
424–431 (2012); Solid and Physical Modeling (2012)

[PH94] Prusinkiewicz, P., Hammel, M.: Language-Restricted Iterated Function
Systems, Koch Constructions, and L-systems (1994)

[SGB12] Sokolov, D., Gentil, C., Bensoudane, H.: Differential behaviour of iter-
atively generated curves. In: Boissonnat, J.-D., Chenin, P., Cohen, A.,
Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and
Surfaces 2011. LNCS, vol. 6920, pp. 663–680. Springer, Heidelberg (2012)

[SL03] Stam, J., Loop, C.: Quad/triangle subdivision. Computer Graphics Fo-
rum 22(1), 79–85 (2003)

[SW05] Schaefer, S., Warren, J.: On c2 triangle/quad subdivision. ACM Trans.
Graph. 24(1), 28–36 (2005)

[TBSG+06] Tosan, E., Bailly-Sallins, I., Gouaty, G., Stotz, I., Buser, P., Weinand,
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Géométrique, Cachan, Mars 22-23, pp. 155–169 (2006)

[TT95] Thollot, J., Tosan, E.: Constructive fractal geometry: constructive
approach to fractal modeling using language operations (1995)

[ZT96] Zair, C.E., Tosan, E.: Fractal modeling using free form techniques.
Comput. Graph. Forum 15(3), 269–278 (1996)



Reparametrization and Volume Mesh Generation
for Computational Fluid Dynamics Using

Modified Catmull-Clark Methods
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Abstract. A new technique is presented for using the Catmull-Clark
subdivision method, modified for modeling sharp creases, to generate
volume meshes used in computational fluid dynamics. Given a target
surface of arbitrary genus, e.g., defined by a collection of trimmed B-
spline patches, which represents an object in a flow, a simple polyhe-
dron is constructed roughly approximating this target surface. After one
Catmull-Clark subdivision, the polyhedron exclusively consists of quadri-
laterals and its Catmull-Clark limit surface can be pre-computed. Points
of the limit surface are projected onto the target surface and the control
points of the polyhedron are adjusted by approximating the projected
points. An iterative process of alternating subdivisions, projections and
approximations leads to a watertight mesh consisting of untrimmed sur-
face patches matching the given target surface. By attaching an offset
mesh and a far-field mesh, a block-structured volume mesh is obtained,
being well-suited for adaptive flow solvers.

Keywords: modified Catmull-Clark subdivision, B-spline surfaces and
volumes, reparametrization, block-structured volume mesh generation,
computational fluid dynamics.

1 Introduction

Numerical flow simulations require high-quality volume meshes. The generation
of such meshes as well as the construction of the object around or through which
the flow should be simulated can be very difficult and time-consuming. There
is a wide variety of methodologies for the generation of meshes which can be
categorized in terms of the resulting mesh, e.g., triangle/quadrilateral meshes,
tetrahedral/hexahedral meshes or structured/unstructured meshes. Surveys of
these methodologies can for instance be found in [1,2,3].

We have developed a new promising approach for the generation of volume
meshes which can be used for the simulation of flows around given geometries,
extending the ideas presented in [4]. The overall process is illustrated in Fig. 1.
The dashed lines frame the steps we focus on in this paper. Given a target surface
representing the object in the flow, the user only has to construct a simple initial

M. Floater et al. (Eds.): MMCS 2012, LNCS 8177, pp. 425–441, 2014.
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Fig. 1. Process of volume mesh generation

surface polyhedron which should be roughly approximating the target surface.
This is done by defining the coordinates of the control points (= vertices), the
face connectivity and optionally edges which should be treated as creases. Re-
garding the surface mesh generation in the iterative process, the target surface
can be of arbitrary genus. However, the automation of the generation of a volume
mesh based on such a surface mesh is difficult. Our goal is to build up a template
library for recurring geometries, starting with a wing-fuselage configuration and
an airplane engine which are presented in this paper.

For the two-dimensional subdivisions of the surface mesh (iteration step 1),
we use the scheme presented by Catmull and Clark [5] which is applicable to
surfaces of arbitrary genus. Due to the convergence of the Catmull-Clark limit
surface, which is the limit of repeated subdivision, to uniform bi-cubic B-spline
patches, see [5], we get a smooth C2-surface with the exception of points where no
tensor-product topology is given (C1 there). The results of Stam’s analysis of the
subdivision matrix [6] with an extension for modeling creases by de Rose et al. [7]
allow for the pre-calculation of limit points of the surface mesh at each refinement
level (iteration step 2). The limit points can then be used for the approximation
of a given target surface which in our practical applications usually is given as a
trimmed B-spline surface: the Nelder-Mead optimization algorithm [8] is used for
the projection of the limit points onto such a B-spline surface (iteration step 3)
and, subsequently, the projected limit points are approximated to obtain new
surface mesh control points (iteration step 4) by applying the CGLS method,
called CGNR in [9]. The iterative surface meshing process is stopped if the
approximation of the target surface is satisfying.



Reparametrization and Volume Mesh Generation 427

After or during the iterative surface meshing process, a block-structured vol-
ume mesh can be constructed, being attached to the surface mesh. If the itera-
tive process is to be continued afterwards, the Catmull-Clark surface subdivision
rules are replaced by an extension to volume rules. For that purpose, we apply
a combination of the schemes presented by Joy and MacCracken [10] and Bajaj
et al. [11]. The advantage of using a structured mesh for a numerical flow simu-
lation instead of an unstructured one is the computational efficiency regarding
speed and memory requirements. Our volume mesh consists of a body-fitted off-
set mesh and a far-field mesh. It can be converted to a B-spline volume mesh.
Hence, it is possible to apply further mesh refinement by spline evaluation.

For the visualization of our meshes and B-spline surfaces, we have imple-
mented an OpenGL interface which allows for user interaction, e.g., the iterative
surface meshing process is applied step by step by the user such that intermediate
interventions are possible, for instance for mesh smoothing or feature detection.

The rest of the paper is structured as follows: Section 2 gives an overview of
the Catmull-Clark subdivision rules for surfaces and describes why the Catmull-
Clark scheme is the method of choice for our purpose. In Sect. 3, we briefly
explain how points of the limit surface can be calculated and demonstrate how
they are used for the approximation of a target surface given by a B-spline
representation. The results of the iterative surface meshing process depicted in
Fig. 1 are illustrated for an example in Sect. 4. Section 5 describes a method for
the construction of a body-fitted offset mesh, whereas Sect. 6 demonstrates how
a far-field mesh can be attached to the offset.

All numerical computations which are mentioned in this paper are for error
control done in double precision.

2 Background on Catmull-Clark Subdivision

In iteration step 1 of our mesh generation process, see Fig. 1, two-dimensional
Catmull-Clark subdivision [5], extended by the possibility to model creases [7],
is applied to the surface mesh, whereas three-dimensional subdivision can be
applied to the volume mesh. A description of the extension of the Catmull-Clark
subdivision rules to three-dimensional rules, see [10,11], is omitted in this work.

Catmull and Clark published their descriptions of quadratic and cubic sub-
division surfaces in 1978. Contrary to tensor-product splines, their scheme can
be applied to meshes that are not regular rectangular grids. A refinement step
is defined by the following rules:
1. For each face, add a point given by the average of the N face vertices:

F =
1

N

N−1∑
i=0

P i . (1)

2. For each edge, add a point given by a weighted average of the two new
adjacent face points F left, F right and the edge midpoint Ec:

E =
1

4
(F left + 2Ec + F right) . (2)
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3. Move each old vertex to a new position given by a weighted average of the
vertex P , the average F̃ of the new adjacent face points and the average Ẽc

of the adjacent edge midpoints:

P new =
1

N

(
F̃ + 2 Ẽc + (N − 3)P

)
, (3)

where N denotes the valence of P , i.e., the number of edges connected to P .
4. Build the new edges by splitting the old ones and connecting the new face

points to the new adjacent edge points. For one old face with N vertices,
this leads to N new faces instead of the old one.

On the boundary curve or on inner sharp creases, the edge point insertion rule 2
is replaced by the insertion of the edge midpoint, i.e.,

E = Ec (4)

and the vertex recomputation rule 3 is changed to

P new =
1

8
(P left + 6P + P right) , (5)

where P left and P right denote the two boundary/crease vertices adjacent to P .
The two replacement rules originate from the coefficients for midpoint knot inser-
tion for a uniform cubic B-spline curve. Figure 2 illustrates the four subdivision
rules for a simple mesh with one pentagon, one quadrilateral and two triangles.
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Fig. 2. Illustration of the rules of one Catmull-Clark subdivision, left: simple initial
mesh, middle (rules 1-3): insertion of face points (◦), edge points (�) and recomputa-
tion of vertex positions (�), right (rule 4): subdivided mesh after the reconnection of
the points

In our modeling and mesh generation concepts, see [12], we want to end up
with smooth untrimmed B-spline patches. These can be provided by an easily
implementable conversion of the Catmull-Clark limit surface. Hence, this scheme
is the method of choice. We summarize its crucial properties, cf. [13,14]:

– The surfaces can be of arbitrary genus since the subdivision rules can be
carried out to a mesh of arbitrary topological type.
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– After one subdivision, all faces are quadrilaterals.
– Except at extraordinary vertices (vertices of valenceN �= 4), the limit surface

converges to uniform bi-cubic B-spline patches. Hence, the surface is C2-
continuous except at extraordinary vertices where it still is C1-continuous.

– The number of extraordinary vertices is fixed after the first subdivision so
that non-regular regions are scaled down with each further subdivision. This
is illustrated in Fig. 4.

– After two subdivisions, each face can contain one extraordinary vertex at
most. This allows us to easily compute points of the Catmull-Clark limit
surface, see Sect. 3.

– The subdivision rules can be modified in such a way that they generate in-
finitely sharp as well as semi-sharp creases, i.e., creases for which the sharp-
ness can vary from zero (meaning smooth) to infinite, see de Rose et al. [7].

Figure 3 shows an example for the application of the modified Catmull-Clark sub-
division scheme. Using a simple initial polyhedron for modeling a wing-fuselage
configuration (left), we end up with a smooth surface mesh after only three
subdivisions (right). The bold edges are marked as sharp creases for the initial
polyhedron and stay sharp during the subdivision process.

Fig. 3. Initial polyhedron (left) and polyhedron after three subdivisions (right) using
the modified Catmull-Clark method

3 Limit Points of Catmull-Clark Subdivision Surfaces,
Projection onto B-Spline Surfaces and Approximation

Stam [6] gave an algorithm for evaluating the Catmull-Clark scheme and its
derivatives at arbitrary points. He chose an ordering for the control vertices
such that the main part of the subdivision matrix has a cyclical structure. Hence,
the discrete Fourier transform can be used to compute its eigenstructure. For
the modified rules given in [7], this analysis is very technical. Details of the
investigation and the implementation can be found in [15].

Due to the existence of extraordinary points, a surface mesh cannot be eval-
uated everywhere at each subdivision level by well-known B-spline algorithms



430 M. Rom and K.-H. Brakhage

because the control vertex structure near an extraordinary point is not a simple
rectangular grid. Hence, all faces that contain extraordinary vertices cannot be
evaluated as uniform B-splines. For our mesh, we assume that each face is a
quadrilateral one and contains one extraordinary vertex at most, which both is
fulfilled after two subdivisions at the latest. Figure 4 shows that the region in
which the surface cannot be evaluated with standard methods (black) is scaled
down with every subdivision.

Fig. 4. Behavior near an extraordinary vertex of valence N = 3 when subdividing

Since we can evaluate the surface away from extraordinary vertices as a regular
bi-cubic B-spline, the remaining problem is to demonstrate how to evaluate
a patch corresponding to a face with just one extraordinary vertex, such as
the black region shown in Fig. 4. We introduce parameter values and define a
surface patch x(u, v) over the unit square [0, 1]× [0, 1] such that the point x(0, 0)
corresponds to the extraordinary vertex. We can evaluate the surface at such a
vertex (x(0, 0)) as a linear combination of the circumfluent vertices. Additionally,
we can evaluate x(u, 1) for u ∈ [0, 1] and x(1, v) for v ∈ [0, 1] as regular B-spline
part. The remaining problem is the evaluation of x(u, v) in the rest of the unit
square. This problem is solved by doing just enough subdivisions such that (u, v)
corresponds to a regular part at that stage to do the evaluation as a regular bi-
cubic B-spline. Applying this technique enables us to pre-compute points of the
Catmull-Clark limit surface.

3.1 Catmull-Clark Limit Surface

We can pre-compute points Li of the Catmull-Clark limit surface, see iteration
step 2 in Fig. 1, by using Stam’s above-mentioned algorithm for evaluating the
Catmull-Clark scheme at arbitrary points. For each face, we determine nine limit
points as illustrated in Fig. 5 in which the vertex with the index 0 represents
an extraordinary vertex. The four limit points corresponding to the face vertices
P 0, . . . ,P 3 are given by

L0 = x(0, 0), L1 = x(0, 1), L2 = x(1, 1), L3 = x(1, 0) , (6)

the four points corresponding to the edges by

L4 = x

(
1

2
, 1

)
, L5 = x

(
1,

1

2

)
, L6 = x

(
1

2
, 0

)
, L7 = x

(
0,

1

2

)
(7)
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Fig. 5. Example for the computation of nine limit points for a face with one extraor-
dinary vertex (index 0), left: six limit points can be calculated immediately, right: the
remaining three limit points can be calculated after one subdivision which is only done
implicitly for the evaluation

and the one corresponding to the face by

L8 = x

(
1

2
,
1

2

)
. (8)

The six limit points marked in the left part of Fig. 5 can be calculated imme-
diately since they belong to x(0, 0), x(u, 1) for u ∈ [0, 1] or x(1, v) for v ∈ [0, 1],
see above. The computation of the remaining three limit points requires one sub-
division of the mesh so that the new vertices with the indices 6, 7 and 8 belong
to x(u, 1) for u ∈ [0, 1] or x(1, v) for v ∈ [0, 1] at the new refinement level. For
the whole mesh, the number of limit points sums up to the number of vertices
plus the number of faces and edges of the current mesh. All the computations
can be applied without explicitly subdividing and lead to coefficients for each
vertex participating in the limit point computation. Hence, the limit points Li

can be written as a linear combination

Li = cTi P i , (9)

where we have collected the involved vertices P j in the vicinity of Li in the
vector P i and the weights cj of the associated vertices P j in the vector ci. All
coefficients cj are calculated prior to the first iteration and stored such that they
do not have to be computed again for later iterations. Details of the computation
and the choice of the associated vertices P j can be found in [15]. The vertex and
edge limit points are only calculated if they have not already been computed
by considering an adjacent face before. If a control point belongs to a special
edge, i.e., a crease, we need other rules for the evaluation. Therefore, we use our
extension [15] in these cases.

3.2 Projection onto B-Spline Surfaces

Given a surface s, we can project a limit point Li onto it: Li → Ls
i , see iteration

step 3 in Fig. 1. Usually, the surface s or a patch of it is given by a B-spline
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representation defined by

x(u, v) =

m−p∑
r=0

n−q∑
s=0

yr,sNr,p,U (u)Ns,q,V (v) , (10)

where (m − p + 1) × (n − q + 1) gives the number of control points yr,s and
p and q denote the order of the B-spline basis functions Nr,p,U (u) and Ns,q,V (v),
respectively. Together with knot vectors U = (ur)

m
r=0 and V = (vs)

n
s=0, we can

evaluate x(u, v) and the partial derivatives xu(u, v) and xv(u, v) by applying
de Boor’s algorithm [16]. Given such a representation, we search for parameter
values uLi and vLi for each limit point Li such that

‖x(uLi , vLi)−Li‖2 = min
u,v

‖x(u, v)−Li‖2 . (11)

To solve this distance minimization problem, we use the Nelder-Mead optimiza-
tion algorithm [8] which is simple to understand and to implement. In addition,
it does not need any derivatives, is very robust and can be adapted to the use
with other than B-spline surfaces easily. For each limit point, a simplex, which in
this two-dimensional case is a triangle in (u, v)-space, is built around the initial
values (u0, v0) which have to be set once prior to the first projection. Due to
the robustness of the algorithm, an inaccurate choice of initial values does not
destroy the convergence of the algorithm. For each further projection, we can
calculate far better initial values by taking averages of values from the previous
projection. In addition, the relation between the B-spline surface and the vertices
of the initial polyhedron has to be defined once if the B-spline representation
contains more than one patch. The patch correlation can for instance be set
depending on ranges of coordinate values in a particular direction.

In the first step of the Nelder-Mead algorithm, the distances dj = ‖x(uj , vj)−
Li‖2, j = 0, 1, 2, between the B-spline surface points x(uj , vj), which are calcu-
lated for the triangle points zj = (uj , vj)

T , and the limit point Li are computed.
This determines the best, the second-best and the worst point of the triangle. De-
pending on this classification, the triangle is transformed and moved by a reflec-
tion, expansion or contraction of a single triangle point, or it is shrinked. The next
iteration again starts with the calculation of the distances dj . Special care has to
be taken at the patch boundaries of the target surface. Depending on the type of
such a boundary, which can for instance be a border (e.g., at a symmetry plane),
a transition to another patch or periodic, the Nelder-Mead triangle has to be ad-
justed when it approaches a boundary. Another issue is the occurrence of sharp
crease curves on the B-spline surface: in the first projection step, the points which
are projected the closest to such a curve are moved to match the curve by reset-
ting the corresponding parameter value u or v to the value of the curve. For further
projections, this parameter value is fixed. Edge points, being inserted by later sub-
divisions between two vertices which are corresponding to a fixed curve, are also
set to lie on that curve.

The algorithm is terminated if all three side lengths of the Nelder-Mead tri-
angle are smaller than a threshold. The finer the mesh is, i.e., the smaller the
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distances between the vertices and, hence, the limit points are, the smaller the
threshold value has to be. However, since a prediction for a good choice of the
threshold value is difficult, we have set it to 10−10. The additional computational
cost compared to larger values is negligible due to the good initial values for u
and v.

3.3 Approximation of the Target Surface

Finally, we approximate the projected limit points Ls
i = x(uLi , vLi) to obtain

new control point positions with better approximation properties for the next
iteration loop. Using (9), we get the equation

cTi P i = Ls
i + ei (12)

for a single point, where ei is the error vector resulting from the approximation.
Since we want to minimize the approximation error, we rewrite the problem for
the whole mesh in the least-squares matrix-vector formulation

‖e‖2 = ‖CP −Ls‖2 → min
P

, (13)

where all coefficients are collected in the matrix C, all control points in the
vector P and all projected limit points in the vector Ls. Due to computing a
limit point for each vertex, each edge and each face, we have more limit points
and consequentially more projection points than vertices. Hence, we end up with
an over-determined sparse linear system for approximation, see iteration step
4 in Fig. 1. We apply the conjugate gradient method for linear least squares
(CGLS) [9] which for a matrix A ∈ IRm×n, m ≥ n, with full rank solves the
normal equations ATAx = AT b while taking care of the problems that ATA
often is badly conditioned and that for a sparse A usually ATA is not sparse.
The full rank of the coefficient matrix C is guaranteed since we have nine limit
points for each quadrilateral face. The cost for one CGLS step is linear in the
number of control points. The CGLS algorithm is stopped if the residual of the
normal equations, for the iteration l given by ‖s(l)‖2 = ‖ATb − ATAx(l)‖2, is
smaller than a threshold ε. The 2-norm condition number of CTC, evaluated
by Matlab, is always approximately 300, independent of the meshing problem
and the current iteration of the surface mesh generation process. Hence, CTC is
well-conditioned such that we expect a fast convergence without preconditioning
and set ε to the rather small value 10−6.

3.4 Iterative Surface Meshing Process: Summary

With #V denoting the number of vertices, #F the number of faces and #E
the number of edges, the iterative surface meshing process regarding the points
involved in the procedure can be formulated as follows:

1. The subdivision which is applied to the surface mesh control points (= ver-
tices) P

(k)
i of subdivision level k, i = 0, . . . ,#Vk − 1, leads to a refined



434 M. Rom and K.-H. Brakhage

mesh consisting of the vertices P
(k+1)
i , i = 0, . . . ,#Vk +#Fk +#Ek − 1 =

0, . . . ,#Vk+1 − 1.
2. The evaluation of the Catmull-Clark limit surface as done in this work results

in the limit points L
(k+1)
i , i = 0, . . . ,#Vk+1 +#Fk+1 +#Ek+1 − 1.

3. The projection of the limit points onto the target surface leads to the pro-
jected limit points L

s,(k+1)
i , i = 0, . . . ,#Vk+1 +#Fk+1 +#Ek+1 − 1.

4. By approximating the target surface, the recomputed surface mesh vertices
P̃

(k+1)

i , i = 0, . . . ,#Vk+1 − 1 are obtained. These are the P i for the next
iteration loop.

