## Innovating at Interfaces: Enhancing Performance and Longevity in Sustainable Energy Systems





Dr. Sami Khan Assistant Professor Simon Fraser University





School of Sustainable Energy Engineering

SFU SCHOOL OF SUSTAINABLE ENERGY ENGINEERING



**Engineered Interfaces for Sustainable Energy** 

## Engineered Interfaces for Sustainable Energy (EISEn)







#### Dr. Sami Khan

Assistant Professor, School of Sustainable Energy Engineering, Associate Member, Department of Chemistry Simon Fraser University Email: <u>s\_khan@sfu.ca</u> Website: <u>http://www.khanresearchlab.com</u>

#### **Education:**

Ph.D. Mechanical Engineering, MIT, 2020S.M. Mechanical Engineering, MIT, 2016S.M. Technology and Policy Studies, MIT, 2016B.A.Sc. Chemical Engineering, University of Toronto, 2012

#### **Experience:**

- Assistant Professor, SFU, September 2020 present
- Science and Technology Advisor, Natural Resources Canada, Apr Aug 2020
- Postdoctoral Associate, University of Toronto, Jan April 2020
- Junior Chemical Engineer, Avalon Rare Metals, June 2012 July 2013
- Engineering Intern, **Ontario Power Generation**, Aug 2010 July 2010

Research Focus: Elucidate and tune interfacial interactions to enhance performance and longevity of sustainable energy systems



**Interfacial Interactions** 

## Challenges in Sustainable Energy Systems at Interfaces



## Fundamental scientific domains in our research





# Wetting – Hydrophilicity and Hydrophobicity



#### **Hydrophilic Surfaces**

#### Hydrophobicity around us





#### Hydrophobic Surfaces







#### **Hydrophobic Surfaces**



## Superhydrophobic Surfaces





Combination of surface texturing and surface chemistry results in superhydrophobicity



Enhancing Longevity with Robust Hydrophobic Coatings

## Rare-earth oxide ceramic coatings





Pu Am

Cf

Es

Md

No





Pa

U

Np

Th

Ac

#### Thin film of cerium oxide withstands harsh steam SIMON FRASER UNIVERSITY



Khan S., Azimi G., Paxson A., Varanasi K. K., Hydrophobic materials incorporating rare earth elements and methods of manufacture (U.S. patent granted: US20190111063A1)

SFU

EISEn

## Challenges with solid coatings – pinning sites/defects





- Pinning sites reduce drop shedding
- Defects/holes are entry points for fluids

**Pellets** Grain boundaries, pinning sites, contact angle hysteresis: ~48°

**Sputtered Thin Films (~300 nm)** No grain boundaries, on smooth silicon contact angle hysteresis: ~15°

10 um

## Liquid-impregnated surfaces (LIS)





Schematic of LIS



LIS as seen under SEM





Remarkably slippery!

Pitcher plant uses slippery surfaces to catch prey!



T.-S. Wong et al. *Nature* **2011**, *4*77, 443. J. D. Smith, et al. *Soft Matter* **2013**, *9*, 1772.12



Enhancing Performance of CO<sub>2</sub> Capture and Conversion

## Capturing CO<sub>2</sub> is a pressing technological challenge





Growing need to capture CO<sub>2</sub> from exhaust streams and directly from air

Lime water  $(Ca(OH)_2)$  slowly turns milky when  $CO_2$  is bubbled

## Hastening mass transfer – evaporation of water





A beaker of water takes many days to fully evaporate

Absorbing and spreading water in thin sheets (like paper towels) can hasten evaporation

## A "paper towel" to absorb CO<sub>2</sub> bubbles





Bubble bounce off common surfaces (eg: metals)



A gas-capturing "paper towel" traps CO<sub>2</sub> bubbles

Khan, S., Hwang J., Shao-Horn Y., and Varanasi, K.K., 2021. Catalyst-proximal plastrons enhance activity and selectivity of carbon dioxide electroreduction. Cell Reports Physical Science, 100318



#### Superhydrophobic surfaces





Lotus leaf showing superior water repellency



<u>Drop</u> Impacting a Superhydrophobic Surface

#### **Gas capturing surfaces**







<u>Bubble</u> Impacting a Supergasphilic Surface Diving Bell Spider with a captured air bubble to breath

