
AST 2000 - Part 1
Modelling A Rocket Engine

Welcome to Part 1 of the AST 2000 Spacecraft Project. To begin the journey we will begin with
some elementary statistical physics and rocket science. Using our findings we will simulate a rocket
engine using a particle description of our fuel mass; next, we will use data from the engine simulation
in order to simulate a rocket launch. For this part you are only supposed to deliver a partial
paper including: (1) abstract, (2) introduction, (3) a method section (4) figures for
these as well as figures showing your results. No results or discussion/conclusion section
is expected for this part. Remember to also deliver a hand-written flow chart for your
code as well as a hand-drawn explanation of the problem/method.

•

GOALS

∇ Derive three fundamental results in statistical
physics.

∇ Simulate the harsh conditions inside your rocket
engine.

∇ Model a rocket engine’s output based on your
simulation.

∇ Test your newly designed rocket engine and use it
to simulate a rocket launch from your home planet.

THE ROCKET ENGINE

1. Relevant Physics

The principles behind our rocket engine model are
discussed in Lecture Notes 1A. You should absolutely
read the lecture notes before you continue.

In short: The fuel mass is modelled as a collection of
point particles trapped in a chamber. We will ignore
quantum mechanics (for now) and have the particles be-
have according to the Maxwell-Boltzmann distribution.
A hole on the side of the chamber will then be opened
such that our particles can escape. Finally the rocket
engine will be propelled forwards by the momentum loss
from the escaped particles (conservation of momentum).

2. Simplifications and Assumptions

⊗ Our fuel tanks are equipped with pure H2 gas.

⊗ While the temperature and the density of the
gas vary greatly on the microscopic level, we will
assume the gas is uniform on the macroscopic
scale. To accomplish this, the temperature in
the Maxwell-Boltzmann distribution and the total
number of particles in the chamber are both kept
constant.

⊗ Gravitational effects are negligible during the
particle simulation.

⊗ The particles have no spatial extension, thus we
ignore the possibility of particle-particle collisions.

⊗ When a particle collides with a chamber wall, the
collision is perfectly elastic.

CHALLENGES

The programs you write in this part will most likely
be run several times. Try to write the programs with a
sense of generality in mind; lots of comments and easy-
to-adjust parameters. You do not want to come back
to these programs in a month or two and struggle to
understand your original thought process.

A. Investigating Boltzmann Statistics

You “may” find these integrals helpful:∫ ∞
0

xe−x dx = 1 (1)∫ ∞
0

x3/2e−x dx =
3

4

√
π (2)

1. You are now going to find the average speed of a
molecule in a gas by solving:

〈v〉 =

∫ ∞
0

vP (v) dv (3)

You need to choose the correct probability distri-
bution function.

2. The ideal gas law is a fundamental result in statis-
tical physics and thermodynamics:

P = nkT (4)

Derive it by solving

P =
1

3

∫ ∞
0

pv n(p) dp (5)
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where n(p) = nP (p) is the number density ditribu-
tion.

3. Finally, you are going to derive the average energy
of molecule in an ideal gas:

〈E〉 =
3

2
kT (6)

Recall that ideal gases do not have intermolecular
forces and that the kinetic energy of body is 1

2mv
2.

Hint: Note that
〈
v2
〉
6= 〈v〉2.

B. Simulating Energetic Gas Particles

We will begin by simulating the motion of gas parti-
cles inside a locked chamber. An illustration of such a
chamber is shown in figure 1. The shape of the chamber
is yours to choose, but we advise using a simple cubic
box (in fact the next paragraph assumes this).

FIG. 1. An illustration of energetic particles inside a rocket
engine chamber.

Let the side of the box be L = 10−6 m and the tem-
perature be T = 3 · 103 K. Begin your simulation with
N ≈ 100 number of particles (this will be increased later).
Define two arrays: one containing all N particle positions
and the other containing all N particle velocities. Draw
a reasonable set of initial particle positions from the as-
sumption of uniform density.

Simulate the particles’ movements using your favorite
integration method. Let the simulation run for 1000 time
steps within a time interval τ = 10−9 s (so that each time
step is 10−12 seconds). Remember to implement particle-
wall collisions! A collision may occur at any time step,
which is why you need to check for a collision at each
time step.