4 Results of the Iterative Surface Meshing Process

From the sub-project High Reynolds Number Aero-Structural Dynamics (HIRE-
NASD) of the collaborative research center SFB 401 Flow Modulation and Fluid-
Structure Interaction at Airplane Wings at RWTH Aachen, see [17], we have
a B-spline surface representing a wing-fuselage configuration. This is the gray
surface depicted in Fig. 6. It consists of three patches: the simplified fuselage,
the wing and the wing tip. An IGES file for this geometry can be found on
http://www.igpm.rwth-aachen.de/brakhage/SFBmodel.

The polyhedron surrounding the surface has been constructed manually as a
starting point for the generation of a surface mesh. It consists of quadrilaterals
exclusively. Since it contains faces with more than one extraordinary vertex,
the polyhedron has to be subdivided once prior to the first evaluation of the
Catmull-Clark limit surface, as described above. The bold edges are marked to
be sharp creases.

In a first step, we project the vertices of the initial polyhedron directly onto
the B-spline surface to improve the initial polyhedron. After that, the iterative
surface meshing process according to Fig. 1 is started. The result after two itera-
tions is depicted in Fig. 7. Already at this stage, the limit surface of the mesh well
matches the given B-spline surface: the average and maximum distance between
the projected limit points of iteration step 3 and the corresponding limit points
which can be computed for the control mesh shown in Fig. 7, which has been
obtained by iteration step 4, are about 5.89 · 10−5 and 9.33 · 10−4, respectively.
For comparison: the wing span is 1.29 and the length of the fuselage 1.63.

The convergence behavior of the overall process can be evaluated by comput-
ing the maximum of the distances between the limit points of iteration step 2 and
the B-spline surface points of iteration step 3. Hence, for the current subdivision
level k, we define the error

e(k) = max
i

‖Ls,(k)
i −L

(k)
i ‖2 = max

i
‖x(u

L
(k)
i

, v
L

(k)
i

)−L
(k)
i ‖2 . (14)

For k > 1, the order of convergence p can then be estimated by

(hp)k−1 =
e(k)

e(1)
⇔ p =

log

((
e(k)

e(1)

) 1
k−1

)
log (h)

. (15)
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For the Catmull-Clark method, h is approximately 0.5. The B-spline patch for the
wing was modeled to be C2-continuous and afterwards a smoothing was applied.
Hence, we expect a numerical order of convergence of p � 2 for the wing. We
get the errors e(1) = 3.01 · 10−3 and e(6) = 1.59 · 10−7, leading to p = 2.84.
The B-spline patch for the fuselage also is C2-continuous, but no smoothing has
been used in this case. Hence, the expectation in this case is p ≈ 2. The fuselage
errors are e(1) = 5.75 · 10−3 and e(6) = 1.89 · 10−6 such that p = 2.31.

Instead of applying an iterative process, the initial polyhedron could be sub-
divided several times such that the projection of limit points and the successive
approximation both would only be done once. However, the projection results
are of much better quality using the iterative process since the initial values
for u and v are improved with each further projection, see above. In addition,
the subdivision in iteration step 1 leads to a smoothing of the approximated
mesh obtained by the previous loop.

Fig. 6. Wing-fuselage configuration: given B-spline surface and manually constructed
initial template polyhedron

Fig. 7. Wing-fuselage configuration: given B-spline surface and surface mesh after two
process iterations
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5 Construction of a Body-Fitted Offset Mesh

So far, we have shown how to construct a surface mesh matching a given sur-
face which for a flow simulation represents an object in the flow field. For the
numerical simulation of that flow field, we need a volume mesh. We demonstrate
our method for the construction of such a volume mesh using the example of the
wing-fuselage configuration introduced in Sect. 4.

Viscous flows require a particularly high mesh quality near the object to
resolve the boundary layer that may become very thin, e.g., for high Reynolds
number flows. Hence, in a first step of our volume mesh generation, we construct
a body-fitted offset mesh. The volumetric cells of that offset mesh should be as
orthogonal to the surface as possible. The first idea to construct the offset would
be to introduce one offset mesh point for each vertex of the surface mesh by
marching away from the surface mesh along the vertex normal, which can be
computed as the average or a weighted average of the adjacent face normals.
This would lead to bad volumetric cells in concave regions of the surface, e.g.,
at the curve connecting the wing to the fuselage, because the angles between
the vertex normals and the surface are approximately 45 degrees. Instead, we
generate the offset cells in layers along concave curves. An edge is detected to
belong to a concave curve if the angle between the normal vector of one of the
two edge-adjacent faces and the vector pointing from the edge midpoint to the
midpoint of the other adjacent face is smaller than a threshold, e.g., 60 degrees.
The cells along a concave curve are generated by inserting one vertex, three edges
and three faces for each concave curve vertex of valence 4. If a concave curve
contains extraordinary vertices, we stop our algorithm and apply the vertex
normal approach for the generation of the remaining cells which successively are
attached to previously constructed cells.

For the wing-fuselage configuration, we can construct the offset mesh for in-
stance after the first iteration of approximating the given surface. The resulting
offset mesh is depicted in Fig. 8 in a translucent view. If the iterative surface
meshing process is continued after the offset mesh generation, two-dimensional
subdivision in iteration step 1 is replaced by three-dimensional subdivision.

Fig. 8. Wing-fuselage configuration: offset mesh in a translucent view
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6 Construction of a Far-Field Mesh

In addition to the offset mesh, the numerical simulation of the flow field around
an object requires a far-field mesh. The intermediate and final results of the
generation of a far-field mesh for the wing-fuselage configuration are illustrated
in Fig. 9. Since we want to end up with a block-structured B-spline volume
mesh, the first step is to partition the outer surface of the offset mesh into
regular regions without extraordinary vertices, providing a starting point for the
construction of the far-field blocks. This is done automatically. For our wing-
fuselage configuration, the resulting 15 blocks are depicted in Fig. 9 (i). The
bold lines mark the block borders.

The user can give the order in which the far-field blocks are constructed, define
the coordinates of the outer block corners and decide whether a new block gets
a new block number or is merged to its underlying block.

The first eight far-field blocks could for instance be attached to the fuselage
blocks 1-8 along the symmetry plane, see Fig. 9 (ii). The user can decide how
many layers of cells are to be created (in this case four) and whether the ver-
tices of each layer are computed by applying transfinite interpolation, using an
equidistant spacing or using the spacing of an adjacent block. Each outer offset
mesh vertex is connected to its corresponding outer far-field vertex by computing
the parabola or the straight line between these two points. For the uniqueness
of the parabola calculation, we use the normal vector of the offset vertex.

The next step of the far-field mesh construction is filling the dent at the
fuselage blocks 9-14 by cells, resulting in the mesh depicted in Fig. 9 (iii). The
dent-filling cells get the same block number as their adjacent offset cells. This
necessitates a change of the first eight far-field blocks: the first layer of cells of
each of these eight blocks is allocated to its underlying offset block. Hence, all
offset blocks which have been connected to far-field blocks so far consist of two
layers of cells and all far-field blocks of three layers of cells. The reallocation of
cell layers to underlying offset blocks due to filling dents is done automatically.

Then, four new blocks around the wing are attached to the blocks 11-14. Since
these blocks contain concave curves, we have to treat them as a special case: the
inner patch to which the block is to be attached is divided into two parts along
the concave curve. The offset cells at the wing are added to the four new blocks.
Together with one layer of far-field cells at the wing tip which belong to the same
block as their underlying offset cells (block 15) and two blocks connected to the
fuselage at the blocks 9 and 10 we obtain the mesh illustrated in Fig. 9 (iv).

The next eight blocks nearly complete the far-field mesh, as Fig. 9 (v) shows.
We just need another three blocks such that the outer surface of the far-field
mesh has a planar or partly even Cartesian structure, see Fig. 9 (vi). This makes
the extension of the far-field mesh with further blocks easy and provides optimal
mesh quality. Figure 10 shows the inner surface mesh together with a selection
of volume mesh blocks to give an idea of the block partitioning inside the volume
mesh. The whole mesh generation procedure, including the iterative surface mesh
generation, takes less than a minute on a usual office workstation.
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(i) (ii)

(iii) (iv)

(v) (vi)

Fig. 9. Volume mesh generation: (i) offset mesh after partition into regular regions (15
blocks), (ii) 23 blocks, (iii) dent-filling, (iv) 29 blocks, (v) 37 blocks, (vi) 40 blocks

Fig. 10. Inner surface mesh and selected offset and far-field blocks
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The final step is the conversion of the whole mesh into a B-spline mesh. Even
though the extraordinary vertices of the surface mesh have become extraordinary
edges in the volume mesh, resulting in C0-continuity away from the inner surface,
the meshes are suitable for the purpose of adaptive flow simulations since a nested
mesh hierarchy can be created. For our flow solver Quadflow [18], this is required
due to the adaptation strategy based on a multiscale analysis, see [19]. Of course,
the usage of our meshes with other adaptive flow solvers after a conversion of
the data structure is imaginable.

Since the construction of a far-field mesh needs some user input, the automa-
tion is difficult. Our goal is to build up a library of templates for recurring
geometries like the wing-fuselage configuration and to provide tools for the cre-
ation of single blocks or cells as demonstrated above by creating normal blocks,
blocks at patches with concave curves or dent-filling cells.

Another example for which we have constructed a template is the airplane
engine depicted in Fig. 11 (i). The same techniques as the ones described above
have been applied for the generation of an offset mesh as well as a far-field mesh.
The final volume mesh contains 15 blocks. Figure 11 (ii) shows a selection of
these blocks.

(i) (ii)

Fig. 11. Template for an airplane engine: (i) surface mesh, (ii) selected blocks of the
volume mesh

7 Conclusion and Future Work

We have presented a fast semi-automatic procedure for the generation of block-
structured volume meshes with an inner surface mesh well matching a given tar-
get surface. These volume meshes are of high quality regarding the smoothness of
the inner surface, the cell orthogonality (especially for the boundary-conforming
offset mesh) and the suitability for (adaptive) flow solvers. Most of the procedure
operates automatically, only an initial polyhedron has to be generated manually,
a few parameters according to the given B-spline surface have to be set and the
construction of a far-field volume mesh needs user input regarding the block
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sizes, the shape and spacing of the blocks and the (re)allocation of cell layers to
other blocks. We use Catmull-Clark surface subdivision rules, modified to allow
for the modeling of creases, to produce smooth surface meshes and an extension
of the Catmull-Clark rules to volumes for the refinement of the attached volume
mesh. Points of the inner Catmull-Clark limit surface can be pre-computed after
each subdivision and projected onto a given B-spline surface. New control points
of the mesh can then be obtained by approximating the projected limit points.
This linear least-squares problem is solved by applying the CGLS method. The
extension to a volume mesh is performed in two steps: at first a body-fitted
offset mesh with high-quality volumetric cells is constructed automatically to
resolve the boundary layer in the case of a viscous flow simulation. Addition-
ally, a far-field mesh is attached to the offset mesh. Defining a few parameters,
the far-field mesh can be constructed by choosing from template geometries,
e.g., a wing-fuselage configuration, or single blocks can be built from a selection
of template blocks, e.g., a block with a concave curve. Having these templates
leads to a minimization of user input and, hence, allows for a fast generation of
high-quality block-structured volume meshes.

Since experimental data from wind tunnel readings are available for the wing-
fuselage configuration presented throughout the paper (HIRENASD project [17])
and a wing with a winglet (follow-up project Aero-Structural Dynamics Methods
for Airplane Design (ASDMAD) [20], a cooperation with Airbus), our mesh
generation process can be evaluated by comparing the flow simulation results to
these data. For simulations of flows around other geometries, we want to extend
the template library for the generation of volume mehses.
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Abstract. A rational C1 Hermite interpolation scheme on the sphere
is introduced, improving the method proposed in [15]. On the base of
a careful asymptotic analysis, a new selection of the free parameters is
suggested, leading to a fourth order approximation scheme. The resulting
curve is also endowed with a C1 rational rotation-minimizing directed
frame, which interpolates prescribed end orientations. The spline exten-
sion of the scheme is investigated. This is useful, for instance, in the
description of smoothly varying camera motions, when a fixed target ob-
ject is being imaged. Several examples are considered in order to show
the performance of the proposed approach.

Keywords: Camera–orientation, spherical motion, rotation–minimizing
frame, directed frame, Hermite interpolation.

1 Introduction

Camera planning is a very active applicative research area due to its connections
to several fields such as cinematography [5], robotics [1] and also medical prac-
tice of endoscopic surgery [2]. In particular, applications where it is required that
the camera moves along a spatial path while imaging a stationary target object
are of great interest. The camera orientation can be prescribed by specifying the
variation of an orthonormal directed frame embedded within the camera, which
means that the instantaneous direction of one of its orientation vectors is given
by the optical axis – the straight line joining the origin of a fixed coordinate sys-
tem and the corresponding point on the curve describing the path of the camera,
typically its center of mass. Furthermore, in order to avoid unnecessary rotations
of the frame in the image plane which is orthogonal to the optical axis, we are
interested in camera orientation having a Rotation–Minimizing Directed Frame
(RMDF) associated to its path. So we deal with constrained rigid body motions.
For simplicity, we deal only with spherical motions. Observe however that the
control of the camera distance from the imaged object can be easily added later
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as a separated task by using the spherical motion as polar projection of a spatial
camera motion on the unit sphere ([16]). From an analytic point of view, we
are interested in finding a rational form both of a curve o and of the associated
RMDF ej , j = 1, 2, 3. Two different interpolation schemes for prescribing this
kind of rigid body motions have already been developed in [9] and in [15], either
using the quaternion algebra, which leads to a compact mathematical represen-
tation of the considered motions, and defining the spherical rational curve as the
polar indicatrix on the unit sphere of a polynomial space curve with polynomial
distance from the origin of the reference system. The algorithm developed in [9]
produces a rational interpolant of degree 4 with an associated RMDF of degree
8. Unfortunately, it is not fully satisfactory because the considered data are not
completely symmetric. In [15], this problem is overcome by raising the degree of
the rational curve to 8 which is also the degree of the RMDF. The input data
considered in such an approach are the end camera positions, orientations and
angular velocities, which are data ensuring the possibility of defining a glob-
ally C1 rigid body motion when a sequence of analogous data are assigned and
the method is used locally. A suitable rational distance function interpolating
assigned end distances is defined in [16] and combined to the above scheme in
order to extend it to general spatial motions.

The theory of directed frames and in particular of RMDFs on a space curve
has been developed in [7] where it is shown that it can be derived by a suit-
able reformulation of adapted frames and specifically of Rotation–Minimizing
Adapted Frames (RMAFs), previously introduced in the literature to control
different kind of rigid body motions. As a consequence, we observe that all the
important theoretical results proved in the literature for RMAFs can be suit-
ably re–read in terms of RMDFs. Since it was proved in [13] that there are no
non–planar polynomial curves of degree 3 with rational RMAFs, quintics were
studied in [8] and specific algebraic conditions on their quaternion coefficients,
ensuring the rationality of the associated RMAFs, were derived – see also [12]
for a full classification of this family of quintics. Thus, these results can also be
interpreted in terms of polynomial curves with rational RMDFs, respectively of
degree 2 and 4 and having rational polar indicatrices on the unit sphere of the
same degree. Unfortunately, degree 4 rational spherical curves are not flexible
enough to deal with a fully symmetric C1 Hermite interpolation problem. On
the other hand, even if in [11] a polynomial divisibility condition was obtained
for expressing the rationality requirement for the RMAFs associated to a poly-
nomial space curve of any degree, a constructive characterization of degree 7
polynomial curves with rational RMAFs (which would correspond also to that
of polynomial space curves of degree 6 with rational RMDFs) is a rather diffi-
cult task and it is not yet available in the literature. In [15], rational spherical
curves of degree 8, having a rotation–minimizing directed frame coincident with
its (directed) Euler–Rodrigues Frame (ERF), which is rational by definition [4],
were used. Conditions ensuring that the ERF is rotation–minimizing are eas-
ier to be obtained and actually they have been first derived in [4] and almost
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simultaneously, but independently, rewritten in [15] and in [10], in quaternion
and Hopf map form respectively.

The aim of this paper is to improve the performance of the method intro-
duced in [15] and to develop a theoretical analysis of its approximation power.
In particular, we reduce the number of the interpolants produced by the previ-
ous method from four to two, we improve the related free parameter selection
strategy and we test the C1 spline implementation of the scheme. Furthermore
we investigate both theoretically and numerically the approximation power of
the modified scheme, proving that in general it has fourth order. The presented
numerical results aim to show the approximation power of the scheme.

Observe that the considered interpolation problem has two degrees of freedom
and, for each selection of them, it in general admits four distinct solutions. Since
the beginning, numerical experiments indicated that it is necessary to suitably
select the two free parameters in order to get at least one interpolant with
a reasonable shape (even for reasonable input data). So in [15] a preliminary
choice was proposed which is easy to implement and guarantees the possibility
to get a good shape of the interpolant. The new choice of the free parameters
given in this paper is based on asymptotic analysis. It keeps the simplicity of
the older scheme and it allows us to get even better shapes for some input data.

The paper is organized as follows. In Section 2 we first summarize the main
steps for deriving our scheme with the help of quaternion algebra, and then
Section 3 discusses in detail the two free parameter selection, proposing new
formulation for both of them. Section 4 is devoted to the asymptotic analysis
study while in Section 5 we first introduce the extension of the scheme to splines
and then we show the numerical results. Section 6 concludes the paper.

2 The Spherical Rational Interpolation Scheme

In this section we briefly summarize the problem and the scheme proposed in
[15]. The main problem is to determine a rational curve o : [0, 1] → S2 with an
associated rational RMDF,

{ei}3i=1 , ei : [0, 1] → IR3, i = 1, 2, 3,

such that the following interpolation conditions are fulfilled,

e1(0) = oi, e2(0) = vi, e3(0) = zi, ω(0) = ωi,

e1(1) = of , e2(1) = vf , e3(1) = zf , ω(1) = ωf , (1)

with {oi,vi, zi} and {of ,vf , zf} denoting assigned end frames and ωi and ωf

the corresponding assigned end angular velocities. Note that

e1 ≡ o ,

since the frame is directed, and also

ω(t) · e1(t) ≡ 0, t ∈ [0, 1], (2)
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since the frame is rotation-minimizing too. Here ω denotes the angular velocity
vector defined by

e′j(t) = ω(t)× ej(t), j = 1, 2, 3. (3)

Observe that the condition (2) implies the following compatibility conditions on
the end angular velocity input data,

ωi · oi = 0 , ωf · of = 0 ,

and also
|ω(t)| ≡ |o′(t)| = σ(t) ,

where, as usual, σ denotes the parametric speed of the curve.
In [15], the curve o = e1 and the frame are defined as

ej(t) =
A(t) ij A∗(t)

A(t)A∗(t)
, j = 1, 2, 3,

with ij , j = 1, 2, 3, denoting a triple of mutually orthogonal right–handed unit
vectors and A a quaternion polynomial of degree 4 which can be suitably repre-
sented in Bernstein-Bézier form, [6], i.e.,

A(t) =

4∑
i=0

Ai b
4
i (t) ,

where b4i , i = 0, . . . , 4 denote the Bernstein basis of the space of polynomials of
degree less or equal to 4. Thus both the curve and the frame are rational of
degree 8.

The end frame interpolation conditions given in (1) then imply

A0 = λi Ui, A4 = λf Uf , (4)

where λi, λf > 0 are free parameters and

Ui i1 U∗
i = oi, Ui i2 U∗

i = vi, Ui i3 U∗
i = zi,

Uf i1 U∗
f = of , Uf i2 U∗

f = vf , Uf i3 U∗
f = zf .

Note that the unit quaternions Ui and Uf satisfying the above conditions are
unique up to their sign (see the Appendix in [15] for their analytic expressions),
so four pairs of solutions are available for (Ui , Uf ), i.e.,

(Ûi , Ûf ) , (−Ûi , Ûf ) , (Ûi , −Ûf ) , (−Ûi , −Ûf) . (5)

The interpolation of the angular velocities further implies

A1 =
λi
8
(ωi + μi)Ui, A3 =

λf
8

(−ωf + μf

)
Uf , (6)
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where μi and μf are two additional free parameters.
Introducing the unit quaternion

H =

(
hs
h

)
= Ui i1 U∗

f , (7)

considering rotation-minimizing conditions and following [15], we are able to
express the central quaternion coefficient A2 with the help of

D = (h · ωi)(h · ωf ) + h2s(ωi · ωf ) + hs[ωi,h,ωf ] , (8)

where [·, ·, ·] is the standard mixed product. We end up with

A2 = a0 A0 + a1 A1 + a3 A3 + a4 A4 , (9)

where the coefficients aj , j = 0, 1, 3, 4, are defined by

a0 = − (hsμi −h·ωi)
2

2D , a1 = 4hs

D (hsμi − h · ωi) ,

a4 = − (hsμf −h·ωf )
2

2D , a3 = 4hs

D (hsμf − h · ωf ) .