## Gas-capturing surfaces enhance CO<sub>2</sub> dissolution



### Conventional bubbling (only blue)









Enhanced CO<sub>2</sub> concentration











## Electrochemical Reduction of CO<sub>2</sub>



Electrochemical reduction of  $CO_2$  converts  $CO_2$  (aq) to combustible fuel products by passage of electric current through an electrocatalyst





# Why Electrochemical Reduction of CO<sub>2</sub>?





Can be coupled with renewable sources of energy such as wind, solar and hydropower to provide the electricity needed to run the conversion



Dense energy carriers such as ethanol, propanol and formate can be generated (based on the selected electrocatalyst and the applied potential)



Operate at ambient pressure and temperature conditions



Value-added products such as ethylene can also be generated which serves as precursor to produce useful polymers such as polyethylene

## Previous CO<sub>2</sub>RR studies: nanostructured Cu catalyst



Mistry et al. *Nat. Comm* (2017) 7;12131

Significant CO<sub>2</sub> availability limitations impacts efficiency

Ma et al. Ang. Chem.

(2016) 55: 6680

SFU

SIMON FRASEF UNIVERSITY

21521





## Catalyst-Proximal Plastron: Product Distribution





#### **Nanostructured Copper**



Comparison with other state-of-the-art nanostructured catalysts



Khan, S., Hwang J., Shao-Horn Y., and Varanasi, K.K., 2021. Catalyst-proximal plastrons enhance activity and selectivity of carbon dioxide electroreduction. Cell Reports Physical Science, 100318

SFU

SIMON FRASER UNIVERSITY

EISEn

## Gas-capturing surfaces to enhance CO<sub>2</sub> capture + conversion





Diving bell spiders with their "breathing pouch"



# Bubble-philic Bubble-phobic Image: State of the state o



News Highlights





SFU

SIMON FRASER UNIVERSITY

EISEn





# SFU: Sustainable Energy Engineering





## Key highlights:

- Multidisciplinary graduate and undergraduate curriculum
- ~40-50 undergraduate students per class
- 20 graduate students (Masters and Ph.D.)
- 10 faculty members (and growing!)
- Location: Surrey, British Columbia, Canada
- Website: <u>https://www.sfu.ca/see.html</u>



## Graduate students in my group



#### Elaheh Hantoosh Zadeh MASc student



Evaporation patterns in inks on nanotextured substrates

Undergrad: Sharif University, Iran

Sponsors

partners:

and

Gahee Im MASc Student



Protective coatings in biomass combustion reactors Undergrad: Gangneung-Wonju University, S. Korea Oz Oren MASc Student



Nucleation and crystallization of phase change materials

Undergrad: Israel Institute of Technology (Technion)

IZINE





**NSERC** 

CRSNG

# Student funding and awards

SIMON FRASER UNIVERSITY

- SFU Entrance Scholarship (all students)
- Mitacs Globalink Awards
  - Gahee Im and Clara Park (undergrad)
  - Exchange internships at University of Kansas
  - Possible exchanges in future with UiO
- 3-minute thesis competition (Elaheh 3<sup>rd</sup>)





Canadian Society for Chemical Engineering | *For Our Future* Société canadienne de génie chimique | *Pour notre avenir* 

This is to certify that

## Elaheh Hantoosh Zadeh

Simon Fraser University

received

3<sup>rd</sup> Place 3 Minute Poster (3MP) Competition

Presented on October 25, 2021, at the virtual 71st Canadian Chemical Engineering Conference



## Micro/nanofabrication at SFU 4D labs



**Microtextures** 





SFU 4D LABS

#### **Nanotextures**









# Summary and takeaways





| ( |  |
|---|--|
| C |  |



## Hydrophobic ceramic coatings

- Thin films of rare-earth oxide ceramics are inherently hydrophobic
- Reducing hydrogen-bonding sites increases hydrophobicity
- Promote drop-wise condensation
- Anti-corrosion liquid layers (lubricant-impregnated surfaces)
  - Remarkably slippery no defects
  - Spreading vs non spreading characteristics are important
  - Significantly enhance corrosion protection
- Gas capturing surfaces
  - Superhydrophobic textures capture CO<sub>2</sub>
  - Gas remains stable within textures and enhance CO<sub>2</sub> concentration locally
  - Increase selectivity to C2+ products over hydrogen





Engineered Interfaces for Sustainable Energy

# Thank you for your attention! Questions?

Website: http://www.khanresearchlab.com

Email: <u>s\_khan@sfu.ca</u>