integreat

The Norwegian centre for knowledgedriven machine learning

Nordic Perspectives 2023 Ingrid K. Glad, University of Oslo

integreat

Challenges of contemporary machine learning:

- Algorithms are fragile and lack robustness
- Most methods lack transparency and explainability
- Data and loss functions/rewards might be biased and discriminating
- Uncertainty around results are not, or poorly, quantified
- Algorithms depend on huge amounts of curated data
- Algorithms require excessive energy to train and run (and store)
- ++

Integreat will transform machine learning to address these challenges

Today

Machine learning is mostly data centric and has difficulties in incorporating excisting knowledge

Integreat

Knowledge-driven and data informed machine learning

Integreat

Knowledge-driven and data informed machine learning

- Accurate
- Sustainable
- Explainable and trustworthy
- With quantified uncertainty

Knowledge-driven?

Knowledge about

- structures, processes and dynamics of the system
- data generating mechanisms

Knowledge might be

- exact (in the form of must-links and cannot relationships, logical formalisations and formal ontologies, mathematical models)
- more imprecise, soft or subjective (in the form of most-likely-links, prior beliefs and stochastic relations)

Accurate

Knowledge can compensate for bad data:

 Makes it possible to solve problems that otherwise would not be solved, due to bad data, small data, or lack of (enough) labelled data

Sustainable

Knowledge-driven ML saves energy:

- Reuseing and integrating data, exploiting transfer learning and causal inference, using more parsimonious models
- Storage also consumes energy: Knowledge-driven methods to compress, project and reduce data, while controlling the loss of information

Quantifying uncertainty

Data are incomplete, noisy and inconsistent; knowledge and models are imperfect; algorithms are approximate. Therefore, estimates, predictions and decisions are uncertain:

- Represent and model multiple sources of uncertainty probabilistically
- Uncertainty quantification can reveal disagreement between data and knowledge, as well as between different data sources
- Develop methods that automatically alert of such discrepancies
- By combining knowledge and data, we reduce the uncertainty of solutions

Explainable and trustworthy

- Declaring knowledge allows its critique
- Using knowledge to de-bias datasets and models
- Understand the inner-workings of black- and grey-boxes, by augmenting them with knowledge-based explainable white-box components

Others already do

- physics-informed deep learning
- hybrid modelling

We integrate ML, statistics and logic

- ML is inductive, learns about the world by examples
- Logic is deductive, with rules, principles and reasoning describing and representing knowledge
- Statistics is inferential, learns models, quantifies uncertainty

Example: Learning from inconsistent preference data

Preference learning

- Users compare items in pairs: which is preferred?
- Used in psychology, social sciences, marketing ...

Some comparisons of 300 items

$\{(A3 < A5), (A7 < A5)\}$
{(A2 < A9), (A6 < A5), (A6 < A10), (A8 < A1), (A8 < A7)}
$\{(A1 < A9), (A4 < A5), (A4 < A10), (A8 < A7), (A9 < A2)\}$
$\{(A1 < A4), (A2 < A9), (A3 < A4), (A7 < A4), (A9 < A1)\}$
{(A4 < A3), (A4 < A7), (A7 < A3), (A7 < A10)}
$\{(A2 < A8), (A1 < A2), (A8 < A1)\}$
{(A4 < A1), (A9 < A3), (A10 < A5)}
$\{(A2 < A4), (A8 < A4), (A9 < A5)\}$
$\{(A1 < A7), (A5 < A9), (A10 < A4), (A10 < A8), (A10 < A9)\}$
{(A1 < A10), (A2 < A4), (A3 < A4), (A3 < A5)}
$\{(A1 < A8), (A9 < A6)\}$
$\{(A1 < A5), (A7 < A5), (A8 < A7), (A9 < A7), (A10 < A3)\}$
{(A2 < A10), (A4 < A7), (A4 < A9), (A6 < A3), (A6 < A5)}
$\{(A1 < A4), (A1 < A9)\}$
{(A2 < A8), (A3 < A10), (A5 < A6), (A7 < A8), (A9 < A1)}

ishtegreat

1 million users

Estimate individual preference

	-	1			i	ī		i		
$\{(A3 < A5), (A7 < A5)\}$	A7	A2	A5	A1	A10	A8	A2	A9	A6	A3
$\{(A2 < A9), (A6 < A5), (A6 < A10), (A8 < A1), (A8 < A7)\}$	A1	A3	A5	A7	A10	A8	A2	A6	A9	A4
$\{(AI < A9), (A4 < A5), (A4 < A10), (A8 < A7), (A9 < A2)\}$ $\{(A1 < A4), (A7 < A4), (A7 < A4), (A9 < A1)\}$				<u>^</u>						
$\{(A4 < A3), (A4 < A7), (A7 < A3), (A7 < A10)\}$	A1	Α/	A3	A5	A10	A8	A9	A6	A2	A4
$\{(A2 < A8), (A1 < A2), (A8 < A1)\}$										
$\{(A4 < A1), (A9 < A3), (A10 < A5)\}$										
$\{(A2 < A4), (A8 < A4), (A9 < A5)\}$:					
$\{(A1 < A10), (A2 < A4), (A3 < A4), (A3 < A5)\}$					÷					
$\{(A1 < A8), (A9 < A6)\}$:					
$\{(A1 < A5), (A7 < A5), (A8 < A7), (A9 < A7), (A10 < A3)\}$										
$\{(A2 < A10), (A4 < A7), (A4 < A9), (A6 < A3), (A6 < A5)\}$										
$\{(A1 < A4), (A1 < A5)\}$ $\{(A2 < A8), (A3 < A10), (A5 < A6), (A7 < A8), (A9 < A1)\}$		I								
	A2	A3	A1	A7	A5	A9	A8	A4	A6	A10

Consistent comparisons?

• Consistent user, transitive preferences

A1 > A2 and A2 > A3 and A1 > A3

• Non-consistent user

A1 > A2 and A2 > A3 but A1 \leq A3

• Non-consistent user

A1 > A2 and A1 < A2

integreat

What to do with inconsistent users?

A1 > A2 and A1 < A2

Knowledge	Model
 User confused, no information in this data 	 Drop both preferences A1 > A2 and A1 < A2
 Similar users share preferences to some degree 	 A measure of similarity of users Use only one of A1 > A2 or A1 < A2, the one expressed by similar users
<text></text>	 A measure of similarity of users Use only one of A1 > A2 or A1 < A2, the one expressed by similar users A1 and A2 are close in preference for this user

The new centre...

- builds on a team of statisticians, logicians, machine learning researchers and ethicists
- will develop theories, methods, models and algorithms which exploit knowledge together with data
- will solve important real-world problems in science, industry and society together with domain experts

integreat.no

integreat

Thank you!

glad@uio.no