From the requirement that the directed ERF is a rotation–minimizing frame, we
obtain also

8 hs = − (μi μf hs − h · (μf ωi + μi ωf )− ((ωi · ωf )hs + [ωi,h,ωf ])) . (10)

If we define
μ =

μf

μi
, (11)

we finally get a quadratic equation for μi,

(μhs)μ
2
i − (μ di + df )μi + (8 hs − dc − ωc hs) = 0, (12)

where for brevity we have put

di = h · ωi, df = h · ωf , dc = [ωi ,h ,ωf ], ωc = ωi · ωf .

In order to have a real solution for μi in (12), the positivity of its discriminant
Δ has to be imposed, i.e.,

Δ = Δ(μ) = d2i μ
2 + 2μ(di df − 2 hs(8 hs − dc − ωc hs)) + d2f .

The above expression is a quadratic polynomial in μ which for some data can
be positive on the whole real axis, but for others it is positive only on specific
ranges. However we may observe that when the discriminant is negative, simply
reversing the sign of μ makes it positive. This was actually the strategy adopted
in [15].

Thus we have proved the following lemma.
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Lemma 1. For any set of data, provided that D in (8) does not vanish, and
for any chosen μ, such that Δ(μ) > 0, there always exist two admissible pairs
(μi, μf ) satisfying (11) and solving (10).

There are still two free remaining (positive) parameters λi and λf occurring in
(4) to be determined. However, as rational forms are considered, one of them, for
instance λi, can be assumed to be equal to 1 without loss of generality. Hence,
we can conclude that the scheme has two free parameters in total, the positive
λf (denoted in the following just as λ) and the real μ introduced in (11).

Remark 1. Our choice of using curves and frames of degree eight allows us to
always find a solution to the considered interpolation problem, but it gives two
free parameters that have to be reasonably determined. On the other hand, it
was already noted in [15] that degree reduction to six for both the curve and the
frame is not possible in general, unless C1 continuity is relaxed to G1 continuity.

Actually, the numerical experiments have clearly suggested that, in order to get
plausible shapes, the following additional condition, which was already intro-
duced in [14], has to be fulfilled,

Ui · Uf > 0 . (13)

Observe that such a choice is also confirmed by the developed asymptotic analysis
of the scheme reported in Section 4. Hence the above requirement implies that
the method, for each admissible choice of the parameters λ and μ, produces
only two distinct interpolating curves. It might look like that there are four
distinct solutions, since there are two different pairs of solutions for (Ui , Uf ) in
(5) fulfilling (13) and, for each of them, two admissible pairs (μi, μf ) verifying
(11) and solving (10) exist. However, we observe that the coefficients in (10) do
not change when the signs of Ui and Uf are both reversed. Consequently, (4),
(6) and (9) imply that the curve and the frame produced by the scheme do not
change.

3 Selection of Free Parameters

In order to make the presented procedure automatic and also to get a solution
with a reasonable shape, a strategy for fixing the free parameters λ and μ has
to be developed.

In [15] these parameters were determined according to the possibility of degree
reduction when the data allows it. The choice for μ was proposed as

μ =
2hs + h · ωf

2hs + h · ωi
(14)

which is assumed to be equal to 1 if both the numerator and the denominator
in the above expression vanish and is equal to +∞ if only the denominator
vanishes. Furthermore, as mentioned in the previous section, the sign of μ could
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be reversed to fulfill the positivity of the discriminant. The other parameter (λ)
was set to

λ =

√
|ωi|
|ωf |

. (15)

Here we propose a different selection of λ and μ, which gives better results
confirmed by the numerical experiments. This choice of μ makes the algorithm
also more robust when (14) is not directly usable. Indeed, in such cases, instead of
reversing the sign of μ, we set μ = μ1/2, where μ1 and μ2 are the real solutions of
the quadratic equation Δ(μ) = 0 and |μ1| < |μ2|. Such a selection was suggested
by the observation that reversing the sign of μ was producing non-satisfactory
results in some experiments and hence the new choice keeps the sign given by
(14).

Concerning the parameter λ, we propose

λ = μ2 |μi + ωi|2
|μf + ωf |2

, (16)

which is preferable than the choice in (15) since it can produce a significant
reduction of the approximation error. The robustness of such a selection is en-
forced by the analysis developed in the next section, where it is proved that
it guarantees the fourth approximation order of the scheme when the data are
sampled from a general smooth analytic curve.

4 Asymptotic Analysis

LetX : [a , b] → S2 be a smooth assigned analytic curve on the unit sphere which
can also be expressed in terms of its arc length s, that is X = X(s), s ∈ [0 , L],
where L is the total curve length. This simplifies the analysis due to Ẋ·Ẍ ≡ 0 and
X·Ẋ ≡ 0, where the upper dot denotes derivation with respect to the arc–length.
Let us further denote by Ej(s), j = 1, 2, 3, an associated directed rotation–
minimizing frame, with an usual assumption X(s) = E1(s). We are interested
in establishing how the curve on the unit sphere o(t), t ∈ [0 , 1] produced by
our method is capable to approximate the arc with infinitesimal arc–length Δs
on the curve X(s), s ∈ [0, Δs] when Δs → 0, assuming that the data for our
algorithm are sampled from the end points of the arc. More precisely, assuming
that the polar torsion [7] of the reference curveX doesn’t vanish at s = 0, we are
interested in proving that for each t ∈ [0 , 1], the difference vector o(t)−X(tΔs)
belongs to O(Δs4), where

X(tΔs) =
3∑

j=0

djX

djs
(0)tj

Δsj

j!
+O(Δs4).

Then the following input data for the symbolic implementation of our algo-
rithm are assumed,

oi = X(0) , vi = (0, cos θ, sin θ)T , zi = oi × vi , ωi = ΔsX(0)× Ẋ(0),

of = X(Δs) , vf = E2(Δs) , zf = of × vf , ωf = ΔsX(Δs) × Ẋ(Δs) ,
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where θ is a free angular parameter which allows us to specify arbitrarily any
admissible orientation of E2(0) (and, consequently, of E3(0)). We note that the
angular velocities ωi and ωf are obtained by multiplying both the extreme
angular velocities of X with respect to the arc–length by the factor Δs, because
in the algorithm they denote the angular velocities with respect to the local
parameter t which varies in [0 , 1].

Now, in order to simplify the analysis, without loss of generality, we can
assume

X(0) = (1, 0, 0)T , Ẋ(0) = (0, 0− 1)T

which implies that ωi = Δs (0, 1, 0)T and Ui = (cos θ
2 , sin

θ
2 , 0, 0)

T , where the sign
of Ui can be arbitrarily chosen. Observe that the hypothesis of a non vanishing
polar torsion of X at s = 0 implies that Ẍ · j �= 0 , where, as usual, j = (0, 1, 0)T .

Moreover the expressions of X(Δs), Ẋ(Δs), E2(Δs) are replaced with their
asymptotic Taylor expansions at s = 0 which are assumed to be of order 9 be-
cause it is necessary to prove the fourth approximation order of the scheme.
Starting from the Taylor expansions of these data, with the help of a computer
algebra system, we have obtained the associated expansions of the unit quater-
nions Uf , satisfying (13), andH defined in (7) which, together with the expansion
of the angular velocity ωf , have allowed us to formulate the following preliminary
result.

Lemma 2. If the polar torsion of the curve X at s = 0 is not vanishing, then
the coefficient μ, defined in (14), admits the following asymptotic expansion,

μ =

3∑
j=0

μ(j)Δsj +O(Δs4) ,

where in particular μ(0) = 1 and μ(1) = 1
4

...
X(0)·j
Ẍ(0)·j .

Using this expansion for μ, and by the help of a computer algebra system again
we can obtain corresponding expansions for the two admissible couples (μi, μf ),
fulfilling (10) and (11). Selecting between them the one associated to greater
value for μi, we are able to prove the following intermediate result.

Lemma 3. If the polar torsion of the curve X at s = 0 is not vanishing, then
the coefficient λ defined in (16) admits the following asymptotic expansion,

λ =

3∑
j=0

λ(j)Δsj +O(Δs4) ,

where in particular λ(0) = 1, λ(1) = − 1
2

...
X(0)·j
Ẍ(0)·j .

From the expansions of μi, μf and λ we can derive the asymptotic expansions
up to order 4 of the quaternion coefficients Ai, i = 0, . . . , 4, and so it is possible
to obtain a symbolic expression of the curve o(t) which is rational with respect
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to t of degree 8 but also depends on Δs as a rational function,

o(t) = o(t,Δs) =

3∑
j=0

bj(t)Δs
j +O(Δs4)

3∑
j=0

dj(t)Δs
j + O(Δs4)

,

where the bj(t), dj(t), j = 0, . . . , 4 are respectively vector and scalar polynomials
of degree less or equal to 8 and, in particular, d0(t) ≡ 1. Thus o(t,Δs) admits
the following Taylor expansion with respect to Δs,

o(t,Δs) =

3∑
j=0

γj(t)
Δsj

j!
+O(Δs4) ,

where

γj(t) =
djX

djs
(0)tj , j = 0, . . . , 3 .

Hence, we can formulate the following proposition,

Proposition 1. Given an analytic smooth curve on the unit sphere, X(ξ), ξ ∈
[a, a + Δξ] with non vanishing polar torsion at ξ = a, it is approximated with
order 4 by one of the two rational curves o(t), t ∈ [0 , 1] with rational directed
rotation–minimizing frame produced by the presented method.

In Table 3 reported in the next section, the numerical approximation order
for two test cases confirms the above analysis.

5 Extension to Splines and Numerical Examples

Before presenting the results obtained with some examples which illustrate the
procedure, we consider the extension of the scheme to splines. Hence the input
data are a sequence of frames (oj ,vj , zj), j = 0, 1, . . . , N , and related compat-
ible angular velocities ωj , j = 0, 1, . . . , N , together with an associated set of
parameter values (knots) a = ξ0 < ξ1 < . . . < ξN−1 < ξN = b. The scheme
defines a C1 rational spline R : [a, b] → S2 on the sphere, with an associated
rational rotation-minimizing directed frame

{e1, e2, e3} , ej : [a, b] → IR3, j = 1, 2, 3,

and angular velocity ω = e1 × de1

dξ , such that

R(ξj) = oj , e1(ξ) = oj, e2(ξ) = vj , e3(ξ) = zj , ω(ξj) = ωj ,

for j = 0, . . . , N . The presented method can be used locally in each subinterval
[ξj , ξj+1] by linearly mapping it to [0, 1]. This gives the following local data:

(oi,vi, zi) = (oj ,vj , zj) ωi = Δξj ωj ,
(of ,vf , zf ) = (oj+1,vj+1, zj+1), ωf = Δξj ωj+1, j = 0, 1, . . . , N − 1,
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where Δξj := ξj+1 − ξj . In our experiments, the data points are always taken
from analytical curves in order to stress the approximation power of the method.
Hence, in all cases the sequence of curve positions, along with the corresponding
tangents (providing also the angular velocities) are sampled from the analytical
curve. The knots considered to define the spline curve are just the parame-
ter values used for the sampling. The associated sequence of sampled rotation-
minimizing frame orientations is computed by numerical solution of a first order
differential equation (for instance the second or the third equation in (3)), with
a compatible initial condition.

For the examples, we take the data from arcs of the Viviani curve, which has
the following standard parameterization,

X(ξ) =

(
1

2
(1 + cos ξ),

1

2
sin ξ, sin

ξ

2

)T

, ξ ∈ [0, 2ξ],

or from arcs of a curve X = (x, y, z)T on the unit sphere, where

x(ξ) = 2 cosα cos ξ cos kξ + sin ξ sin kξ,
y(ξ) = 2 cosα sin ξ coskξ + cos ξ sinkξ,
z(ξ) = 2 sinα cos kξ,

(17)

with α and k denoting two free parameters. The first curve is well known in
classical geometry, but it is also important in applications since it is related to
the projection of a satellite path on the Earth. The curves in (17) are obtained
as trajectories of a point on a great circle of a sphere, rotating about one of its
axes. Such curves are again related with satellite motions and are called satellite
curves (see [3], e.g.).

The three figures shown in the sequel are obtained by using the spline exten-
sion of the scheme. For each spline segment, the best interpolant between the
two possible ones could be determined by some fairness criterion. Here, having
the analytical curve as a reference, the choice is based on a comparison of the
interpolant with the curve at some chosen points.

In Fig. 1, the Viviani test is considered. On the left, the resulting spline curve,
made of 8 segments, along with the analytical curve is shown, while on the right
the resulting curve and its rotation-minimizing frame are depicted.

In Fig. 2 the data are sampled from (17) with α = 7/8 ξ, k = 4/3 and
ξ ∈ [0, 6ξ]. The resulting spline curve is made of 16 segments. In Fig. 3, the data
are taken again from (17), but with α = 3/4 ξ and k = 2/3. In this case the
curve exhibits some points with very big tangent variation. In order to focus on
the good approximation of such kind of curves, we concentrate only on the part
given by ξ ∈ [0, 3ξ]. Although this part of the curve behaves like having a cusp,
12 segments are already enough to approximate it in a good way.

Note that in the first two examples the results are referring to a sampling
which ensures that the splitting of the analytical curve is uniform with respect to
its cumulative arc length. On the other hand, in the third example, the sampling
allows a better reconstruction of the area where the shape of the curve is very
sharp.



452 M.L. Sampoli et al.

−0.5
0

0.5
1 −0.5

0
0.5

−1

−0.5

0

0.5

1

0
0.5

1 −0.5
0

0.5

−1

−0.5

0

0.5

1

Fig. 1. Example 1. Left: the obtained spline curve (black) on the sphere along with the
analytical curve (blue). Stared circles denote the junction points of the spline segments.
Right: the resulting rotation-minimizing directed frame of the curve (only e2 and e3

are shown).

We conclude this section by presenting three sets of tables in order to check
numerically the behavior of the approximation error for two test curves, the
Viviani curve and the satellite curve from the second example. Such an error is
obtained by considering the maximum Hausdorff distance εN between X and R
computed in each subinterval [ξj , ξj+1], j = 0, . . . , N − 1:

εN = max
j=0,...,N−1

(
dH1(X |[ξj,ξj+1],R|[ξj ,ξj+1]), dH2 (X |[ξj ,ξj+1],R|[ξj,ξj+1])

)
,
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Fig. 2. Example 2. Left: the obtained spline curve (black) on the sphere along with the
analytical curve (blue). Stared circles denote the junction points of the spline segments.
Right: the resulting rotation-minimizing directed frame of the curve (only e2 and e3

are shown).
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Fig. 3. Example 3. Left: the obtained spline curve (black) on the sphere along with the
analytical curve (blue). Stared circles denote the junction points of the spline segments.
Right: the resulting rotation-minimizing directed frame of the curve (only e2 and e3

are shown).

where

dH1(X |[ξj ,ξj+1],R|[ξj,ξj+1]) = maxξ∈[ξj,ξj+1]

(
minξ̂∈[ξj ,ξj+1]

|X(ξ)−R(ξ̂)|
)
,

dH2(X |[ξj ,ξj+1],R|[ξj,ξj+1]) = maxξ̂∈[ξj,ξj+1]

(
minξ∈[ξj ,ξj+1] |X(ξ)−R(ξ̂)|

)
.

For both analytical curves we consider two different parameterizations, the stan-
dard one and the arc–length one. So the quantity

hN = max
0≤j≤N−1

Δξj

for the arc–length parameterization is just the ratio between the curve length
and N .

Table 1. Approximation errors of the spline extension of the scheme. Viviani curve
(half curve) with standard parameterization (left) and with arc–length parameteriza-
tion (right).

N hN ε
(1)
N ε

(2)
N

2 3.142 3.43 10−2 2.34 10−2

4 1.737 3.44 10−3 1.42 10−3

6 1.208 1.00 10−3 3.67 10−4

8 0.924 4.24 10−4 1.62 10−4

N hN ε
(1)
N ε

(2)
N

2 1.910 5.26 10−2 2.88 10−2

4 0.955 5.97 10−3 1.47 10−3

6 0.637 1.55 10−3 3.40 10−4

8 0.478 7.27 10−4 1.55 10−4

Tables 1–2 are aimed to confirm the benefit we get by selecting the free pa-

rameter λ with (16), instead of (15) introduced in [15]. Therefore the error ε
(1)
N

obtained using (15) is compared with ε
(2)
N , arising from the choice (16).
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Table 2. Approximation errors of the spline extension of the scheme. Satellite
curve for ξ ∈ [0, 3/4π], with the generic parameterization (left) and with arc–length
parameterization (right).

N hN ε
(1)
N ε

(2)
N

2 1.780 5.72 10−3 3.17 10−3

4 0.6458 5.73 10−4 1.98 10−4

6 0.4472 1.65 10−4 6.43 10−5

8 0.3413 7.08 10−5 3.96 10−5

N hN ε
(1)
N ε

(2)
N

2 0.5747 7.19 10−3 1.61 10−3

4 0.2873 1.05 10−3 1.44 10−4

6 0.1915 2.83 10−4 5.65 10−5

8 0.1436 1.36 10−4 3.82 10−5

Table 3. Approximation errors and corresponding numerical orders p. On the left the
Viviani curve for a = 5π/8 and b reducing as shown. On the right the satellite curve
of example 2, with b = 3π/16 and a increasing as shown. The total curve length L is
also reported.

b L ε
(2)
1 p

13π/16 0.3208 6.75 10−5

23π/32 0.1642 5.19 10−6 3.83
43π/64 0.0832 3.38 10−7 4.01
83π/128 0.0418 2.16 10−8 4.01
163π/256 0.0210 1.36 10−9 4.01

a L ε
(2)
1 p

0 0.2592 6.04 10−5

3π/32 0.1360 1.55 10−5 2.11
9π/64 0.0701 1.10 10−6 3.99
21π/128 0.0356 7.30 10−8 4.00
45π/256 0.0179 4.70 10−9 4.00

Analyzing the error in the tables, we can conclude that the new choice of
λ is always preferable, in particular when the arc–length parameterization is
considered.

Finally in Table 3 the basic one segment implementation of the scheme is
performed again for the Viviani and satellite. Successively reducing the length
of the analytic curve defining the data for our scheme, we are able to compute
the numerical approximation order p of the scheme which nicely confirms the
developed theoretical asymptotic analysis.

6 Conclusions

A new method for the construction of rational C1 Hermite interpolating curves
on the sphere, endowed by a rational directed rotation–minimizing frame, is
presented. Its spline extension for defining general spherical camera motions has
been also considered. Starting from the method introduced in [15], new and
better selection for the two free parameters have been studied, with the help
of the asymptotic analysis. The resulting scheme has order of approximation 4.
Several examples illustrate the effectiveness of the proposed method.

Acknowledgements. This research was partially supported by a Bilateral Re-
search Project within the Executive Programme Italy-Slovenia 2011–2013. The
INDAM support is also gratefully acknowledged.



Rational Spherical Motions 455

References

1. Belghith, K., Kabanza, F., Bellefeuille, P., Hartman, L.: Automated camera plan-
ning to film robot operations. Artif. Intell. Rev. 37, 313–330 (2012)

2. Cao, C.G.L.: Guiding navigation in colonoscopy. Surgical Endoscopy 21, 408–484
(2007)

3. Capderou, M.: Satellites: Orbites Et Missions. Springer, Heidelberg (2003)
4. Choi, H.I., Han, C.Y.: Euler–Rodrigues frames on spatial Pythagorean–hodograph

curves. Comput. Aided Geom. Design 19, 603–620 (2002)
5. Christie, M., Machap, R., Normand, J.-M., Olivier, P., Pickering, J.H.: Virtual

camera planning: A survey. In: Butz, A., Fisher, B., Krüger, A., Olivier, P. (eds.)
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Abstract. This work is devoted to the definition of stochastic subdivi-
sion schemes adapted to the reconstruction of non-regular data. These
schemes are constructed in the framework of the Kriging theory. Thanks
to the introduction of a zone-dependent error variance in the Kriging
approach, they combine interpolatory and non interpolatory subdivision
schemes according to a domain segmentation. Their originality relies on
the introduction and coupling of three ingredients: a segmentation of the
data, a local prediction according to the characteristics of the different
zones and an adaption strategy near segmentation points. The conver-
gence of the corresponding 4-point scheme is analyzed. Its behavior is
compared with other subdivision schemes on various numerical experi-
ments.

Keywords: subdivision, Kriging, interpolatory, non-interpolatory.

1 Introduction

Stochastic kriging-based approaches [3] for data modeling are classical methods
in risk analysis since they integrate the spatial structure of the data in the pre-
diction and allow to evaluate the precision of the estimation thanks to the under-
lying probabilistic model. However, they usually assume that the phenomenon
to estimate is regular, which is not the case in practice.

Subdivision is a very powerful tool to construct smooth curves and surfaces
starting from a given set of control points. Many different subdivision schemes
such as linear (or not), position-dependent (or not) [1], interpolatory (or not)
[4], stationary (or not) [7] schemes have been developed for specific situations.

