HPC data handling

Sabry Razick
Topics

• Data staging
 ○ Using work
 ○ Using $SCRATCH
 ○ Using $TMP

• Check whether your job can run in parallel
 ○ Simple way using top

• Ask for the correct resources

• Make sure environment can be reproduced

• Investigate during the job run
Different locations

● To find out the mounts
 ○ `df -h`

● `/cluster` is slow
 ○ `$HOME` is on cluster

● `/work` is fast
 ○ `/work/users/<USERNAME>`
 ○ `$SCRATCH` is on work
 ○ Temp directory during a job is on work

● `$LOCALTMP` is the fastest
 ○ IT is a local disk on a compute node.
 ○ Not shared between nodes
 ○ Very good when there are millions of very small files to be processed.
Check the available directories

● Test job
 ○ mkdir $HOME/HPC_NOV2018
 ○ cp /cluster/teaching/abel_tutorial/NOV2018/location_test.slurm $HOME/HPC_NOV2018
 ○ cd $HOME/HPC_NOV2018
 ○ chmod +w location_test.slurm
 ○ nano location_test.slurm
 ■ Edit the project account
 ○ sbatch location_test.slurm
When there are hundreds of thousands of files

● Test job
 ○ mkdir /work/users/$USER/HPC_NOV2018
 ■ If you are a guest then mkdir $HOME/HPC_NOV2018
 ○ cp /cluster/teaching/abel_tutorial/NOV2018/millionfiles.slurm /work/users/$USER/HPC_NOV2018
 ○ cd /work/users/$USER/HPC_NOV2018
 ○ chmod +w millionfiles.slurm
 ○ nano millionfiles.slurm
 ■ Edit the project account
 ○ sbatch millionfiles.slurm
When there are hundreds of thousands jobs

- Create an archive (no compression)
 - `tar -cvf <ARCHIVE_NM> <FILES>`
 - `tar -cvf file.tar *txt`

- List content
 - `tar -tvf <ARCHIVE_NM>`

- Append a file
 - `tar --append --file <ARCHIVE_NM> <NEW_FILES>`
 - `tar --append --file files.tar.gz 1.txt`

- Extract all
 - `tar -xvzf <ARCHIVE_NM>`

- Extract one
 - `tar -xvf <ARCHIVE_NM> <FILES>`
Big file and lsof

● Test job
 ○ mkdir /work/users/$USER/HPC_NOV2018
 ○ cp /cluster/teaching/abel_tutorial/NOV2018/file_IO*/
 /work/users/$USER/HPC_NOV2018
 ○ cd /work/users/$USER/HPC_NOV2018
 ○ chmod +w file_IO.slurm
 ○ nano file_IO.slurm
 ■ Edit the project account
Big file and lsof

- **Test job**
 - sbatch file_IO.slurm
 - squeue -u $USER
 - When the job starts get the compute node address
 - Login to the compute node
 - ssh cx.xx
 - top -u $USER
 - Find PI and investigate with lsof
sacct

- Investigate resource usage after the job is finished
- `sacct -j <JOB_ID>`
- `sacct -j <JOB_ID> -o all`
Qlogin

- `qlogin --account=<ACCOUNT> --ntasks=4 --mem-per-cpu=2G --time=1:00:00`
- `qlogin --account=<ACCOUNT> --partition=accel --ntasks=8 --mem-per-cpu=6G --gres=gpu:2 --time=02:00:00`