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The Limits of Parameter Sonification
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The latent meaning
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(a) MNIST sample belonging to the digit 7’. (b) 100 samples
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rom the MNIST training set.

Image from: Baldominos, A., Saez, Y., & Isasi, P. (2019). A survey of handwritten character recognition
with mnist and emnist. Applied Sciences. 9(15), 3169.



https://www.mdpi.com/2076-3417/9/15/3169
https://www.mdpi.com/2076-3417/9/15/3169







Image from: Al OQuta, A., Hicks, S., Thambawita, V., Andresen, S., 1M FM synth sounds represented by 200 Mel-bands, clustered by UMAP
Enserink, J. M., Halvorsen, P.. ... & Knaevelsrud, H. (2023). Cellular, a cell
autophagy imaging dataset. Scientific data, 10(1). 806.



https://www.nature.com/articles/s41597-023-02687-x
https://www.nature.com/articles/s41597-023-02687-x
https://www.nature.com/articles/s41597-023-02687-x

The potential of
representation learning
and unsupervised
domain transfer for
iImage sonification
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In search of
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Published as a conference paper at ICLR 2017

£-VAE: LEARNING BASIC VISUAL CONCEPTS WITH A
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ABSTRACT

Learning an interpretable factorised representation of the independent data gen-
erative factors of the world without supervision is an important precursor for the
development of artificial intelligence that is able to learn and reason in the same
way that humans do. We introduce 3-VAE, a new state-of-the-art framework for
automated discovery of interpretable factorised latent representations from raw
image data in a completely unsupervised manner. Our approach is a modification
of the variational autoencoder (VAE) framework. We introduce an adjustable hy-
perparameter (3 that balances latent channel capacity and independence constraints
with reconstruction accuracy. We demonstrate that 5-VAE with appropriately tuned
B > 1 qualitatively outperforms VAE (5 = 1), as well as state of the art unsu-
pervised (InfoGAN) and semi-supervised (DC-IGN) approaches to disentangled
factor learning on a variety of datasets (celebA, faces and chairs). Furthermore, we
devise a protocol to quantitatively compare the degree of disentanglement learnt
by different models, and show that our approach also significantly outperforms
all baselines quantitatively. Unlike InfoGAN, 3-VAE is stable to train, makes few
assumptions about the data and relies on tuning a single hyperparameter 3, which
can be directly optimised through a hyperparameter search using weakly labelled
data or through heuristic visual inspection for purely unsupervised data.

(b) emotion (smile)

(c) hair (fringe)




Disentangling by Factorising
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Figure 6. First row: originals. Second row: reconstructions. Re- A g c‘! g...ﬂﬂﬂ*
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Fader Networks:
Manipulating Images by Sliding Attributes

Young — Old

Old — Young

Male — Female

Female — Male

Figure 1: Interpolation between different attributes (Zoom in for better resolution). Each line shows
reconstructions of the same face with different attribute values, where each attribute is controlled as a
continuous variable. It is then possible to make an old person look older or younger, a man look more
manly or to imagine his female version. Left images are the originals.



Unsupervised
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This CVPR 2020 workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Abstract

In this paper, we propose a novel cross-modal varia-
tional alignment method in order to process and relate in-
formation across different modalities. The proposed ap-
proach consists of two variational autoencoder (VAE) net-
works which generate and model the latent space of each
modality. The first network is a multi-modal variational
autoencoder that maps directly one modality to the other,
while the second one is a single-modal variational autoen-
coder. In order to associate the two spaces, we apply vari-
ational alignment, which acts as a translation mechanism
that projects the latent space of the first VAE onto the one of
the single-modal VAE through an intermediate distribution.
Experimental results on four well-known datasets, cover-
ing two different application domains (food image analysis
and 3D hand pose estimation), show the generality of the
proposed method and its superiority against a number of
state-of-the-art approaches.

the cross-modal objective, they are categorized as discrim-
inative and generative. Approaches that fall into the first
category model the probability of an outcome conditioned
on the given observation. Generative approaches, on the
other hand, model the underlying distribution of the ob-
served variables, thus obtaining valuable information re-
garding their origin.

Most recent approaches have adopted deep generative
models, such as VAEs, GANSs or a combination of them, to
encode cross-modal data into a shared latent space [30, 34].
However, the main problem in these approaches is the fact
that each modality has completely different characteristics
from the others and, as a result, it is difficult to efficiently
model the heterogeneous modalities (like image, speech or
text) into a shared latent space. To address the problem of
learning meaningful mappings among embedding spaces,
we propose a novel variational alignment framework of la-
tent spaces, which performs the mapping of the latent space
of one modality onto the one of another modality. More

Figure 1. The proposed variational alignment architecture. The
upper branch transitions from modality M; to Ms using encoder
FE and decoder D;. The lower branch autoencodes Mo through
encoder F> and decoder D». The middle branch aligns the distri-
bution produced by E; to the one produced by E2 using the vari-
ational encoder (VE) and decoder (VD), which map to and sample
from an intermediate distribution.