This paper is devoted to the design and analysis of new stochastic subdivision
schemes that aim to improve the accuracy of the reconstruction of non-regular
data. These schemes are based on Kriging as in [2] but their originality rely on
the introduction and the coupling of three main ingredients:

M. Floater et al. (Eds.): MMCS 2012, LNCS 8177, pp. 456–470, 2014.
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– A segmentation of the data leading to a splitting in different zones containing
or not non-regular data,

– The construction of a local predictor integrating the information coming from
the segmentation and defining zone-dependent subdivision schemes that mix
interpolatory and non-interpolatory predictions,

– The adaption of the schemes close to the segmentation points.

Our work is organized as follows: Section 2 provides a quick overview on sub-
division scheme and ordinary Kriging theory. Section 3 is devoted to the con-
struction of the new Kriging-based scheme and to the analysis of its convergence
for the specific case of 4-point stencils. Finally in Section 4, several numeri-
cal experiments and comparisons with other classical subdivision schemes are
performed.

2 Quick Overview on Subdivision Schemes and Kriging

2.1 Subdivision Schemes

In this paper only binary subdivision schemes are considered. We focus on subdi-
vision on the real line and therefore consider grid points xjk = k2−j, j ≥ 0, k ∈ ZZ.
Starting from an initial set of control points F 0 = {f0

n, n ∈ ZZ}, subdivision it-
eratively reconstructs new set of points F j = {f j

n, n ∈ ZZ}, j ≥ 1 as

F j = SF j−1 , j ≥ 1 ,

with

f j
k =

∑
m∈ZZ

aj,kk−2mf
j−1
m , k ∈ ZZ .

The family {aj,km }m∈ZZ , j ≥ 1, k ∈ ZZ that satisfies ∀j, ∀k,
∑

m∈ZZ a
j,k
k−2m = 1,

is called the mask of the scheme. It controls the shape of the reconstructed
points and the regularity of the limit function if the scheme is convergent.1 A
subdivision scheme is said to be stationary when the mask is independent of j
and uniform when for any j it depends only on the parity of k.

Moreover since the mask coefficients aj,km ,m ∈ ZZ are supposed to be zero but a
finite number of them, one can introduce lj,k and rj,k such that the values (f j−1

k+m)

involved in the evaluation of f j
2k and f j

2k−1 are Sj,k = {f j
k−lj,k

, · · · , f j
k+rj,k−1}.

This set is called the reconstruction stencil of index (j, k).
There exists many ways to construct the mask. Among classical schemes,

translation-invariant and position-dependent strategies play an important role.
The first one corresponds to lj,k = lj , rj,k = rj and leads to uniform schemes.

1 A subdivision scheme S is uniformly convergent if for any initial set of
control point F 0, there exists a continuous function f such that ||SjF 0 −
(f(k2−j))k∈ZZ||∞ −→j→+∞ 0.
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The second one corresponds to (lj,k, rj,k) depending on k2−j and leads to non-
uniform schemes.

In [1], a first example of position-dependent Lagrange interpolatory subdivision
scheme based on a segmentation of the real line has been constructed and fully
analyzed. It is based on a local polynomial interpolation and a sequence of seg-
mentationpoints (yi)i∈IN .Moreprecisely, the sequences {aj,kk−2m}m∈{−lj,k,···,rj,k−1}
satisfy: ⎧⎨⎩ aj,2k2k−2m = δm,k ,

aj,2k−1
2k−1−2m = L

lj,2k−1,rj,2k−1
m (− 1

2 ) ,

where L
lj,2k−1,rj,2k−1
m (x) = Π

rj,2k−1−1
n=−lj,2k−1,n�=m

x−n
m−n . The position-dependent strat-

egy is then fixed by the values of the couple (lj,k, rj,k): Fig.1 displays an example
of such a strategy for a 4-point stencil and a single segmentation point y0. In
this case, it depends on the relative position of k2−j and y0.

Fig. 1. Example of a 4-point stencil position-dependent strategy in the vicinity of a
segmentation point y0

In this paper, the construction of the scheme is performed in the Kriging
framework which is recalled in the next section.

2.2 Ordinary Kriging

For sake of clarity, a quick overview on Ordinary Kriging is here provided inde-
pendently of the subdivision framework. Starting from a set of n observations
{fi = f(xi), i = 0, 1, · · · , n− 1}, Kriging theory ([3], [5]) assumes that each ob-
servation fi is a realization of a random variable F(xi) coming from a random
process F(x). This random process satisfies F(x) = d + δ(x), where d is the
deterministic component of F(x) and δ(x) is a zero-mean random process.

Under the assumption of stationarity and of constant d, the spatial correlation
of the data is identified by computing the semi-variogram:

γ(h) =
1

2
E((F(x+ h)− F(x))2) ,
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where E is the mathematical expectation. In practice, since the number of ob-
servations is finite, it is approximated by the experimental semi-variogram:

γexp(h) =
1

2Card(N(h))

∑
(k,l)∈N(h)

(f(xk)− f(xl))
2 ,

where N(h) = {(xk, xl) ∈ {0, 1, · · · , n − 1}2, |xk − xl| = h} and Card(N(h)) is
the number of elements of N(h). The spatial structure is then identified by a
least square fit of γexp. The candidates to this fit have to be chosen in a family
of so-called valid semi-variogram models. In this paper, we focus on two classical

models: the Gaussian type with γ(h) = K
(
1− e−(ah)2

)
(K and a > 0) and the

Exponential type with γ(h) = K
(
1− e−ah

)
(K and a > 0) (fig.2).
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Fig. 2. Valid semi-variograms. Left, Gaussian type (γ(h) = 1 − e
− 1

502
h2

) and right,

Exponential type (γ(h) = 1− e−
1
20

h).

The Kriging estimator of F at position x∗ , P(F , x∗), is then constructed as
the unique linear unbiased predictor minimizing the estimation variance σ2

OK =
var(F(x∗)− P(F , x∗)). It is written as

P(F , x∗)) =
n−1∑
i=0

λiF(xi) , (1)

where {λi}i=0,1,···,n−1 are called the Kriging weights and are the solutions of the
following Ordinary Kriging system:⎡⎢⎢⎢⎢⎣

γ0,0 ... γ0,n−1 1
γ1,0 ... γ1,n−1 1
... ... ... 1

γn−1,0 ... γn−1,n−1 1
1 1 1 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

λ0
λ1
...

λn−1

μ

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
γ∗,0
γ∗,1
...

γ∗,n−1

1

⎤⎥⎥⎥⎥⎦ , (2)

where μ is the Lagrange multiplier enforcing the unbiasedness of the estimator,
γi,j = γ(|xi − xj |) and γ∗,i = γ(|x∗ − xi|), i = 0, · · · , n− 1.
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The previous Kriging estimator is an exact interpolator. The constrain of
exact interpolation can be relaxed by the introduction of an error variance on
the diagonal of the left hand side matrix of (2) leading to the following more
general Kriging system:⎡⎢⎢⎢⎢⎣

γ0,0 − c0 ... γ0,n−1 1
γ1,0 ... γ1,n−1 1
... ... ... 1

γn−1,0 ... γn−1,n−1 − cn−1 1
1 1 1 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

λ0
λ1
...

λn−1

μ

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
γ∗,0
γ∗,1
...

γ∗,n−1

1

⎤⎥⎥⎥⎥⎦ , (3)

where C = (c0, ..., cn−1) denotes the vector of error variance [6]. In practice, it
allows to take into account measurement errors at location (x0, · · · , xn−1). As a
result, the Kriging estimator based on (3) is no more interpolating.

2.3 Construction of Kriging-Based Subdivision Scheme

Substituting xi by (k + i − lj,k)2
−(j−1), n by lj,k + rj,k and x∗ by 2k × 2−j

or (2k − 1)2−j, expression (1) can be used to define a non-stationary and non-
uniform subdivision scheme. More precisely, assuming that the semi-variogram
has been identified from the initial data F 0 one can define a Kriging-based
interpolatory scheme as:⎧⎨⎩ f j

2k = f j−1
k ,

f j
2k−1 =

∑rj,k−1
m=−lj,k

λj,2k−1
m f j−1

k+m ,
(4)

where {λj,2k−1
m }m=−lj,k,···,rj,k−1 are the Kriging weights solutions of system (2).

Similarly, a non-interpolatory Kriging-based scheme can be constructed as:⎧⎨⎩ f j
2k =

∑rj,k−1
m=−lj,k

λj,2km f j−1
k+m ,

f j
2k−1 =

∑rj,k−1
m=−lj,k

λj,2k−1
m f j−1

k+m ,
(5)

where{λj,2km }m=−lj,k,···,rj,k−1 (resp. {λj,2k−1
m }m=−lj,k,···,rj,k−1) are the Kriging

weights solutions of (3) for x∗ = 2k × 2−j (resp. x∗ = (2k − 1)2−j).
The interpolatory subdivision scheme (4) has already been introduced in [2].

As in [7] and [1] (for Lagrange-type prediction), it can be translation-invariant
and position-dependent. Moreover, the coupling with Kriging theory allows to
define the mask according to the underlying spatial structure of the data. It
provides a more accurate prediction when the data cannot be assumed to come
from the discretization of a piecewise-polynomial function. The scheme proposed
in this paper is constructed in the same framework. Its originality compared to
the Kriging-based scheme of [2] relies on the possibility to relax the constrain of
exact interpolator by adding an error variance leading to (5) and, more precisely,
to relax this constraint according to the position of the prediction. The next
sections are devoted to the definition and analysis of a zone dependant Kriging
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based subdivision scheme where the position dependant strategy is applied to the
local error variance: the result is a stochastic scheme with position modulated
interpolatory/non interpolatory property.

3 Zone-dependent Kriging-Based Subdivision Scheme

This section is devoted to the definition and the convergence analysis of a sub-
division scheme aimed to be adapted to the reconstruction of non-regular data.
It combines the interpolatory and non-interpolatory approaches previously in-
troduced and is based on an a priori segmentation of the data in different zones
characterized by different regularity. According to this regularity and therefore
to the zone, error variance vectors are affected to the Kriging system, leading
to a zone-dependent subdivision scheme. For sake of simplicity, we restrict our
work in this paper to three zones (two zones of ”regular data” and one zone
]y0, y1[ containing ”non-regular” data as displayed by fig.3, top, left). Moreover,
we focus on predictions involving 4-point stencils i.e ∀(j, k), lj,k + rj,k = 4.

3.1 Construction of the Zone-dependent Scheme

The construction relies on three essential ingredients that are fully specified in
the sequel:

– Segmentation of the data:
The real line is supposed to be split in three zones separated by the segmen-
tation points y0 < y1 belonging to the coarse grid ((y0, y1) ∈ IN2). The zones
]−∞, y0] and [y1,+∞[ correspond to regular zones while ]y0, y1[ correspond
to a non-regular one.

– Local predictors (in the interior of the zones):
Local Kriging-based subdivision predictors are constructed independently
in each zone. The semi-variogram of the zone is first identified according
to Section 2.2. Then an error variance function C(x) is defined on the real
line. This function provides for each point xjk = k2−j the corresponding

error variance C(xjk) involved in (3). In this paper, C = χ]y0,y1[ (fig.3, top,
right)where χA denotes the characteristic function of the set A.2

In the interior of each zone, a 4-point centered scheme is applied (i.e lj,k =
rj,k = 2). For regular zones a subdivision scheme of type (4) is used whereas
for ]y0, y1[ the scheme corresponds to (5) with ci = 1, 0 ≤ i ≤ 3.

– Adaption at the edges of the zones:
These schemes can not be applied close to the edges of the zone and a specific
adaption is required. For sake of clarity, we describe this adaption around
the segmentation point y0 written for any j as y0 = kj02

−(j−1). The adaption
close to y1 is performed similarly.
Regular zone: the adaption is performed following the position-dependent
strategy proposed in [1] and recalled on fig.1. As shown on fig.3 (bottom,

2 χA(x) = 1 if x ∈ A and χA(x) = 0 otherwise.
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left), the stencil associated to the prediction at position (2kj0−1)2−j is shifted
to the left.
Non-regular zone: the interior scheme can not be used to predict the two first
points of the zone at positions (2kj0 +1)2−j and 2(kj0 +1)2−j (fig.3, bottom,
right). We propose to estimate the first one by a 4-point Kriging extrapo-
lation from the regular zone and the second one as an average between the
extrapolation from the regular zone and the value at the previous level.

y1y0y1y0

y0 y0

Fig. 3. From left to right and top to bottom: segmentation of the line (R:Regular;
NR: Non-Regular); C(x); adaption in the regular zone near the segmentation point y0;
adaption in the non-regular zone near the segmentation point y0.

3.2 Convergence Analysis of the Zone-dependent Scheme

Clearly, Kriging based schemes are scale-dependent and therefore belong to the
class of non-stationnary schemes. The convergence of a non-stationary scheme can
be established as soon as its mask converges, when j goes to infinity, towards to the
mask of a convergent stationary subdivision scheme called the asymptotical sub-
division scheme. This important result is recalled by the following theorem ([2]):

Theorem 1. Let S be a non-stationary subdivision scheme defined by its masks
{aj,km }m∈Z, (j, k) ∈ Z2. We suppose that there exists two constants K < K ′,
independent of j and k such that aj,km = 0 for m > K ′ or m < K. If there exists
a convergent stationary subdivision scheme SS of masks {akm}m∈Z, k ∈ Z with
akm = 0 for m > K ′ or m < K and such that

lim
j→+∞

||aj,k − ak||∞ = 0 ,

then S is convergent.

The convergence analysis of our scheme can therefore be reached provided
the limit of the coefficients of the mask exists and the corresponding stationary
subdivision scheme is convergent. We recall the following theorem related to the
convergence of stationary subdivision schemes [7]:

Theorem 2. Let S be a stationary subdivision scheme such that there exists a
subdivision scheme S1 for the differences (df j)k = f j

k+1 − f j
k ,

df j = S1df
j−1 ,



Construction and Analysis of Zone-dependent 463

The scheme S is uniformly convergent if and only if S1 converges uniformly to
the zero function for all initial data F 0.

The following sections are first devoted to the evaluation of the (zone de-
penden) asymptotical subdivision scheme. Then, based on Theorem 2, its con-
vergence is proved, leading, thanks to Theorem 1 to the convergence of our
zone-dependent Kriging-based subdivision scheme.

Limit of the Kriging Weights. For the regular zone ]−∞, y0], the following
proposition is borrowed from [2]:

Proposition 1. The Kriging weights satisfy:

– Prediction in the interior zone:
• for Gaussian type semi-variogram:

lim
j→+∞

(
λj,2k−1
−2 , λj,2k−1

−1 , λj,2k−1
0 , λj,2k−1

1

)
=

(
− 1

16
,
9

16
,
9

16
,− 1

16

)
• for Exponential type semi-variogram:

lim
j→+∞

(
λj,2k−1
−2 , λj,2k−1

−1 , λj,2k−1
0 , λj,2k−1

1

)
=

(
0,

1

2
,
1

2
, 0

)
– Prediction near the edge:

• for Gaussian type semi-variogram:

lim
j→+∞

(
λ
j,2kj

0−1
−3 , λ

j,2kj
0−1

−2 , λ
j,2kj

0−1
−1 , λ

j,2kj
0−1

0

)
=

(
1

16
,− 5

16
,
15

16
,
5

16

)
• for Exponential type semi-variogram:

lim
j→+∞

(
λ
j,2kj

0−1
−3 , λ

j,2kj
0−1

−2 , λ
j,2kj

0−1
−1 , λ

j,2kj
0−1

0

)
=

(
0, 0,

1

2
,
1

2

)

As for the non-regular zone ]y0, y1[, we have:

Proposition 2. The Kriging weights satisfy:

– Prediction in the interior of the zone: for both Gaussian and Exponential
type semi-variograms:

lim
j→+∞

(
λj,2k−2 , λ

j,2k
−1 , λ

j,2k
0 , λj,2k1

)
=

(
1

4
,
1

4
,
1

4
,
1

4

)
,

lim
j→+∞

(
λj,2k−1
−2 , λj,2k−1

−1 , λj,2k−1
0 , λj,2k−1

1

)
=

(
1

4
,
1

4
,
1

4
,
1

4

)
– Prediction near the edge:
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• for Gaussian type semi-variogram:

lim
j→+∞

(
λ
j,2kj

0+1
−4 , λ

j,2kj
0+1

−3 , λ
j,2kj

0+1
−2 , λ

j,2kj
0+1

−1

)
=

(
− 5

16
,
21

16
,−35

16
,
35

16

)
,

lim
j→+∞

(
λ
j,2kj

0+2
−4 , λ

j,2kj
0+2

−3 , λ
j,2kj

0+2
−2 , λ

j,2kj
0+2

−1

)
= (−1, 4,−6, 4)

• for Exponential type semi-variogram:

lim
j→+∞

(
λ
j,2kj

0+1
−4 , λ

j,2kj
0+1

−3 , λ
j,2kj

0+1
−2 , λ

j,2kj
0+1

−1

)
= (0, 0, 0, 1) ,

lim
j→+∞

(
λ
j,2kj

0+2
−4 , λ

j,2kj
0+2

−3 , λ
j,2kj

0+2
−2 , λ

j,2kj
0+2

−1

)
= (0, 0, 0, 1)

We prove Proposition 2:

Proof. The computation of the asymptotical weights when predicting near the
edge is just an extension of the result provided by Proposition 1 of [2]. There-
fore, we focus in this proof on the behavior of the Kriging weights associated
to the interior prediction. Moreover, we only study in the sequel the limit of
{λj,2k−1

m }m=−2,···,1 since the proof for {λj,2km }m=−2,···,1 is similar.
According to the Kriging system (3), the left hand-side matrix and the right-

hand side vector are written respectively as:

Γj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 γ(2−j) γ(2× 2−j) γ(3× 2−j) 1

γ(2−j) −1 γ(2−j) γ(2× 2−j) 1

γ(2× 2−j) γ(2−j) −1 γ(2−j) 1

γ(3× 2−j) γ(2× 2−j) γ(2−j) −1 1

1 1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, γj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ(32 × 2−j)

γ(12 × 2−j)

γ(12 × 2−j)

γ(32 × 2−j)

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where γ is either the Gaussian or the Exponential semi-variogram model.
Let us first notice that: limj→+∞ Γj = G, and limj→+∞ γj = g with

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 1

0 −1 0 0 1

0 0 −1 0 1

0 0 0 −1 1

1 1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and g = (0, 0, 0, 0, 1)

′
.

Denoting Λ the solution of (3), since G is invertible, limj→+∞ Λ = G−1g, and
one can easily check that the unique solution of GU = g is U = { 1

4 ,
1
4 ,

1
4 ,

1
4 ,

1
4}.

That concludes the proof.
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k

Fig. 4. Prediction in the interior of the non-regular zone: available values at level j−1
(o) and predicted values at the next level (•)

Convergence of the Asymptotical Scheme. The convergence of the asymp-
totical scheme in the regular zone has already been proved in [1]. Therefore, this
section is devoted to the convergence analysis in the non-regular one.

– Convergence in the interior of the zone:
Since the scheme is uniform, it is enough to focus on the differences dj,k1 =
f j
2k − f j

2k−1 and dj,k2 = f j
2k+1 − f j

2k (fig.4). According to Proposition 2, f j
2k−1 =

f j
2k = 1

4
(f j−1

k−2 + f j−1
k−1 + f j−1

k + f j−1
k+1) and f j

2k+1 = 1
4
(f j−1

k−1 + f j−1
k + f j−1

k+1 + f j−1
k+2).

Then,⎧⎪⎪⎨⎪⎪⎩
dj,k1 = f j

2k − f j
2k−1 = 0 ,

dj,k2 = f j
2k+1 − f j

2k,

= 1
4
× [(f j−1

k+2 − f j−1
k+1) + (f j−1

k+1 − f j−1
k ) + (f j−1

k − f j−1
k−1) + (f j−1

k−1 − f j−1
k−2)] .

Since ∀j, k, dj,k1 = 0,
• if k is even (k = 2m), f j−1

k+2 − f j−1
k+1 = f j−1

2m+2 − f j−1
2m+1 = dj−1,m+1

1 = 0,

f j−1
k − f j−1

k−1 = f j−1
2m − f j−1

2m−1 = dj−1,m
1 = 0. Therefore,

dj,k2 =
1

4
× [(f j−1

k+1 − f j−1
k ) + (f j−1

k−1 − f j−1
k−2)] ,

• if k is odd (k = 2m + 1), f j−1
k+1 − f j−1

k = f j−1
2m+2 − f j−1

2m+1 = dj−1,m+1
1 = 0,

f j−1
k−1 − f j−1

k−2 = f j−1
2m − f j−1

2m−1 = dj−1,m
1 = 0. Therefore,

dj,k2 =
1

4
× [(f j−1

k+2 − f j−1
k+1) + (f j−1

k − f j−1
k−1)] .

