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Spatus: spatio-temporal uncertainty in energy
systems

 Climate and weather data to
assess and model

* uncertainty,
» future predictions

* Find optimal installation of
renewable plants to meet:

* emission targets
« demand
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Modeling solar irradiation
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* Model for PV-production

P@t) = al(t) X (1 — B(T(t) — 25))
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What is better?

Reduce production variability by spatial distribution of plants?
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Minimize variability in PV production meeting expected demand
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5% reduction in production uncertainty compared with
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Spread out plants as much as possible

Correlation decays with distance

Distance (km)

Or

Reduction in variability, when capacity factor
means and uncertainties are equal
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THANK YOU FOR LISTENING!
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Between 1.5°C and 2°C
is the tipping point for
many of the most
sensitive ecosystems in
the polar regions, the
permafrost, swamps,
alpine regions and coral
reefs.

At 2°C warming, many
of these will cease to
exist.

Joeri Rogelj (Climate Scientist
at Imperial College)

Climate change is already affecting every inhabited region across the globe

with human influence contributing to many observed changes in weather
and climate extremes

a) Synthesis of assessment of observed change in hot extremes and

confidence in human contribution to the observed changes in the world’s regions
Type of observed change
in hot extremes N
orth

America
O Increase (41)
O Decrease (0)

N
g J Low agreement in the type of change (2)
~

O Limited data and/or literature (2) :fnn;:cl,

Small
Islands

Confidence in human contribution
to the observed change

eee High )
South
ee Medium America
o Low due to limited agreement
o Low due to limited evidence

Type of observed change since the 1950s



Energy system transition

* Energy production accounts for E%t’ggppogt' :
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Achieving a net zero carbon
economy in Europe by the
2050s will reduce the
climate risks, but not
eliminate them.

Comparing the latest 2100 warming projections for different scenarios

Warming in 2100 relative to preindustrial. 50th percentile temperature outcomes and uncertainties shown.
6

IPCC scenarios Current policies 2030 commitments Net-zero promises +
2030 commitments

(@]
v
Q
v
o
(3]
(=]
2.6CR2-7C X
w W 2 EEETS
to
to 36C to
3.5C . 3.7C

<> CB

Compilation of the latest 2100 median warming projections from UNEP, CAT, |[EA and CR as of 9 November 2021, compared to the
assessed warming values for the five shared socioeconomic pathway (SSP) scenarios highlighted in the recent IPCC AR6 WG1

report. Both central estimates and uncertainty ranges are shown. Note that the IEA current policy scenario (STEPS) is in-between
policies in place today and 2030 commitments. Chart by Carbon Brief using Highcharts.



Uncertainties

Socio-political
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Uncertainties

Techno-economic

Figure ES.3 The global weighted-average LCOE and PPA/auction prices for solar PV, onshore wind, offshore wind
and CSP, 2010-2023
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Source: IRENA Renewable Cost Database

Note: The thick lines are the global weighted average LCOE, or auction values, by year. For the LCOE data, see Figure ES2 note. The band
that crosses the entire chart represents the fossil fuel-fired power generation cost range.




Uncertainties

Weather and climate




Variability

e Spatial
* Temporal

* |nter-annual

(a) Daily mean PV capacity factors 1990-2014
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(b) Daily mean offshore wind capacity factors 1990-2014
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Climate reanalysis

e Climate reanalyses combine past observations
with models to generate consistent (each grid
point around the globe and regular output
over time) time series of multiple climate
variables (e.g. air temperature, pressure, wind
speeds)

* ERA-5 (released end 2019): produced by
ECMWEF

e 0.25°x 0.25°resolution, with atmospheric
parameters on 37 pressure levels

* Hourly
* 1950 to present

Global observing system ECMWF model

Data assimilation

o 2001-2010

1951-1960
.
1901-1910 AT
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Spatial distribution of VRE capacities
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* Consistent patterns:

- Solarin the South

- Wind energy
around Europe

e Some outliers

EISOIar . .
Eawindonshore ® But strong variability

(up to +80%, -150%)
depending on the
weather year



IPCC ARG

Mean temperature (T) - Change (deg C)

®
Warming 2°C (SSP5-8.5) (rel. to 1850-1900) [ High agreement I D c C ®e

CMIP6 - Annual (34 models) Low agreement

OVESNMINTAL PANEL B%
climare change
20-10-2021 07:12:35 hitpe//www.ipce.ch/copyright




IPCC ARG
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Weather and climate-resilient planning

* In renewable based energy systems, weather and climate have a crucial influence on
energy supply and demand, from solar and wind generation to heating and cooling
demands.

* Climate change is expected to have complex impacts on future weather-dependent
energy systems through changes in mean properties, year-to-year variability, frequency
and intensity of extreme events.

—>mandate the need for climate-resilient system design
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