Latent Translation:
Crossing Modalities by Bridging Generative Models

Yingtao Tian !

Abstract

End-to-end optimization has achieved state-of-
the-art performance on many specific problems,
but there is no straight-forward way to com-
bine pretrained models for new problems. Here,
we explore improving modularity by learning a
post-hoc interface between two existing models
to solve a new task. Specifically, we take in-
spiration from neural machine translation, and
cast the challenging problem of cross-modal do-
main transfer as unsupervised translation be-
tween the latent spaces of pretrained deep gen-
erative models. By abstracting away the data
representation, we demonstrate that it is possi-
ble to transfer across different modalities (e.g.,
image-to-audio) and even different types of gen-
erative models (e.g., VAE-to-GAN). We com-
pare to state-of-the-art techniques and find that
a straight-forward variational autoencoder is able
to best bridge the two generative models through

Jesse Engel

Training Domain Transfer
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Figure 1. Latent translation with a shared autoencoder. Pretrained
generative models provide embeddings (z1, z2) for data in two
different domains (x1, x2), here shown as written digits and (spec-



AudioViewer: Learning to Visualize Sounds

Audio encoder
Visual decoder

Audio signal Mel Spectrogram Latent space trajectory Translated video frames Translated video frames Translated video frames
(face decoder) (number decoder) (face decoder-high resolution)
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Audio signal Mel spectrogram Audio latent code Visual reconstruction Visual latent code

Figure 3. Cycle constraint. We apply a cycle constraint to ensures that the signal is preserved through video decoding and encoding.



AudioViewer demo



https://docs.google.com/file/d/1bG52-FHoD66RamaS-JuxDrh7LIKcmXC8/preview

Potential benefits

e Learn “best” features

e (challenge existing bias in image analysis)

e Able to capture abstract features like “age” or “gender”
e Fit the mapping to the data

e Generalize better across similar datasets

e Builds upon pre-trained models (can swap models & retrain mapping)
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“Solution”
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Experiment 1: synthetic datasets, map 2 factors

e Create a scenario that's easy to verify
e Create image & sound datasets with two independent varying factors

e Test if the system can:

o Recognise the factors in both datasets and create disentangled representations of them

o Find the best fitting mapping between latent spaces

e The system is only told that there are 2 factors



Image Dataset: white squares over black bg

e Only varying factors: x & y coordinates
e Use a FactorVAE with a 2D latent space

e (use falloff “light” to combat sparse image)



Training...

Latent space at epach 10



https://docs.google.com/file/d/1ybA6bIQ63z-Q-7p60S9oFC6QGQTMC5uU/preview
https://docs.google.com/file/d/1dEweJmggumdGNUo-v5_-sWjeP988mjUG/preview

Traverse latent space



Sound dataset: Sine waves

e Only varying factors: pitch & loudness
e Input representation: 64x1 Mel bands averaged over time, dB scaled

e Use a FactorVAE with a 2D latent space



Training...

Latent space at apoch 30

Ground Truth Reconstruction



https://docs.google.com/file/d/1-r-_OjUGCsZbCivvEJa0i6UPLOlXUlxP/preview
https://docs.google.com/file/d/1alMpmk1zVR9D_NODx6D18iwJ-bMUx7Vd/preview
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Training the Mapper .

e st stage: only use locality loss
o  Since using FactorVAE-s — per axis! MAE (per axis)

e 2nd stage: ramp up cycle consistency (keep locality)

Sound
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https://docs.google.com/file/d/1PWvwHWF6XZN4hgvDizMNokZvJEmNrEYd/preview
https://docs.google.com/file/d/1e8Sxt7Wy1K8FPfmH5MEialBAXjIi7UVu/preview

Live demo... :)



Discussion

e Reconstructions need to have OK quality in target model

e Assumption 1: latent dimensionality needs to match

e Assumption 2: the extents of latent spaces match

e AudioViewer design vs mine: factorVAE-s — need to preserve the meaning of axes
e Problem with representation: quiet sine waves produce numerically smaller errors?
e Synthetic datasets don't necessarily have gaussian priors

e Mapper training in 2 stages

e Cycle consistency is king



Gollum Kkitty
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Image from: If 30 Famous Characters Were Kittens,
Made By Al Dreams | Bored Panda



https://www.boredpanda.com/digital-art-kitties-movie-film-characters-ai-dreams/
https://www.boredpanda.com/digital-art-kitties-movie-film-characters-ai-dreams/