Since | 14 |+ | 14 | < 1, dj,k2 →j→+∞ 0.

– Convergence near the edge:

0

-1f j
j
k +10

-1f j
j
k-20

-1f j
j
k -10

-1f j
j
k-30

-1f j
j
k

02f j
j
k +102f j

j
k +202f j

j
k

Fig. 5. Prediction near the edge in the non-regular zone: available values at level j− 1
(o) and predicted values at the next level (•)
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We focus on the differences d
j,k

j
0

1 = f j

2k
j
0+1

− f j

2k
j
0

and d
j,k

j
0

2 = f j

2k
j
0+2

− f j

2k
j
0+1

(fig.5). Let us first consider a Gaussian type semi-variogram. According to
Proposition 2, f j

2k
j
0+1

= 35
16
f j−1

k
j
0

− 35
16
f j−1

k
j
0−1

+ 21
16
f j−1

k
j
0−2

− 5
16
f j−1

k
j
0−3

and f j

2k
j
0+2

=

1
2
× [(4f j−1

k
j
0

− 6f j−1

k
j
0−1

+ 4f j−1

k
j
0−2

− f j−1

k
j
0−3

) + f j−1

k
j
0+1

]. Therefore

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
j,k

j
0

1 = fj

2k
j
0+1

− fj

2k
j
0

= 19
16 (f

j−1

k
j
0

− fj−1

k
j
0−1

) − (fj−1

k
j
0−1

− fj−1

k
j
0−2

) + 5
16 (f

j−1

k
j
0−2

− fj−1

k
j
0−3

) ,

d
j,k

j
0

2 = fj

2k
j
0+2

− fj

2k
j
0+1

= 1
2 (f

j−1

k
j
0
+1

− fj−1

k
j
0

) + 5
16 (f

j−1

k
j
0

− fj−1

k
j
0
−1

) − 1
2 (f

j−1

k
j
0
−1

− fj−1

k
j
0
−2

) + 3
16 (f

j−1

k
j
0
−2

− fj−1

k
j
0
−3

) .

Since the terms (f j−1

k
j
0

− f j−1

k
j
0−1

), (f j−1

k
j
0−1

− f j−1

k
j
0−2

) and (f j−1

k
j
0−2

− f j−1

k
j
0−3

) are differ-

ences between data of the regular zone, their limit is zero since the Kriging

subdivision scheme is convergent in this zone [2]. Therefore d
j,k

j
0

1 →j→+∞ 0.

Moreover, since f j−1

k
j
0+1

− f j−1

k
j
0

= f j−1

2k
j−1
0 +1

− f j−1

2k
j−1
0

= d
j−1,k

j−1
0

1 , we also get that

d
j,k

j
0

2 →j→+∞ 0.
If we consider now an Exponential type semi-variogram, according to Propo-
sition 2, f j

2k
j
0+1

= f j−1

k
j
0

and f j

2k
j
0+2

= 1
2
× (f j−1

k
j
0

+ f j−1

k
j
0+1

). Therefore we have:

⎧⎪⎨⎪⎩
d
j,kj

0
1 = f j

2kj
0+1

− f j

2kj
0

= 0 ,

d
j,kj

0
2 = f j

2kj
0+2

− f j

2kj
0+1

= 1
2 (f

j−1

kj
0+1

− f j−1

kj
0

) .

Noticing that f j−1

k
j
0+1

− f j−1

k
j
0

= f j−1

2k
j−1
0 +1

− f j−1

2k
j−1
0

= d
j−1,k

j−1
0

1 = 0, we also get

that d
j,k

j
0

2 = 0.

From Theorem 2, the asymptotical subdivision scheme is then convergent.
Applying Theorem 1 leads to the convergence of our zone-dependent Kriging-
based scheme.

4 Numerical Results

This section is devoted to two applications of the zone-dependent Kriging-based
subdivision scheme in order to evaluate its capability. The first application deals
with the reconstruction of discontinuous data while the second one is related to
curve generation starting from locally noisy data.

4.1 Discontinuous Data

There exists many subdivision schemes that are suitable to reconstruct non-
regular data. Among them, the position-dependent Lagrange scheme introduced
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in [1] and recalled in Section 2.1 has provided promising results when its con-
struction integrates precisely the information related to the discontinuity posi-
tion. However as shown in [1], the quality of this scheme strongly deteriorates
as soon as the segmentation of the line does not coincide with the discontinu-
ity points. In this section we investigate how the zone-dependent Kriging-based
scheme can circumvent this limitation. More precisely, we analyze the influence
of the zone segmentation on the limit function, starting from a fixed initial
data set exhibiting a single discontinuity point. We consider the following test
function:

f =

{
5 ∗ sin(ξ ∗ (x− 0.1) + 1

6 if x ∈ [0, 0.65]

5− 5 ∗ sin(ξ ∗ (x− 0.1) + 1
6 if x ∈ [0.65, 1]

with one discontinuity at x0 = 0.65. The initial sequence is F J0 = (f(k2−J0), 0 ≤
k ≤ 2J0 − 1.

In the following tests, it is assumed that the segmentation procedure has led
to an inaccurate estimation leading to the segmentation point y′0 = 0.68 and we
compare the reconstruction for the three following schemes:

– Zone-dependent Kriging-based subdivision scheme(ZDK): the segmentation
in different zones takes into account that a bad detection can occur. There-
fore, 3 zones are defined: 2 regular ([0, 0.6] and [0.7, 1]) and one non-regular
(]0.6, 0.7[) corresponding to y0 = 0.6, y1 = 0.7 with y0 < x0 < y1. The con-
struction of Kriging-based scheme requires to identify the spatial structure
of the data through the computation of the semi-variogram. For the rest of
the section, this spatial structure is assumed to be the same in each zone and
is estimated once and for all. The identified semi-variogram is of Gaussian
type and is provided by fig.6, right.

– Position-dependent Lagrange-based subdivision scheme(PDL) assuming that
the segmentation position is located at y′0 = 0.68, reminding that y′0 �= x0.

– Translation-invariant Lagrange-based subdivision scheme(TIL) since it is a
classical example of schemes that are not adapted to singularities.

Fig.7 displays the limit functions reached by the different schemes starting
from F J0 , J0 = 4. Table 1 provides the l2-error ||fJmax

k − f(2−Jmaxk)||l2 , k ∈
[0, 2Jmax] for Jmax = 12 and different values of J0.

From fig.7 it appears that the position-dependent Lagrange reconstruction
(PDL) does not exhibit the oscillations generated by the translation-invariant
one (TIL) thanks to its adaption to segmentation point. However it leads to
a large l2-error due to the mismatch between y′0 and x0. On the contrary, the

Table 1. l2-error for TIL, PDL, ZDK

l2-error J0 = 4 J0 = 5 J0 = 6 J0 = 7

PDL 0.0401 0.0293 0.0094 0.0127
TIL 0.0227 0.0227 0.0114 0.0057
ZDK 0.0203 0.0143 0.0098 0.0059
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Fig. 6. Test function (left) and its experimental semi-variogram(right): the cross signs
are the experimental values of the semi-variogram and the dashed line is the fitted γ
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Fig. 7. Limit functions starting from F J0 , J0 = 4: From left to right, comparison be-
tween the test function (dashed line), TIL (thin line) and ZDK (thick line), comparison
between the test function (dashed line), PDL (dotted line) and ZDK (thick line)

zone-dependent Kriging strategy (ZDK) is not penalized by the poor estimate
of the discontinuity point ( as soon as y0 < x0 < y1). As a result, it keeps the
interesting property of Gibbs phenomenon reduction of position-dependent ap-
proaches leading to an acceptable l2 error while damping the strong dependence
on the segmentation precision.

4.2 Curve Generation

Our zone-dependent Kriging-based subdivision scheme (ZDK) is here applied
to curve generation. More precisely, we evaluate the capability of this approach
in presence of noisy control points. Fig.8 displays an example of curve recon-
struction, where some control points have been polluted by a white noise. It is
assumed that a zone segmentation has been performed, including the noisy data
in a single “non regular” zone [y0, y1]. As it is well known, translation-invariant
interpolatory subdivision schemes such as Lagrange-based ones are not tailored
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Fig. 8. Curve generation from a set of control points (cross signs), where several of
them are affected by white noise (circled cross signs): left, reconstruction by a La-
grange interpolatory scheme ; right, reconstruction by a zone-dependent Kriging-based
subdivision.

to adapt to noisy data and lead to undesirable oscillations (fig.8 left). On the con-
trary, since the zone-dependent Kriging strategy allows to combine interpolatory
(in the zone without noise) and non-interpolatory (in the noisy zone) schemes,
the oscillations are reduced and the reconstructed curve is more satisfactory
(fig.8 right).

5 Conclusion

A new Kriging-based subdivision scheme has been constructed. It is based on
a data segmentation in different zones that triggers the combination of interpo-
latory and non-interpolatory predictions thanks to the introduction of a zone-
dependent error variance in the Kriging model. A full convergence analysis in the
case of a 4-point stencil has been performed, establishing a connection between
this non-stationary scheme and a convergent stationary one. The applications
to the reconstruction of non-regular data and to curve generation have pointed
out three main advantages of this type of approach:

– Adaption to data: it allows to integrate information related to discontinuities
in the data which is necessary to avoid the so called Gibbs phenomenon.

– Weakdependance on thediscontinuitydetectionprecision: our zone-dependent
scheme is not affected by inaccuracy of the segmentation that is themainweak-
ness of previously introduced position-dependent schemes.

– Efficiency of the reconstruction in presence of noisy data: combining inter-
polatory (in zones without noise) and non-interpolatory (in noisy zones )
predictions leads to smooth reconstructed curves reducing the oscillations
associated to fully interpolatory schemes.



470 X. Si, J. Baccou, and J. Liandrat

References

1. Baccou, J., Liandrat, J.: Position-dependent Lagrange Interpolating Multi-
resolutions. Int. J. of Wavelets, Multiresol. and Inf. 5(4), 513–539 (2005)

2. Baccou, J., Liandrat, J.: Kriging-based Interpolatory Subdivision Schemes. Appl.
Comput. Harmon. Anal (2012), doi:10.1016/j.acha. 2012.07.008

3. Cressie, N.A.: Statistics for Spatial Data. Wiley Series in Probability and Mathe-
matical Statistics (1993)

4. Deslauriers, G., Dubuc, S.: Symmetric iterative interpolation processes. Const. Ap-
prox. 5, 49–68 (1989)

5. Wachernagel, H.: Multivariate geostatistics. Springer (1998)
6. Chiles, J.P., Delfiner, P.: Geostatistics: modelling spatial uncertainty. Wiley Series

in Probability and Mathematical Statistics (1999)
7. Dyn, N.: Subdivision Schemes in Computer-aided Geometric Design. Advances in

Numerical analysis II, Wavelets, Subdivision algorithms and Radial Basis Func-
tions 20(4), 36–104 (1992)



Deriving Novel Formulas and Identities

for the Bernstein Basis Functions
and Their Generating Functions

Yilmaz Simsek�

Department of Mathematics, Faculty of Science,
Akdeniz University, Campus, 07058, Antalya-Turkey

ysimsek63@gmail.com

Abstract. By using the generating functions for the Bernstein basis
functions, we derive various functional equations, differential equations
and second order partial differential equations. By using these equations,
we give new proofs of various identities, relations, integrals and deriva-
tives of the Bernstein basis functions. Using second order partial differ-
entia equation of the generating functions, we also obtain new deriva-
tive formulas for the Bernstein basis functions. By applying the Fourier
transform and the Laplace transform to the generating functions, we
derive series representations for the Bernstein basis functions. We also
give the p-adic Volkenborn integral representations of the Bernstein basis
functions.
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1 Introduction

Bernstein [4] first introduced and investigated the extended form of the (Bern-
stein) polynomials, which are now popularly known as the Bernstein polyno-
mials. Recently, the Bernstein polynomials and the Bezier Curves have been
studied by many scientists. There are various generalizations of the Bernstein
polynomials (cf. [2], [7], [6], [9], [10], [11], [24], [25], [26], [21], [27], [39], [38], [35]),
and other authors (see also the references cited in each of these earlier works).

The Bernstein polynomials are used to approximate a curve. In numerical
analysis, the Bernstein polynomial is a polynomial in the Bernstein form, that is
a linear combination of the Bernstein basis functions. There are many methods
to evaluate polynomials in the Bernstein form. One of them is a numerically
stable way to evaluate polynomials in the Bernstein form which is the de Castel-
jau’s algorithm. It is also well known that polynomials in the Bernstein form
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were first used by Bernstein in a constructive proof for the Stone-Weierstrass
approximation theorem. The Bernstein polynomials have many applications: in
approximations of functions, in statistics, in numerical analysis, in p-adic anal-
ysis, in the solution of differential equations and in Computer Aided Geometric
Design (CAGD). In CAGD, polynomials are often expressed in terms of the
Bernstein basis functions. These polynomials are called the Bezier curves. The
Bernstein polynomials, which are related to the Bezier curves, are also used to
determine tight bounds on the range of a multivariate polynomial over a closed
rectangle (cf. [2], [7], [6], [9], [10], [11], [13], [24], [25], [26], [21], [28], [27], [29],
[38], [35], [39]).

Many of the known identities for the Bernstein basis functions are currently
derived in an ad hoc fashion, using either the binomial theorem, the binomial
distribution, tricky algebraic manipulations or blossoming. In [34]- [38], we use
functional equations and differential equations of the generating functions for the
Bernstein basis functions, we provide a new approach to derive both standard
identities and new identities for the Bernstein basis functions.

We now give some well-known properties of the Bernstein basis functions and
their generating functions. The Bernstein basis functions Bn

k (x) are defined as
follows:

Definition 1.1. Let x ∈ [0, 1]. Let n ∈ N0 := {0, 1, 2, 3, · · · }. The Bernstein
basis functions Bn

k (x) can be defined by

Bn
k (x) =

(
n
k

)
xk (1− x)

n−k
, (1)

where
k = 0, 1, . . . , n,

and (
n
k

)
=

n!

k!(n− k)!
.

(cf. [2], [8], [7], [6], [9], [10], [11], [12], [13], [14], [17], [23], [24], [25], [26], [21],
[28], [27], [29], [34], [36], [40]).

Generating functions for the Bernstein basis functions can be defined as
follows:

Definition 1.2. Let t ∈ C and x ∈ [0, 1]. The Bernstein basis functions are
defined by means of the following generating functions

fB,k(x, t) :=

∞∑
n=0

Bn
k (x)

tn

n!
, (2)

where k = 0, 1, . . . , n.
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Generating functions for the Bernstein basis functions are given by the fol-
lowing theorem:

Theorem 1.3. Let t ∈ C and x ∈ [0, 1]. Then we have

fB,k(x, t) =
tkxke(1−x)t

k!
, (3)

where k = 0, 1, . . . , n. (cf. [38], [39], [3], [34], [35]).

Remark 1.4. The formulas and identities we derive for the interval [0, 1] can
easily be extended to arbitrary intervals [a, b]. That is, if we replace x by x−a

b−a ,
then Definition 1.1 yields the corresponding well known results concerning the
Bernstein basis functions Bn

k (x, a, b):

Bn
k (x; a, b) =

(
n
k

)(
x− a

b− a

)k (
b− x

b− a

)n−k

, (4)

where k = 0, 1,· · · , n and x ∈ [a, b] (cf. [4], [8], [7], [9, p. 384, Eq.(24.6)]).
In [36], we modified Equation (3) as follows:

tk
(

x−a
b−a

)k
e(

b−x
b−a )t

k!
=

∞∑
n=0

Bn
k (x; a, b)

tn

n!
. (5)

The Bernstein polynomial P(x) is a polynomial represented by the Bernstein
basis functions:

P(x) =

n∑
k=0

cnkB
n
k (x), (6)

(cf. [2], [8], [7], [6], [9], [10], [11], [12], [13], [14], [17], [23], [24], [25], [26], [21],
[28], [27], [29]).

By using the Bernstein polynomials, one can easily find an explicit polynomial
representation for the Bezier curves. The Bezier curves B(x), with control points
P0, . . . , Pn, are defined as follows:

B(x) =
n∑

k=0

PkB
n
k (x) (7)

(cf. [2], [8], [7], [6], [9], [10], [11], [28], [27], [29], [14], [24], [25], [26], [21]).
The organization of this paper is given as follows:
In Section 2; we define alternative forms of the generating functions for the

Bernstein basis functions. We give functional equations of these generating func-
tions. By using these equations, we derive some identities related to the Bernstein
basis functions. In Section 3, by using the same method in [38], we derive various
functional equations of the generating functions. By using these equations, we
derive some novel and interesting identities for the Bernstein basis functions. In
Section 4, we give a proof of Marsden identity using generating functions for
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the Bernstein basis functions. In Section 5, we give partial differential equations
(PDEs) for the generating functions. By using these equations, we derive some
new derivative formulas for the Bernstein basis functions. In Section 6, we give
integral representations of the Bernstein basis functions. By using these repre-
sentations, we derive some identities related to the Bernstein basis functions. In
Section 7, by applying the Fourier transform and the Laplace transform to the
generating functions, we derive some new series representations of the Bernstein
basis functions. In Section 8, we give the p-adic Volkenborn integral representa-
tions of the Bernstein basis functions.

2 Alternative Forms of the Generating Functions

In this section, we give some alternative forms for the generating functions. By
using these functions, we derive some functional equations. By applying these
functional equations and generalized multinomial identity, we derive some iden-
tities for the Bernstein basis functions. Our new results are also generalized in
Theorem 4.1 in [38].

We give some alternative forms of the generating functions in (3) as follows:
Let k1, · · · , kv ∈ N0 and v ∈ N. We define

GB,k1+···+kv (t, x) =
(tx)k1+···+kv

(k1 + · · ·+ kv)!
evt(1−x) (8)

=

∞∑
n=0

vn−(k1+···+kv)Bn
k1+···+kv

(x)
tn

n!
.

From (2) and (8), we get

k1! · · · kv!
(k1 + · · ·+ kv)!

v∏
l=1

fB,kl
(x, t) =

∞∑
n=0

Bn
k1+···+kv

(x)vn−k1−···−kv
tn

n!
.

Therefore

k1! · · · kv!
(k1 + · · ·+ kv)!

( ∞∑
n=0

Bn
kl
(x)

tn

n!
· · ·

∞∑
n=0

Bn
kv
(x)

tn

n!

)
=

∞∑
n=0

Bn
k1+···+kv

(x)vn−k1−···−kv t
n

n!
.

From the above equation, we obtain∑
m1+···+mv−1=n

B
mv−1

kv
(x)

(mv−1)!

B
mv−2

kv−1
(x)

(mv−2)!
· · ·

Bm1
k1

(x)

m1!

B
n−m1−m2−···−mv−1

k2
(x)

(n−m1 −m2 − · · · −mv−1)!
tn

=
(k1 + · · ·+ kv)!

k1! · · · kv!

∞∑
n=0

Bn
k1+···+kv

(x)vn−k1−···−kv
tn

n!
,

where ∑
m1+···+mv−1=n

=
n∑

mv−1=0

n−mv−1∑
mv−2=0

· · ·
n−m2−m3−···−mv−1∑

m1=0

.

By comparing the coefficients of tn on both sides of the above equation, we arrive
at the following theorem.
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Theorem 2.1. Let n ≥ k1 + · · ·+ kv. Then we have

B
n
k1+···+kv

(x) =
vk1+···+kv−nk1! · · · kv !

(k1 + · · · + kv)!

×
∑

m1+···+mv−1=n

C
n
m1,··· ,mv−1

B
mv−1
kv

(x)B
mv−2
kv−1

(x) · · ·Bm1
k1

(x)B
n−m1−···−mv−1
k2

(x),

where

C
n
m1,··· ,mv−1

=

⎛
⎜⎜⎝ n

m1,m2, · · · , n − m1 − · · · − mv−1

⎞
⎟⎟⎠ .

Remark 2.2. Substituting v = 2 into Theorem 2.1, we have

Bn
k1+k2

(x) =
2k1+k2−nk1!k2!

(k1 + k2)!

n∑
m1=0

(
n
m1

)
Bm1

k1
(x)Bn−m1

k2
(x)

(cf. [38, Theorem 4.1]).

Here, we need the following generalized multinomial identity.

Lemma 2.3. (Generalized multinomial identity [5, p. 41, Equation (12m)]) If
x1, x2, . . . , xm are commuting elements of a ring (⇔ xixj = xjxi, 1 ≤ i < j ≤
m), then we have for all real or complex variables α:

(x1 + x2 + · · ·+ xm)
α
=

∑
v1,v2,...,vm≥0

Cα
v1,··· ,vm1

xv11 x
v2
2 · · ·xvmm , (9)

where the last summation takes place over all positive or zero integers vi ≥ 0,
and

Cα
v1,··· ,vm1

=

(
α

v1, v2, . . . , vm

)
:=

(α)v1+v2+···+vm

v1!v2! · · · vm!

are called generalized multinomial coefficients, where

(n)k = n (n− 1) · · · (n− k + 1) .

and (x)0 = 1.

Remark 2.4. The following multinomial identity is equivalent to (9):

(x1 + x2 + · · ·+ xv)
k =

∑
m1+m2+...+mv−1=k

x
m1
1

m1!

x
m2
2

m2!
· · ·

x
k−(m1+m2+...+mv−1)
v

(k − (m1 + m2 + . . . + mv−1))!

=
∑

m1+m2+...+mv−1=k

Ck
m1,··· ,mv−1

x
m1
1 x

m2
2 · · · xk−(m1+m2+...+mv−1)

v ,

where ∑
m1+m2+...+mv−1=k

=

k∑
m1=0

k−m1∑
m2=0

· · ·
k−m1−m2−···−mv−1∑

mv=0

.
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We set

FB,k(t, x1 + · · ·+ xv) =
tk(x1 + · · ·+ xv)

k

k!
et(v−x1−···−xv) (10)

=

∞∑
n=0

vnBn
k

(
x1 + · · ·+ xv

v

)
tn

n!
.

From Lemma 2.3, we have the following functional equation for the generating
functions of the Bernstein basis functions:∑

m1+m2+...+mv−1=k

v∏
l=1

fB,ml
(xl, t) =

∞∑
n=0

vnBn
k

(
x1 + · · ·+ xv

v

)
tn

n!
.

Thus we have

∑
m1+m2+...+mv−1=k

(
fB,m1

(x1, t)fB,m2
(x2, t) · · · fB,mv (xv , t)

)
=

∞∑
n=0

v
n
B

n
k

(
x1 + · · · + xv

v

)
tn

n!
.

By (2), we obtain

∑
m1+m2+...+mv−1=k

( ∞∑
n=0

Bn
m1

(x1)
tm1

m1!
· · ·

∞∑
n=0

Bn
ml

(xl)
tml

ml!

)

=

∞∑
n=0

vnBn
k

(
x1 + · · ·+ xv

v

)
tn

n!

where 0 ≤ x1+···+xv

v ≤ 1.
Hence

∞∑
n=0

⎧⎨⎩ ∑
m1+m2+...+mv−1=k

∑
j1+...+jv−1=n

Cn
j1,j2,··· ,jv−1,n−j1−j2−···−jv−1

×Bj1
m1

(x1)B
j2
m2

(x2) · · ·Bn−j1−j2−···−jv−1

k−m1−m2−...−mv−1
(xv)

tn

n!

}
=

∞∑
n=0

vnBn
k

(
x1 + · · ·+ xv

v

)
tn

n!
.

Comparing the coefficients of tn on both sides of the above equation, we arrive
at the following theorem.

Theorem 2.5. Let 0 ≤ x1+···+xv

v ≤ 1. Then we have

Bn
k

(
x1 + · · · + xv

v

)
=

1

vn

∑
m1+m2+...+mv−1=k

∑
j1+...+jv−1=n

Cn
j1,j2,··· ,jv−1 ,n−j1−j2−···−jv−1

×Bj1
m1

(x1)B
j2
m2

(x2) · · ·B
n−j1−j2−···−jv−1
k−m1−m2−...−mv−1

(xv).
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We note that proofs of Theorem 2.1 and Theorem 2.5 can also be given by
induction method on v.

Remark 2.6. Substituting v = 2 into Theorem 2.5, we get the following iden-
tity:

Bn
k

(
x1 + x2

2

)
=

1

2n

k∑
m1=0

n∑
j1=0

(
n
j1

)
Bj1

m1
(x1)B

n−j1
k−m1

(x2).

3 New Identities for the Bernstein Basis Functions

In this section, by using the same method in [38], we give some functional equa-
tions for the generating functions. By using these equations, we derive some new
identities for the Bernstein basis functions.

We set the following generating function:

g(x, y; t) =
∞∑
n=0

(x− y)n
tn

n!
. (11)

Using the series expansion for the exponential function, we can write (11) as
follows

g(x, y; t) = et(x−y).

By (11), we derive the following functional equation:

g(x, 0; t)g(1, x; t) = g(1, 0; t).

From the above equation, we get

∞∑
n=0

xn
tn

n!

∞∑
n=0

(1− x)
n t

n

n!
=

∞∑
n=0

tn

n!
.

Therefore
∞∑
n=0

n∑
k=0

xk (1− x)n−k tn

k!(n− k)!
=

∞∑
n=0

tn

n!
.

Equating the coefficients of tn on both sides of the above equation, we obtain
the following sum of the Bernstein basis functions:

Theorem 3.1
n∑

k=0

Bn
k (x) = 1

Remark 3.2. From (3), in [38], we found the following functional equation:

∞∑
k=0

fB,k(x, t) = et,

and by using this functional equation, we also proved the sum of the Bernstein
basis functions [38].
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By (11), we derive the following functional equation:

g(0, x; t)g(1, x; t) = g(1, 2x; t).

From the above equation, we get

∞∑
n=0

(−x)n t
n

n!

∞∑
n=0

(1− x)n
tn

n!
=

∞∑
n=0

(1− 2x)n
tn

n!
.

Therefore

∞∑
n=0

n∑
k=0

(−1)k xk (1− x)n−k tn

k!(n− k)!
=

∞∑
n=0

(1− 2x)n
tn

n!
.

Equating the coefficients of tn on both sides of the resulting equation, we obtain
the following alternating sum for the Bernstein basis functions:

Theorem 3.3
n∑

k=0

(−1)kBn
k (x) = (1− 2x)

n
. (12)

Remark 3.4. In [38], we found the following functional equation:

∞∑
k=0

(−1)kfB,k(x, t) = e(1−2x)t, (13)

and by using this equation, we also proved (12). The proof of (12) was also given
by Goldman ( [9], [10], [11]).

In [38], we derived the following functional equation:

fB,k(xy, t) = fB,k(x, yt)e
(1−y)t (14)

By using (14), we proved the subdivision property for the Bernstein basis func-
tions by the following theorem.

Theorem 3.5. (Subdivision property)

Bn
j (xy) =

n∑
k=j

Bk
j (x)B

n
k (y).

The proof of this theorem is also given by the following references (cf. [7], [9],
[10], [11], [38]).

By using (14), we derive the following identity related to the Bernstein basis
functions.

Theorem 3.6

n∑
l=0

(
n
l

)
yn−lBl

k(xy) =

n∑
j=0

(
n
j

)
Bj

k(x)y
j . (15)
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Proof. By using (14), we obtain the following functional equation:

fB,k(xy, t)e
ty = fB,k(x, yt)e

t. (16)

Combining (2) with this equation, we get

∞∑
n=0

Bn
k (xy)

tn

n!

∞∑
n=0

yn
tn

n!
=

∞∑
n=0

Bn
k (x)

(ty)
n

n!

∞∑
n=0

tn

n!
.

Therefore

∞∑
n=0

(
n∑

l=0

(
n
l

)
Bl

k(x)y
n−l

)
tn

n!
=

∞∑
n=0

⎛⎝ n∑
j=0

(
n
j

)
yjBj

k(x)y
l

⎞⎠ tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive
at the desired result.

Substituting x = 1 into (15), we get the following corollary:

Corollary 3.7
n∑

l=0

(
n
l

)
yn−lBl

k(y) =

(
n
k

)
yk. (17)

From (2), we obtain the following functional equation:

ext
∞∑
n=0

Bn
k (x)

tn

n!
=
tkxk

k!
et. (18)

By using (18), we can give another proof of (17) as follows:
Second proof of (17). By using (18), we get

∞∑
n=0

xn
tn

n!

∞∑
n=0

Bn
k (x)

tn

n!
=
tkxk

k!

∞∑
n=0

tn

n!
.

Therefore
∞∑
n=0

⎛⎝ n∑
j=0

(
n
j

)
xk−jBj

k(x)

⎞⎠ tn

n!
=
xk

k!

∞∑
n=0

tn+k

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive
at the the desired result.

By using (14), we proved the following identity.

Theorem 3.8. ( [36, Theorem 10])

n∑
j=0

(−1)n−j

(
n
j

)
Bj

k(xy) = yn
n∑

l=0

(−1)n−l

(
n
l

)
Bl

k(x). (19)
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By substituting x = 1 into (19), then we obtain the following identity:

Corollary 3.9

n∑
j=0

(−1)n−j

(
n
j

)
Bj

k(y) = (−1)n−k

(
n
k

)
yn.

4 Proof of the Marsden Identity

In this section, using the generating functions, we prove the Marsden identity.
This identity was also proved in (cf. [2], [7], [6], [9], [10], [11], [12], [13], [14], [17],
[23], [24], [25], [26], [21], [28], [27], [29]).

By (11), we derive the following functional equation:

g(y, x; t) = (−1)j k!j!(xyt)−k−jfB,k(x, yt)fB,j(y,−xt). (20)

By using the above equation, we prove the Marsden identity by the following
theorem:

Theorem 4.1

(y − x)
n
=

n∑
k=0

(−1)k
1(
n
k

)Bn
n−k(y)B

n
k (x). (21)

Proof. By substituting (2) and (11) into (20), we get

∞∑
n=0

(y − x)n
tn

n!

=

∞∑
n=0

Bn
k (x)

(ty)
n−k−j

k!j!

n!

∞∑
n=0

(−1)n+jBn
j (y)

xn−k−jtn

n!
.

Summing firs over j + k = n and then over n, the right hand side of the above
equation is written as follows:

∞∑
n=0

(x− y)
n t

n

n!

=

∞∑
n=0

(
n∑

k=0

(−1)k
k!(n− k)!

n!
Bn

n−k(y)B
n
k (x)

)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive
at the desired result.
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5 Partial Differential Equations (PDEs) for the
Generating Functions

In this section, we give PDEs for the generating functions of the Bernstein basis
functions. By using these equations, we derive some new derivative formulas for
the Bernstein basis functions.

By differentiating the generating functions in (3) with respect to x, we get
the following partial derivative equations:

∂

∂x
fB,k(x, t) =

(
k

x
− t

)
fB,k(x, t), (22)

∂

∂x
fB,k(x, t) =

k

x
fB,k(x, t)−

k + 1

x
fB,k+1(x, t), (23)

and
∂

∂x
fB,k(x, t) = t (fB,k−1(x, t)− fB,k(x, t)) . (24)

To derive formulas for the derivatives of the Bernstein basis functions, we use
the above PDEs in (22)-(24).

Theorem 5.1. We have

d

dx
Bn

k (x) =
k

x
Bn

k (x)−Bn−1
k (x). (25)

Proof. From (22) and (2), we obtain

∞∑
n=0

d

dx
Bn

k (x)
tn

n!
=

(
k

x
− t

) ∞∑
n=0

Bn
k (x)

tn

n!
.

Hence ∞∑
n=0

d

dx
Bn

k (x)
tn

n!
=
k

x

∞∑
n=0

Bn
k (x)

tn

n!
−

∞∑
n=0

Bn
k (x)

tn+1

n!
.

Comparing the coefficients of tn on both sides of the above equation, we arrive
at the desired result.

Theorem 5.2. We have

d

dx
Bn

k (x) =
k

x
Bn

k (x)−
k + 1

x
Bn

k+1(x). (26)

Proof. From (23) and (2), we get

∞∑
n=0

d

dx
Bn

k (x)
tn

n!
=
k

x

∞∑
n=0

Bn
k (x)

tn

n!
− k + 1

x

∞∑
n=0

Bn
k+1(x)

tn

n!
.

Hence
∞∑

n=0

d

dx
Bn

k (x)
tn

n!
=

∞∑
n=0

(
k

x
Bn

k (x)−
k + 1

x
Bn

k+1(x)

)
tn

n!
.



482 Y. Simsek

Comparing the coefficients of tn on both sides of the above equation, we arrive
at the desired result.

By using (24), we arrive at the following theorem.

Theorem 5.3. We have

d

dx
Bn

k (x) = n
(
Bn−1

k−1 (x) −Bn−1
k (x)

)
. (27)

By using the generating functions, proof of formula (27) was also given by the
author [38].

By differentiating the generating functions in (3) with respect to x and t,
respectively, we get the following second order PDE:

∂2

∂x∂t
fB,k(x, t) = − (1 + t− xt) fB,k(x, t) + (1 + t− 2xt) fB,k−1(x, t) (28)

+txfB,k−2(x, t).

By combining (2) with the above equation, we arrive at the following theorem,
which gives us another new derivative formula for the Bernstein basis functions.

Theorem 5.4. We have

d

dx
Bn+1

k (x) = Bn
k−1(x) + n (x− 1)Bn−1

k (x) + nxBn−1
k−2 (x)

+n (1− 2x)Bn−1
k−1 (x)−Bn

k (x).

Proof. From (28) and (2), we have

∞∑
n=1

d

dx
Bn

k (x)
tn−1

(n− 1)!

= −
∞∑
n=0

Bn
k (x)

tn

n!
+ (x− 1)

∞∑
n=0

Bn
k (x)

tn+1

n!
+

∞∑
n=0

Bn
k−1(x)

tn

n!

+ (1− 2x)
∞∑

n=0

Bn
k−1(x)

tn+1

n!
+ x

∞∑
n=0

Bn
k−2(x)

tn+1

n!
.

Hence

∞∑
n=0

d

dx
Bn+1

k (x)
tn

n!

= −
∞∑
n=0

Bn
k (x)

tn

n!
+ (x− 1)

∞∑
n=0

nBn−1
k (x)

tn

n!
+

∞∑
n=0

Bn
k−1(x)

tn

n!

+ (1− 2x)

∞∑
n=0

nBn−1
k−1 (x)

tn

n!
+ x

∞∑
n=0

nBn−1
k−2 (x)

tn

n!
.

Comparing the coefficients of tn on both sides of the above equation, we arrive
at the desired result.
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6 Integral Representations of the Bernstein Basis
Functions

In this section, we give integral representations of the Bernstein basis functions.

Theorem 6.1

b∫
a

Bn
k (x; a, b)dx =

(
n
k

)
(b− a)B(k + 1, n− k + 1), (29)

where Bn
k (x; a, b) is defined in (4) and B(α, ω) denotes the Beta function which

is defined by

B(n,m) =
Γ (n)Γ (m)

Γ (n+m)
=

(n− 1)!(m− 1)!

(n+m− 1)!
(30)

n,m ∈ N (cf. [41, p. 9, Eq-(62)]).

Proof. Setting t = x−a
b−a in the following well known result:

B(l, v) =

1∫
0

tl−1(1− t)v−1dt, (31)

where l, v ∈ N = {1, 2, 3, · · · } (cf. [41, p. 9, Eq-(60)]), we obtain

B(l, v) =
1

b− a

b∫
a

(
x− a

b− a

)l−1(
b− x

b− a

)v−1

dx (32)

where
a < b.

Substituting l − 1 = k and v − 1 = n− k into (32), we have

b∫
a

(
x− a

b− a

)k (
b− x

b− a

)n−k

dx = (b− a)B(k + 1, n− k + 1).

Multiplying both sides of the above equation by

(
n
k

)
, we arrive at the desired

result.

Remark 6.2. By using (32), we arrive at the following definite integrals related
to the Beta function:

b∫
a

(x− a)
l−1

(b− x)
v−1

dx = (b− a)
l+v−1

B(l, v) (33)

(cf. see also [41, p. 10, Eq-(69)]).
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Theorem 6.3

b∫
a

Bn
k (x; a, b)dx =

(
n
k

) k∑
j=0

n−k∑
l=0

(−1)n−j−l

(
k
j

)(
n− k
l

)

×ak−jbn+j−k+1 − an−l+1bl

n+ j − k − l + 1
. (34)

Proof. From (1),

b∫
a

Bn
k (x; a, b)dx =

(
n
k

) k∑
j=0

n−k∑
l=0

(−1)−j−k−l

(
k
j

)(
n− k
l

)

×ak−jbl
b∫

a

xn+j−k−ldx.

Therefore, we arrive at the desired result.

7 Application of the Fourier Transform and the Laplace
Transform to the Generating Functions

By applying the Fourier transform and the Laplace transform to the generating
functions for the Bernstein basis functions, we obtain some interesting series rep-
resentations for the Bernstein basis functions. From (10), we obtain the following
functional equation:

tk (x1 + · · ·+ xv)
k

k!
e−t(x1+···+xv) = FB,k(t, x1 + · · ·+ xv)e

−vt. (35)

Integrating this equation with respect to t from 0 to ∞, we get

∞∑
n=0

vnBn
k (

x1+···+xv

v )

n!

∞∫
0

tne−vtdt =
(x1 + · · ·+ xv)

k

k!

∞∫
0

tke−t(x1+···+xv)dt.

Substituting the following well known formula for the Laplace transform in the
above equation

∞∫
0

tne−vtdt =
n!

vn+1
,

we arrive at the following Theorem.

Theorem 7.1. Let 0 ≤ x1+···+xv

v ≤ 1. Then

∞∑
n=0

Bn
k

(
x1 + · · ·+ xv

v

)
=

v

x1 + · · ·+ xv
.
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Remark 7.2. Substituting v = 1 into Theorem 7.1, we have

∞∑
n=0

Bn
k (x1) =

1

x1
(36)

(cf. [38, Theorem 5.1]).

From (14), we obtain functional equation

fB,k(xy, t)e
−t = fB,k(x, yt)e

−ty (37)

(cf. [36]. By applying the Laplace transform to Equation (37), we arrive at the
following Theorem (cf. [36]):

Theorem 7.3. Let x, y ∈ [0, 1]. Then

∞∑
n=0

Bn
k (xy) =

∞∑
n=0

1

y
Bn

k (x). (38)

Remark 7.4. Substituting x = 1 into (38), we arrive at Equation (36).

By applying the Fourier transform to Equation (35), we have

(x1 + · · ·+ xv)
k

k!

∞∫
0

tke−t(x1+···+xv+is)dt

=

∞∑
n=0

vnBn
k

(
x1 + · · ·+ xv

v

)
1

n!

∞∫
0

tne−(v+is)tdt.

Substituting the following well known formula for the Fourier transform in
the above equation

∞∫
0

tne−(v+is)tdt =
n!

(v + is)
n+1 ,

we arrive at the following Theorem.

Theorem 7.5. Let 0 ≤ x1+···+xv

v ≤ 1 and s ∈ R. We have

∞∑
n=0

vnBn
k

(
x1+···+xv

v

)
(v + is)

n+1 =
(x1 + · · ·+ xv)

k

(x1 + · · ·+ xv + is)
k+1

, (39)

where
∣∣∣ v−(x1+···+xv)

v(v+is)

∣∣∣ < 1.
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8 p-adic Volkenborn Integral Representations of the
Bernstein Basis Functions

In this section, we give the p-adic integral representations of the Bernstein basis
functions. Applying the p-adic Volkenborn integral on Zp to the Bernstein basis
functions, we give relations between the Bernstein basis functions, the Bernoulli
numbers and the Euler numbers.

In order to prove our results, we recall work of Kim [15] that the p-adic q-
Volkenborn integral is defined below. It is well known that

μq(x+ pNZp) =
qx

[pN ]q

is a distribution on Zp for q ∈ Cp with | 1 − q |p< 1 (cf. [15]). Let UD (Zp)
be a set of uniformly differentiable functions on Zp. The p-adic q-integral of the
function f ∈ UD (Zp) is defined by Kim [15] as follows:

∫
Zp

f(x)dμq(x) = lim
N→∞

1

[pN ]q

pN−1∑
x=0

f(x)qx,

where

[x] =
1− qx

1− q
.

From this equation, the bosonic p-adic integral (p-adic Volkenborn integral) was
considered from a physical point of view to the bosonic limit q → 1, as follows
( [15]): ∫

Zp

f (x) dμ1 (x) = lim
N→∞

1

pN

pN−1∑
x=0

f (x) , (40)

where

μ1

(
x+ pNZp

)
=

1

pN
.

The p-adic q-integral is used in many branch of mathematics, mathematical
physics and other areas (cf. [1], [15], [18], [30], [31], [32], [33], [42], [43]).

By using (40), we have the Witt’s formula for the Bernoulli numbers Bn as
follows: ∫

Zp

xndμ1 (x) = Bn (41)

(cf. [1], [15], [16], [19], [18], [30], [33], [32], [40], [42], [43]).
We consider the fermionic integral in contrast to the bosonic integral, which

is called the fermionic p-adic Volkenborn integral on Zp cf. [16]. That is

∫
Zp

f (x) dμ−1 (x) = lim
N→∞

pN−1∑
x=0

(−1)
x
f (x) (42)
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where

μ1

(
x+ pNZp

)
=

(−1)x

pN

(cf. [16]). By using (42), we have the Witt’s formula for the Euler numbers En

as follows: ∫
Zp

xndμ−1 (x) = En, (43)

(cf. [16], [19], [33], [32], [40], [42]).
The multiplication of v basis functions Bn

k (x) is given by the following formu-
las:

v∏
j=1

B
nj

kj
(x) =

v∏
j=1

(
nj

kj

)
(
n1 + . . .+ nv

k1 + . . .+ kv

)Bn1+...+nv

k1+...+kv
(x), (44)

Hence, we get the following Lemma:

Lemma 8.1

∫
Zp

v∏
j=1

B
nj

kj
(x)dμ1 (x) =

v∏
j=1

(
nj

kj

)
(
n1 + . . .+ nv

k1 + . . .+ kv

) ∫
Zp

Bn1+...+nv

k1+...+kv
(x)dμ1 (x) . (45)

By applying the bosonic p-adic Volkenborn integral and (45) to Theorem 2.1,
we have ∫

Zp

Bn
k1+···+kv

(x)dμ1 (x)

=
vk1+···+kv−nk1! · · · kv!

(k1 + · · ·+ kv)!

∑
m1+···+mv−1=n

Cn
m1,··· ,mv−1

×
∫
Zp

B
mv−1

kv
(x)B

mv−2

kv−1
(x) · · ·Bm1

k1
(x)B

n−m1−···−mv−1

k2
(x)dμ1 (x) .

By applying (41) to the above equation, we get the following theorem.

Theorem 8.2

∫
Zp

B
n
k1+···+kv

(x)dμ1 (x)

=
vk1+···+kv−nk1! · · · kv !

(k1 + · · · + kv)!

∑
m1+···+mv−1=n

C
n
m1,··· ,mv−1

⎛
⎜⎜⎝ nv−1

kv

⎞
⎟⎟⎠ · · ·

⎛
⎜⎜⎝ m1

k1

⎞
⎟⎟⎠

⎛
⎜⎜⎝ n − m1 − · · · − mv−1

kj

⎞
⎟⎟⎠

n−k1−···−kv∑
j=0

(−1)
n−k1−···−kv

⎛
⎜⎜⎝ n − k1 − · · · − kv

j

⎞
⎟⎟⎠Bn−j ,

where Bn−j denotes the Bernoulli numbers.
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By applying the fermionic p-adic Volkenborn integral and (45) to Theorem
2.1, we have∫

Zp

Bn
k1+···+kv

(x)dμ−1 (x)

=
vk1+···+kv−nk1! · · · kv!

(k1 + · · ·+ kv)!

∑
m1+···+mv−1=n

Cn
m1,··· ,mv−1

×
∫
Zp

B
mv−1

kv
(x)B

mv−2

kv−1
(x) · · ·Bm1

k1
(x)B

n−m1−···−mv−1

k2
(x)dμ−1 (x) .

By applying (43) to the above equation, we get the following theorem:

Theorem 8.3

∫
Zp

B
n
k1+···+kv

(x)dμ1 (x)

=
vk1+···+kv−nk1! · · · kv !

(k1 + · · · + kv)!

∑
m1+···+mv−1=n

C
n
m1,··· ,mv−1

⎛
⎜⎜⎝ nv−1

kv

⎞
⎟⎟⎠ · · ·

⎛
⎜⎜⎝ m1

k1

⎞
⎟⎟⎠

⎛
⎜⎜⎝ n − m1 − · · · − mv−1

kj

⎞
⎟⎟⎠

n−k1−···−kv∑
j=0

(−1)
n−k1−···−kv

⎛
⎜⎜⎝ n − k1 − · · · − kv

j

⎞
⎟⎟⎠En−j ,

where En−j denotes the Euler numbers.

Remark 8.4. By using (45), we also have the following results:∫
Zp

v∏
j=1

B
nj

kj
(x)dμ1 (x) =

v∏
j=1

(
nj

kj

) k∑
j=0

n−k∑
l=0

(−1)n−j−l

(
k
j

)(
n− k
l

)
Bn+j−k−l,

and∫
Zp

v∏
j=1

B
nj

kj
(x)dμ−1 (x) =

v∏
j=1

(
nj

kj

) k∑
j=0

n−k∑
l=0

(−1)n−j−l

(
k
j

)(
n− k
l

)
En+j−k−l

(cf. [12], [17], [23], [20]).
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Abstract. To efficiently animate and render large models consisting of bi-cubic
patches in real time, we split the rendering into pose-dependent, view-dependent
(Compute-Shader supported) and pure rendering passes. This split avoids recom-
putation of curved patches from control structures and minimizes overhead due
to data transfer – and it integrates nicely with a technique to determine a near-
minimal tessellation of the patches while guaranteeing sub-pixel accuracy. Our
DX11 implementation generates and accurately renders 141,000 animated bi-
cubic patches of a scene in the movie ‘Elephant’s Dream’ at more than 300 frames
per second on a 1440×900 screen using one GTX 580 card.

1 Introduction

Curved, smooth, piecewise polynomial surfaces have become standard in high end,
movie-quality animation. Subdivision surfaces [1,2], spline (NURBS) surfaces or Bézier
patch-based surfaces are chosen over polygonal, polyhedral, or faceted-based represen-
tations both for aesthetic reasons and for their ability to represent models more com-
pactly. In particular, curved surfaces yield more life-like transitions and silhouettes and,
in principle, support arbitrary levels of resolution without exhibiting polyhedral arti-
facts (see Fig. 1). But while curved surfaces are commonly used in cinematic production
and geometric design, they are not commonly used for interactive viewing. Animation
artists and designers typically work off faceted models at a given resolution and have to
call special off-line rendering routines to inspect the true outcome of their work. At the
other end of the spectrum, game designers opt for coarsely-faceted models, made more
acceptable by careful texturing, to achieve real-time rendering with limited resources
under competing computational demands, e.g. computing game physics. In an attempt
to narrow the gap, a number of mesh-to-surface conversion algorithms have been devel-
oped in the past years that run efficiently on the GPU (see Section 2). But so far their
rendering has depended on screen projection heuristics without guarantees of accuracy.

The present paper explains how to render, at interactive rates, and on high-resolution
screens, a substantial number of animated curved surfaces free of perceptible polyhedral
artifacts, parametric distortion and pixel dropout. The paper leverages and extends the
authors’ approach [3] for efficiently determining the near-minimal tessellation density
required for pixel-accurate rendering (see Section 2). Determining the near-minimal
tessellation density requires, depending on the model, between 1% and 5% extra work.
However, by avoiding overtessellation, pixel-accurate rendering is often faster than ren-
dering based on heuristics (see Fig. 2, middle and right). Specifically, the paper shows
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Fig. 1. Faceted versus smooth: Proog’s head

how to integrate the approach into animation the animation pipeline to make it inter-
active. Rather than repeatedly sending large control nets from the CPU to the GPU for
rendering, we load the base mesh(es) once and we apply morph-target and skeletal-
animation transformations to the characters’ mesh model on the GPU and convert it
into a curved surface. We then use the natural partition of animated sequences into
pose-dependent, view-dependent and pure rendering frames to compute both the an-
imation and the pixel-accurate patch-tessellation in a combination of two, one or no
Compute Shaders preceding each standard rendering pass on the GPU.

As proof of concept, we animated and rendered 141K patches of a scene of the
open-source movie Elephants Dream. In 2006, each frame of the movie required 10
minutes of CPU time at full-HD resolution [4]. We can now render the higher-order
surfaces and textures (leaving out post effects) on the GPU at more than 300 frames
per second Fig. 15 thanks to parallelism and new algorithms that take advantage of this
parallelism. To wit, doubling processor speed every year since 2006 would reduce the
time per frame only to ca 10 seconds per frame, three orders of magnitude slower.

Overview. In Section 2 we review the definition of pixel-accurate rendering of curved
surfaces, animation basics and the conversion of faceted to smooth curved surfaces.
Section 3 presents the idea and formulas for enforcing pixel-accurate rendering. Sec-
tion 4 presents the algorithm and an efficient implementation, including pseudo-code,
of pixel-accurate rendering of animated curved surfaces. In Section 5 we analyze the
implementation’s performance and discuss trade-offs and alternative choices. We also
compare to a similar widely-available DX11 sample program.

2 Background

To efficiently pixel-accurately render the surfaces of Elephants Dream on the GPU,
our proposed animation framework has to near-optimally set the tessellation factor for
Bézier patches after replicating linear skeletal animation, relative shape-key animation
(morph targets), and mesh-to-surface conversion on the GPU.
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Fig. 2. Balancing pixel-accuracy and rendering speed. No red or green colors should be visible
in the lower row if the tessellation is sufficiently fine for pixel-accuracy. The red and the green
spots indicate a parametric distortion of more than 1/2 pixel (cf. the color coding lower left).
Additional objects are analyzed in Fig. 12 of [3].

Tessellation and Pixel-accuracy. A key challenge when working with a curved sur-
face is to set the density of evaluation so that the surface triangulation is a good proxy
of the smooth surface. The density, or tessellation, has to be sufficiently high to prevent
polyhedral artifacts and parametric distortions, and sufficiently low to support fast ren-
dering. In modern graphics pipelines, the level of detail can be prescribed by setting the
tessellation factor(s) τ of each patch p : (u, v) ∈ U → R3 of the curved surface. In 3D
movie animation, it is common practice to over-tessellate and shade a very high number
of fragments. Real-time animation cannot afford this since each fragment is evaluated,
rasterized and shaded. Since the camera is free to zoom in or out of the scene, fixed level
of tessellation results in faceted display or overtessellation. This disqualifies approaches
that require setting τ a priori. Popular screen-based heuristics based on measuring edge-
length or estimating flatness (see e.g. [5], [6, Sec 7]) do not come with guarantees or
require an a priori undetermined number of passes to recursively split patches and verify
that the measure falls below a desired tolerance.
Pixel-accurate rendering, Fig. 2, middle, determines the tessellation density (just) fine
enough to guarantee correct visibility, prevent parametric distortion or pixel-dropout.
Pixel-accuracy has two components: covering (depth) accuracy and parametric (distor-
tion) accuracy [3, Section 3]. Covering accuracy requires that each pixel’s output value
be controlled by one or more unoccluded pieces of patches whose projection overlaps
it sufficiently and parametric accuracy requires that for each pixel the following holds
(cf.Fig. 3). Let [ xy ] be the pixel’s center, p : R2 → R3 a surface patch and (u, v) a
parameter pair. Then the surface point p(u, v) ∈ R3 must project into the pixel:

‖P (p(u, v))− [ xy ]‖∞ < 0.5. (1)
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Fig. 3. Triangulation and projection distorting the image of a curved surface. Pixel-accurate
rendering guarantees that the distortion is at below pixel level.

Inequality (1) prevents parametric distortion: if P (p(u, v)) lies outside the pixel asso-
ciated with parameters (u, v) then the wrong texture, normal or displacement is com-
puted causing artifacts incompatible with accurate rendering. Parametric inaccuracy is
color-encoded in Fig. 2: lack of accuracy is shown in red and green. Predictably, too
coarse a tessellation yields a high frame rate and too fine a tessellation slows down ren-
dering. The largely grey coloring of the teapot in Fig. 3, row two, under pixel-accurate
rendering, indicating a distortion just below the pixel threshold, is therefore highly
desirable. Work similar to [3], but based on the bounds in [7] includes [8] and most
recently [9].

Skeletal animation. The most common technique for character animation, used by the
artists of Elephants Dream, is linear blend skinning, also known as linear vertex blend-
ing or skeletal subspace deformation [10]. Here a character is defined by a template,
a faceted model, called skin. The models animation or deformation is defined by a
time-varying set of rigid transformations, called bones, that are organized into a tree
structure, called skeleton. Any vertex position in a linear blend skin is expressed as a
linear combination of the vertex transformed by each bone’s coordinate system: at time
ti, a convex combination ωk of bone transformations Rk is applied to each skin vertex
initial position v(0):

v(t) =
(∑

k

ωkRk(t)
)
v(0),

∑
k

ωk = 1. (2)

The weights ωk are assigned by the artist. Section 4 provides pseudo-code.
Since this direct linear combination of rotation matrices generically does not yield

a valid rotation, a number of improvements have been suggested [11,12]. In particular
dual quaternions [12] are sufficiently simple to have been implemented in Blender. Our
framework is agnostic to the choice of animation since its implementation as a Compute
Shader allows alternative animation techniques to be substituted such as deformation
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(a) without shape keys (b) with shape keys

Fig. 4. Emo’s mouth opened with shape keys

of the mesh points with respect to control cages (see e.g. [13,14,15,16]). However,
since the artists of Elephants Dream used linear blend skinning, and compensated for
its shortcomings, our real-time rendering applies linear, skeletal animation.

Shape Keys. For more nuanced, say facial expressions, Elephants Dream, and hence
our implementation, additionally applies shape keys, also known as morph targets or
blend shapes. Shape keys average between morph targets representing standard poses
(see e.g. [17] for a detailed explanation.)

Mesh-to-Surface Conversion. In recent years, a number of algorithms have been de-
veloped to use polyhedral meshes as control nets of curved surfaces and efficiently
evaluate these curved surfaces on the GPU. Such algorithms include conversions to
piecewise polynomial and rational representation [18,19,20,21] as well as subdivision
[22,23,6,24]. Our framework is agnostic to the choice of conversion algorithm. To be
able to compare our GPU implementation to a widely accessible implementation, we
chose Approximate Catmull-Clark (ACC) [20]: optimized shader code of ACC ani-
mation, SubD11, is distributed with MicroSoft DX11 [25]. The output of ACC is one
bi-cubic patch patch for each face of the (refined) control mesh (plus a pair of tangent
patches to improve the impression of smoothness as in [26]). Note that parametric accu-
racy is not concerned with whether ACC provides a good approximation to subdivision
surfaces, an issue of independent interest (cf. [27,28]).

3 Computing Near-Minimal Accurate Tessellation Levels

The two main ingredients that make pixel-accurate rendering efficient are avoiding re-
cursion and triangulating as coarsely as possible while guaranteeing pixel-accuracy (see
Fig. 5). This section explains how to address both challenges by computing a near-
minimal tessellation factor τ in a single step according to the approach in [3]. The tes-
sellation factor is computed with the help of slefe-boxes [29]. Bilinear interpolants of
these slefe-boxes, called slefe-tiles, sandwich the curved surface and the triangulation
as illustrated in Fig. 6. Such slefe-boxes are not traditional bounding boxes enclosing a
patch. Rather the maximal width of slefe-boxes gives an upper bound on the variance
of the exact curved surface from triangulation. This reflects the goal: to partition the
domain sufficiently finely so that the variance and hence the ‘width’ of the all projected
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Fig. 5. Optimal tessellation of curved surfaces. Fewer, hence bigger triangles improve effi-
ciency. (Note the different use of color-coding from Fig. 2).

Fig. 6. The bi-linear interpolants to groups of four slefe-boxes define slefe-tiles that locally en-
close the surface. Note that the tiles, while useful of collision, are never explicitly computed for
the pixel-accurate rendering.

slefe-boxes and therefore of the slefe-tiles falls below a prescribed tolerance, e.g. half
the size of a pixel.

Since knot insertion stably converts NURBS patches of degree (d1, d2) to tensor-
product patches in Bézier-form (glMap2 in OpenGL) with coefficients cij ∈ R3 and
basis functions bdj ,

p(u, v) :=

d1∑
i=0

d2∑
j=0

cijb
d2

j (v)bd1

i (u), (u, v) ∈ [0..1]2, (3)

and since subdivision surfaces can be treated as nested rings of such patches, we fo-
cus on tensor-product Bézier patches. (Knot insertion can be a pre-processing step or
done on the fly on the GPU. Rational patches are rarely used in animation; if needed,
for strictly positive weights, bounds in homogeneous space plus standard estimates of
interval arithmetic do the trick.) Moreover, slefe-boxes for patches in tensor-product
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form can be derived from bounds in one variable and the computations for building
slefe-boxes are separate in each x, y and z coordinate. We can therefore simplify the
discussion in the next subsection to one univariate polynomial piece p in Bézier-form
with coefficients cj ∈ R and parameter u ∈ [0 . . 1]:

p : R → R, u �→ p(u) :=

d∑
j=0

cjb
d
j (u), bdj :=

(
d

j

)
(1− u)d−juj .

Subdividable Linear Efficient Function Enclosures, abbreviated as slefes, tightly
sandwich non-linear functions p, such as polynomials, splines and subdivision surfaces,
between simpler, piecewise linear, lower and upper functions, p and p:

p ≤ p ≤ p,

[30,31,32,33,29,34,35]. Specifically, in one variable, [30] shows that (cf. Fig. 7, left)

p(t) ≤ p(t) := $(t) +

d−1∑
j=1

max{0,∇2
jp} adj

m
(t) (4)

+

d−1∑
j=1

min{0,∇2
jp} adj

m
(t).

with the matching lower bound p obtained by exchangingmin and max operators. Here

adj , j = 1, . . . , d− 1,

are polynomials that span the space of polynomials of degree d minus the linear func-

tions $(t); adj
m

is an m-piece upper and adj
m

an m-piece lower bound on adj ; and

∇2
jp := cj−1 − 2cj + cj+1 is a second difference of the control points. If p is a lin-

ear function, upper and lower bounds agree. The tightness of the bounds is important
since loose bounds result in over-tessellation. Fig. 7b shows an example from [3], where
the min-max or AABB bound is looser by an order of magnitude than the slefe-width
w := maxt∈[0..1] p(t)− p(t).

Being piecewise linear, the bounding functions adj
m

and adj
m

in (4) are defined by
their values at the uniformly-spaced break points. These values can be pre-computed.
Since, for d = 3, i.e. cubic functions, a32(1−t) = a31(t), Table 1 lists all numbers needed
to compute Fig. 7, e.g., for t = 1/3, the upper and lower breakpoint values −.370370..

Table 1. Values at breakpoints of a m = 3-piece slefe. This table and the tables for higher
degree can be downloaded [36]. Similar slefe-tables exist for splines with uniform knots [30].

t = 0 1/3 2/3 1

a31
3

0 -.370370.. -.296296.. 0
a313 -.069521.. -.439891.. -.315351.. -.008732..
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Fig. 7. The slefe-construction from [29]. (a) The function p(t) := −b31(t) + b32(t) and its upper
bound p. (b) The lower bound a13 and the upper bound a1

3 tightly sandwiching the function
a1 := − 2

3
b31(t) − 1

3
b32(t), using m = 3 segments. Table 1 shows w = max[0..1] p − p to be

< 0.07. The corresponding number for [7] (not illustrated) is 6
8
= 0.75 and for the min-max-

bound 2
3

.

and −.439891... Moreover, by tensoring, the 8 numbers suffice to compute all bounds
required for ACC patches: the tensor-product patch (3) can be bounded by computing
the upper values c̃ij , i = 0, . . . , d1 (for each j = 0, . . . ,m2) of the 1-variable slefe in
the v direction and then treat the values as control points when computing the upper
slefe in the u direction:

p(u, v) ≤
d1∑
i=0

m2∑
j=0

c̃ijb
1
j(v)b

d1

i (u) ≤
m2∑
j=0

m1∑
i=0

c̄ijb
1
i (u)b

1
j(v).

Ensuring Pixel-accuracy. The slefes just discussed are for functions, i.e. one coor-
dinate of the image. Since we want to control the variance of the surface patches
from their triangulation we now consider a patch p : R2 → R3 with three coordi-
nates bounded by bilinear interpolants to upper and lower values at the grid points
(ui, vj), i, j ∈ {0, 1, . . . ,m}. For each (ui, vj), abbreviating pij := p(ui, vj),
pij := p(ui, vj), a slefe-box is defined as

p(ui, vj) :=
pij + pij

2
+ [−1

2
..
1

2
]3(pij − pij), (5)

where [− 1
2 ..

1
2 ]

3 is the 0-centered unit cube. That is, the slefe-box is an axis-aligned box
in R3 (see red boxes in Fig. 8) centered at the average of upper and lower values.

To measure parametric accuracy, we define the minimal screen-coordinate-aligned
rectangle that encloses the screen projection [ xy ] := P (p(ui, vj)) of to the slefe-box
with index i, j (see the blue dashed rectangles in Fig. 8):

qij := [xij ..xij ]× [y
ij
..yij ] � P (p(ui, vj)). (6)
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p(ui, vj)

P (p(ui−1, vj))

p(ui−1, vj) P (p(ui, vj))

x, y pixel size

wxy
xij , yij

xij , yij

Fig. 8. Projected slefe-boxes. The projected slefe-boxes (red) are enclosed by axis-aligned
rectangles (blue, dashed) whose linear interpolant (grey area) encloses the image (here of
p([ui−1..ui], vj)). The (square-root of the) maximal edge-length of the dashed rectangles, in
pixel size, determines the tessellation factor τp.

The maximal edge length over all qij is the parametric width wxy. This width is a close
upper bound on the variance from linearity in the parameterization since the width of
the projected boxes dominates the width of the slefe-tiles – that therefore need not be
computed. The width shrinks to zero when the parameterization becomes linear.

Fig. 9. Shrinkage of the width for a curve segment under subdivision. black: cubic curve, control
polygon, blue: piecewise linear interpolant, red: slefe

We want to determine the tessellation factor τxy ∈ R so that wxy < 1. Let wm(p)
be the width of the projection of patch p measured for a slefe with m pieces and km
a constant between 1.5 and 1, depending only on m. Since partitioning the u-domain
into 1/h segments, and re-representing the function over the smaller interval before re-
applying the bound, scales the maximal second difference down quadratically to h2 its
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original size (cf. Fig. 9), partitioning both the u- and the v-domain into

τxy(m,p) := km
√
wm(p) (7)

many pieces, confines the parameter distortion to below one unit (cf. Fig. 10) Analo-
gously, the width wz(m,p) of the depth component z of the projection measures depth
of the slefe-tiles and therefore trustworthiness of the z-buffer test for covering accuracy.

Fig. 10. Shrinkage of slefe under h-fold subdivision

To guarantee that any error due to linearization is below pixel size and the depth
threshold tolz, we compute the width for low m, say m = 2 or 3, and then apply (7) to
obtain a safe tessellation factor of

τp := max{τxy(m,p), km
√
wz(m,p)/tolz}. (8)

Fig. 5 shows that the resulting triangles are, as hoped for, typically much larger than
pixels and experiments confirm that (8) determines a near-minimal τp in the sense that,
for typical models, already a 10% decrease in τp leads to pixel inaccuracy.

4 Algorithm and Implementation

The main costs, that our algorithm for rendering animated curved surfaces seeks to min-
imize, are the conversion of the mesh to the surface patch coefficients and rendering the
patches with pixel accuracy. For details of the implementation of pixel accuracy as a
Compute Shader pre-pass, we refer to [3]. The key to minimizing the conversion cost
is to restrict conversion to pose changes of the animated character. The key to efficient
pixel-accurate rendering is to integrate the control of the variance of the curved patch
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skeletal animation, conversion

CS (or PS)

update τ

TE DS PS

grid generation evaluation shading

VS

look up τ

HS

GPU buffer: b, animation data, pt, �, τ , camera, materials, textures

new t

new s

else

CS (or PS)

Fig. 11. Mapping of animation and conversion to curved surfaces to the DX11 graphics
pipeline. CS=Compute Shader, VS=Vertex Shader, HS= Hull Shader, TE=Tessellation Engine,
DS= Domain Shader, PS=Pixel Shader.

geometry from its triangulation, as just explained in Section 3, with the conversion to
minimize overhead. Specifically, we split the work as follows.

– For every pose (geometry or mesh connectivity) change, re-compute the control
mesh, all affected patches and slefe-boxes.

– For every view change, measure the width wxy of the boxes’ screen projections and
their depth variance wz.

– Determine the tessellation factor τ according to (8), i.e. a low as possible while still
guaranteeing pixel-accuracy to make best use of the efficient rasterization stage on
the GPU.

Pose and View Change. To minimize conversion and τ computation cost, our imple-
mentation calls either two, one or no Compute Shader passes followed by a standard
DX11 rendering pass. This is illustrated in Fig. 12 and the details are as follows.

(a) If the scene does not change in view or pose then the stored animated curved
surface at time step t, pt, is rendered with the existing tessellation factors.

(b) For each view change at time step s that is not an animation step, the modelview
transformations are applied to the savedpt and the tessellation factors τ are updated
to guarantee pixel-accuracy for the new viewpoint. Then (a) is executed.

(c) For each pose change (animation step t), the coefficients of the animated curved
surface pt are computed by executing the animation and conversion steps. The co-
efficients of pt are stored in the GPU buffer. Then the slefe-boxes are re-computed
and stored and the same computations are executed as in (b).

Throughout, only modified patches are updated.

Mapping to GPU Shader Code. In modern graphics APIs the triangulation density is
set by up to six tessellation factors per surface patch. The two interior tessellation factors
are set to τ , while the other four tessellation factors, corresponding to the boundaries,
are set to the maximum of the interior factors of the patches sharing the boundary.
This coordination in the Compute Shader pass guarantees a consistent triangulation by
avoiding mismatch along boundaries between differently tessellated patches.



502 Y.I. Yeo, S. Bhandare, and J. Peters

animation t changed?

viewing s changed? update, share τ

No

No

Yes

Yes

evaluate, render pt

update �

animated curved surface pt

Fig. 12. Updating slefe-boxes � and the tessellation factors τ is only required when the input
mesh is animated or the view is changed

The pseudo-code of the Compute Shaders is given below. Detailed pseudo-code of
pixel-accurate slefe-estimates is presented in Section 6 of [3]. The rendering pass is
standard DX11 rendering.

The data flow outlined in Fig. 12 is made concrete by the following pseudocode. The
mapping of the pseudocode to the DX11 graphics pipeline is shown in Fig. 11. Recall
that each bi-cubic patch has 4× 4 = 16 coefficients.

function MAIN(t, s)
if new t then COMPUTE SHADER POSE CHANGE(t)
end if
if new s then COMPUTE SHADER VIEW CHANGE(s)
end if

end function

[shared mem cpts[16]]
[num threads 16]

function COMPUTE SHADER POSE CHANGE(t)
vtx id ← thread id+ (patch id ∗ 16)
SHAPE KEY(vtx id, t)
SKELETAL ANIMATION(vtx id, t)
CONVERT TO ACC(vtx id)

end function

[shared mem width[16]]
[num threads 16]

function COMPUTE SHADER VIEW CHANGE(s)
vtx id ← thread id+ (patch id ∗ 16)
width[thread id] ← project slefe(vtx id)
synchronize threads()
if thread id = 1 then
TF ← pick max width(width)
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save to gpu(TF buffer, patch id, TF )
end if

end function

function SHAPE KEY(vtx id, t)
base sk ← get base shape key(vtx id)
shaped vtx ← (0, 0, 0)
for sk in shape keys[vtx id] do
sk wt ← get shape key wt(vtx id, sk, t)
shaped vtx += sk wt ∗ (sk.v[vtx id]− base sk.v[vtx id])

end for
rest vtx[vtx id] ← shaped vtx+ base sk.v[vtx id]

end function

function SKELETAL ANIMATION(vtx id, t)
tot wt ← sum influence weights(vtx id)
final mat ← zero matrix(4, 4)
for bonei in influencing bones[vtx id] do
posed bone mat ← pose mat(bonei, t)
rest bone mat inv ← rest mat inv(bonei)
bone wt ← get bone wt(vtx id, bonei)/tot wt
final mat += (rest bone mat inv ∗ posed bone mat ∗ bone wt)

end for
posed vtx[vtx id] ← rest vtx[vtx id] ∗ final mat

end function

function CONVERT TO ACC(vtx id)
cpts[thread id] ← (0, 0, 0)
for i ← 0 to stencil size[vtx id] do
stencil vtx ← posed vtx[stencil lookup[vtx id, i]]
cpts[thread id]+=stencil wt[vtx id, i] ∗ stencil vtx

end for
normalize(cpts[thread id])
save to gpu(cpt buffer, vtx id, cpts[thread id])
synchronize threads()
slefe ← update slefe(thread id)
save to gpu(slefe buffer, vtx id, slefe)

end function

skeletal animation

GPU buffer: b, animation data,τglobal, camera, materials, textures

grid generationconversion

TE DS PSVS HS

evaluation shading
SubD11 [25]

Fig. 13. DX11 SubD11 implementation [25]. CS=Compute Shader, VS=Vertex Shader, HS=
Hull Shader, TE=Tessellation Engine, DS= Domain Shader, PS=Pixel Shader.
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Table 2. Distribution of work per frame among pose, view and rendering. Pose change dominates

GPU processing % of total
skeletal animation + conversion 58
slefe bounds 4

pose change total 62
view change 6
rendering pass 32

5 Discussion and Comparison

Performance. Table 2 shows the work distribution of a rendering cycle. The pose
change consists of mesh animation and conversion plus recomputation of slefe-box ver-
tices. The pose change dominates the work, but the recomputation of the slefe bounds
accounts for less than 4%. The slefe bounds and their projection make up ca 10% of
the overall work. According to measurements in Section 7 of [3], the bounds are within
12% of the optimal for widely-used, representative test examples in computer graphics
(the tessellation factor in the implementation of [3] was inadvertently scaled by

√
2).

Given that tight bounds reduce work when accurate rendering is required, it is not sur-
prising that 10% computational overhead buys a considerable speedup compared to the
overtessellation of conservatively-applied heuristics.

We used an NVidia GeForce GTX 580 graphics card with Intel Core 2 Quad CPU
Q9450 at 2.66GHz with 4GB memory to render the geometry of the movie Elephants
Dream. Elephants Dream is a 10-minute-long animated movie whose source is open.
In 2006 it was reported to have taken 125 days to render, consuming up to 2.8GB of
memory for each frame in Full-HD resolution (1920×1080) [4]. That is, each frame
took on the order of 10 minutes to render. Since the Elephants Dream character meshes
of Proog and Elmo contain triangles, but ACC requires a quadrilateral input mesh, we
applied the standard cure of one step of Catmull-Clark subdivision yielding 140,964
curved surface patches for Proog and Emo together. In our implementation, we repli-
cated Elephants Dream except that we did not apply post effects so as to isolate the
effect of improved patch rendering. The 141K textured bi-cubic ACC patches render
at over 300 frames per second (fps) with full pixel-accuracy. (We also used a variant
of ACC that avoids the increase in patches and rendered 32K quads and 350 triangles
at 380 fps when animating every frame and 1100 fps when animating at 33 frames per
second.) For comparison, the SubD11 demo scene in Fig. 14 has 4K quadrilaterals and
its frame rate varies with the user-set tessellation factor TF (see upper left of Fig. 14)
between 250 fps at the coarsest level TF = 1 and 23 fps at TF= 64. For a detailed
analysis of how model size, screen size, etc. affect pixel-accurate rendering see [3].

Memory Usage and Data Transfer. By placing the animation and the conversion from
the quad mesh to the Bézier patches onto the GPU, the approach is memory efficient
and minimizes data transfer cost. For example, one frame in the Proog and Emo scene
has up to 0.25 million bi-cubic Bézier patches requiring 206.5 MB of GPU memory.



Efficient Pixel-accurate Rendering of Animated Curved Surfaces 505

Traditional CPU-based animation would transfer this amount of data to the graphics
card at every frame. In our approach, for the same scene, just once at startup, the static
mesh of 4MB plus 9MB of shape key data are transferred; also the skeletal anima-
tion data per frame (45kB for 684 ‘bones’) and the 289 shape keys (1kB) are packed
into GPU buffers at startup. Moreover, the near-optimal ephemeral triangulation via
the tessellation engine saves space and transfer cost compared to massive, ‘pre-baked’
triangulations.

Relation to Micro-polygonization. An established alternative for high-quality render-
ing, used in 3D movie animation, is micro-polygonization. Micro-polygonization owes
its prominence to the Reyes rendering framework [37]. Since canonical implementa-
tions of micro-polygonization are recursive (cf. [5]), micro-polygonization is harder to
integrate with current graphics pipelines [38] and leads to multiple passes as refinement
and testing are interleaved. Even on multiple GPUs, there is a trade-off between real-
time performance and rendering quality [39] (RenderAnts). Micro-polygonization aims
to tessellate the domain U of a patch into (u, v) triangles so that the size of the screen
projection of their image triangles is less than half a pixel. By contrast, pixel-accurate
rendering aims at minimally partitioning the patches, just enough so that the difference,
under projection, between the triangulated surface and the true non-linear surface is less
than half a pixel: pixel-accurate rendering forces the variance, between the displayed
triangulated surface and the exact screen image, to below the visible pixel threshold.

Comparison with the DX11 ACC SubD11 distribution. Our implementation is sim-
ilar to that of SubD11 [25]: both implement skeletal animation and apply mesh con-
version by accessing a 1-ring neighborhood of each quadrilateral. However, our imple-
mentation uses a sequence of Compute Shaders to animate and convert while SubD11
uses the Vertex Shader and the Hull Shader. See Fig. 11 for the execution pipeline of
our algorithm and compare to that of SubD11, Fig. 13.

Since SubD11 executes in a single pass it appears to be more efficient. However,
the Vertex Shader (VS) animation and Hull Shader (HS) conversion that perform the
bulk of the work in SubD11need to be synchronized by the index buffer mechanism

Fig. 14. DX11 SubD11 model from [25] consisting of 3,749 ACC patches (plus 150,108 flat
triangles). The screen is captured at 1440x900 resolution. Setting TF = 1 results in polyhedral
artifacts, at the shoulder and neck, while setting it high to remove these artifacts, decreases the
frames per second by an order of magnitude.
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Table 3. Performance in frames per second when placing animation and computation of τ onto
the CS or PS or∗ just the animation onto the VS

Anim Updates/Sec CS PS VS∗

33 311 184 253
every frame 130 53 75

to prevent conversion before every vertex of a surface patch is animated; and SubD11
does not support interactive adaptive tessellation (without cracks) and must re-execute
animation and conversion steps even when no view or pose change occur.

In our approach the main work, apart from rendering, is executed in the Compute
Shader (CS). This automatically provides the necessary synchronization and allows co-
ordination for interactive GPU-based adaptive tessellation without cracks. Using the
Compute Shader also allows saving partial work in the GPU buffer (the animated sur-
face pt and the tessellation factors τ ) and thereby reduces data transfer and commu-
nicates edge tessellation factors for adaptive rendering without mismatch. Executing
only the appropriate type of the CS avoids re-computation, and guarantees sub-pixel
accuracy. The end of the next section compares timings. A further advantage of us-
ing the Compute Shader is that it allows an indexed list rather than a fixed-size array
when accessing neighbors. The Hull Shader limitation on primitives in SubD11 con-
strains the vertex valence, i.e. the number of points that can be accessed to construct the
ACC patches. This matters for Proog and Emo models which contain 256 vertices of
valence 32.

Compute Shader vs. Pixel Shader. We explored executing animation and
τ -computation in a Pixel Shader (PS) pass. For large data sets, our CS implementa-
tion was clearly more efficient (see Table 3; Note that the CS has less overhead than a
extra pass.). This can partly be attributed to higher parallelism: we can use 16 threads
per patch in the CS as opposed to one per patch on the PS. (We could use 16 pix-
els in the PS, but would then have to synchronize to be able to compute τ ). We also
tried to use the Hull Shader (HS). But not only is the HS computationally less efficient
on current hardware, but the HS also can not provide the necessary communication of
adaptive tessellation factors to neighbor patches. The rightmost column VS∗ of Table 3
shows that just executing the animation in the Vertex Shader is already slower than
executing animation and conversion in the CS. This explains why our code is consid-
erably faster than SubD11, even though our code guarantees sub-pixel accuracy while
SubD11does not.

6 Conclusion

To optimally leverage the approach to pixel-accurate rendering of [3] to skeleton-based
animation, we partitioned the work for pixel-accurate rendering into stages that match
animation-dependent transformations and view-time dependent camera motions. This
allocation is as natural as it is practically powerful: it allows us to combine interactive
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Fig. 15. Proog and Emo scene rendered in 7 seconds by Blender on a Intel Core 2 Duo CPU at
2.1GHz with 3GB memory; and in 3× 10−3 seconds by our GPU algorithm

animation with high-quality rendering of curved surfaces. For gaming and animation
it is crucial to spend minimal effort in redrawing static images since many other op-
erations, say physics simulations, compete for compute resources. Also, in the game
setting, the user often pauses to react to new information – so there is not continuous
animation. The result is accurate for the given bi-cubic patches – distortion is below half
a pixel, i.e. the error is not visible; it is efficient – there is no recursion and triangles are
of maximal size; the adaptation is automatic – there is no need for manually setting the
level of detail; and our implementation is fast, rendering 141k patches at more than 300
frames per second.

We tested the framework by rendering scenes of the movie Elephants Dream at 10×
real-time, leaving enough slack for larger data sets, complex pixel shaders and the
artists’ other work. Since the final pass is a generic DX11 rendering pass, it is fully
compatible with displacement mapping (not used in Elephants Dream) and post effects.
(We are not claiming pixel-accurate displacement, since this notion is not well-defined:
displacement maps prescribe discrete height textures that require interpretation.) The
rendering speed can provide high visual quality under interactive response. This may
be useful for interactive CAD/CAM design in that the user no longer has to guess a
suitable level of triangulation.
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22. Bolz, J., Schröder, P.: Rapid evaluation of Catmull-Clark subdivision surfaces. In: Web3D
2002: Proceeding of the Seventh International Conference on 3D Web Technology, pp. 11–
17. ACM Press, New York (2002)

http://doi.acm.org/10.1145/2159616.2159644
http://doi.acm.org/10.1145/2159616.2159644
http://orange.blender.org
http://wiki.blender.org/index.php/Doc:2.4/Manual/Animation/Techs/Shape/Shape_Keys
http://wiki.blender.org/index.php/Doc:2.4/Manual/Animation/Techs/Shape/Shape_Keys


Efficient Pixel-accurate Rendering of Animated Curved Surfaces 509

23. Bunnell, M.: GPU Gems 2: Programming Techniques for High-Performance Graphics and
General-Purpose Computation, ch. 7. Adaptive Tessellation of Subdivision Surfaces with
Displacement Mapping. Addison-Wesley, Reading (2005)

24. Nießner, M., Loop, C.T., Greiner, G.: Efficient evaluation of semi-smooth creases in catmull-
clark subdivision surfaces, p. 4 (2012)

25. MicroSoft, Subd11 sample (direct3d11) (November 2008), http://preview.
library.microsoft.com/en-us/library/ee416576

26. Vlachos, A., Peters, J., Boyd, C., Mitchell, J.L.: Curved PN triangles. In: Symposium on
Interactive 3D Graphics. Bi-Annual Conference Series, pp. 159–166. ACM Press (2001)

27. Boier-Martin, I., Zorin, D.: Differentiable parameterization of Catmull-Clark subdivision sur-
faces. In: Scopigno, R., Zorin, D. (eds.) Symp. on Geom. Proc., Eurographics Assoc., Nice,
France, pp. 159–168 (2004)

28. He, L., Loop, C., Schaefer, S.: Improving the parameterization of approximate subdivision
surfaces. In: Bregler, C., Sander, P., Wimmer, M. (eds.) Pacific Graphics, pp. xx–xx (2012)

29. Peters, J.: Mid-structures of subdividable linear efficient function enclosures linking curved
and linear geometry. In: Lucian, M., Neamtu, M. (eds.) Proceedings of SIAM Conference,
Seattle (November 2003); Nashboro (2004)

30. Lutterkort, D.: Envelopes of nonlinear geometry. Ph.D. thesis, Purdue University (August
2000)

31. Lutterkort, D., Peters, J.: Tight linear bounds on the distance between a spline and its B-spline
control polygon. Numerische Mathematik 89, 735–748 (2001)

32. Lutterkort, D., Peters, J.: Optimized refinable enclosures of multivariate polynomial pieces.
Computer Aided Geometric Design 18(9), 851–863 (2002)

33. Peters, J., Wu, X.: On the optimality of piecewise linear max-norm enclosures based on
slefes. In: Schumaker, L.L. (ed.) Proc. Curves and Surfaces, St Malo (2002); Vanderbilt Press
(2003)

34. Wu, X., Peters, J.: Interference detection for subdivision surfaces. Computer Graphics Fo-
rum, Eurographics 2004 23(3), 577–585 (2004)

35. Wu, X., Peters, J.: An accurate error measure for adaptive subdivision surfaces. In: Proceed-
ings of the International Conference on Shape Modeling and Applications, pp. 51–57 (2005)

36. Wu, X., Peters, J.: Sublime (subdividable linear maximum-norm enclosure) package (2002),
http://surflab.cise.ufl.edu/SubLiME.tar.gz (accessed January 2011)

37. Cook, R.L., Carpenter, L., Catmull, E.: The Reyes image rendering architecture. In: Stone,
M.C. (ed.) Computer Graphics (SIGGRAPH 1987 Proceedings), pp. 95–102 (1987)

38. Fatahalian, K., Boulos, S., Hegarty, J., Akeley, K., Mark, W.R., Moreton, H., Hanrahan,
P.: Reducing shading on GPUs using quad-fragment merging. ACM Trans. Graphics 29(3)
(2010); (Proc. ACM SIGGRAPH 2010) 29(4), 67, 1–8 (2010)

39. Zhou, K., Hou, Q., Ren, Z., Gong, M., Sun, X., Guo, B.: Renderants: interactive Reyes ren-
dering on GPUs. ACM Trans. Graph 28(5)

http://preview.library.microsoft.com/en-us/library/ee416576
http://preview.library.microsoft.com/en-us/library/ee416576
http://surflab.cise.ufl.edu/SubLiME.tar.gz


Author Index

Alkafafi, Loay 1
Averbuch, Amir 13

Baccou, Jean 456
Barkan, Oren 13
Bhandare, Sagar 491
Bizzarri, Michal 34
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