Increase now the number of particles to N = 105. Can
you plot some well known analytical expressions
to test that your simulated gas particles have the
expected properties? Then adjust τ and the number
of time steps such that the accuracy of your simulation
is satisfactory. What accuracy-criteria could you
use? One of the possibilities would be the three

analytical expressions from challenge A. The most
challenging of these would be to compare the numerical
pressure to the analytical. But maybe this is not so chal-
lenging after all if you look at how the pressure integral is
derived in the lecture notes. And you might need parts of
these calculations anyway for some calculations further
down.

C. Introducing a Nozzle

Having now modelled our energetic gas, we now must
turn to the nozzle. Select a side of the box and define
an escape hole with an area of 0.25L2. How you decide
to implement the escape hole is your decision, but be
sure to remember that the number of particles inside the
chamber must always remain constant. The ’refilling’ of
the combustion chamber can be implemented in many
different ways, but after choosing a way to do it, you
should discuss if you think the distribution of the gas
particles will remain the same over time.

There are two important quantities that need to be
accounted for: the number of escaped particles and the
accumulated momentum loss from these escaped parti-
cles. Based on these quantities you will be able to derive
the fuel consumption of your rocket engine (kg/s) and
the thrust (propulsion) force of the rocket (N).

D. The Rocket Engine’s Performance

The next step is to determine our rocket engine’s per-
formance. As explained in the lecture notes, the actual
rocket engine is a superposition of many small rocket
engines. The question now is how many small rocket en-
gines will you need? Well, it depends... For now, make
an educated guess and be prepared to change this later.
Write your code with this in mind!

The goal of this challenge is to write a program that
determines the amount of fuel your rocket will burn for an
arbitrary boost ∆v. The program should have a structure
similar to this:

input output

rocket thrust force (N)

fuel consumed (kg)
fuel consumption (kg/s)
initial rocket mass (kg)
speed boost (m/s)

Remember to consider that the rocket’s total mass is split
between its fuel and the mass of the spacecraft itself.
The latter can be obtained from your instance of the
SpaceMission class (you should have looked at the doc-
umentation for the ast2000tools package by now). You
do not need to take gravity into account in this challenge,
you are just testing your rocket’s potential.

Later in the project when we are going to use this
program to calculate our fuel consumption during the

https://lars-frogner.github.io/ast2000tools/
https://lars-frogner.github.io/ast2000tools/
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journey. We are also going to ignore the time we spend
accelerating (in this program) as it is miniscule compared
to the time it takes to travel between planets.

E. Simulating a Rocket Launch

It is now time to test your rocket engine with gravity by
simulating a launch of the rocket carrying the spacecraft!
You may also ignore air resistance (we will tackle this one
later).

Due to the difficulty of achieving a successful launch,
we invite you to adjust the parameters in your engine
simulation. However, there is no need to optimize the
parameters - write general programs that easily allow you
to come back and make simple changes.

→ You may choose any temperature up to and includ-
ing Tmax = 104 K. Note that 3000 K is the actual
burning temperature of Hydrogen: thus the closer
your temperature is to 3000 K, the more realistic
your simulation is.

→ You may freely adjust the size and shape of your
engine chamber and nozzle.

→ You are also free to experiment with the number
of particles, but note that increasing the number
density is likely to increase fuel consumption.

→ You have complete control over the amount of fuel
your bring with you and the number of small rocket
engines that comprises the actual rocket engine.

Our definition of being in space is when the velocity of
the rocket is equal to the escape velocity of the planet,
which is when the kinetic energy equals the gravitational
potential energy. Remember to account for the decreas-
ing amount of fuel and the increasing distance between
the rocket and the center of the planet. Also remember
that the planet’s self-rotation gives the rocket an inital
velocity in the direction along the rotation of the surface
at the moment it lifts off. If the launch is perpendicular
to the surface, this velocity component is perpendicular
to the acceleration direction and is therefore unchanged
during launch. This should be accounted for when con-
sidering whether the rocket has reached the escape ve-
locity.

Note that it is not sufficient to simply escape gravity
whatever the cost! The launch should take between 5 and
20 minutes, and the rocket also needs to carry additional
fuel needed for later parts. We obviously do not know
this amount yet, so you need to make an educated guess
now and write your program in a general way, so that you
can come back and easily rerun the simulation later. The
amount of fuel needed for later parts will generally be a
lot lower than the amount needed to launch the rocket.

Once your simulated rocket hits escape velocity, you
need to end the simulation and account for the following:

→ The spacecraft’s final position.

→ The spacecraft’s final velocity.

→ The final mass of the spacecraft including fuel.

→ The duration of the launch.

F. Entering the solar system

Now that you’ve successfully simulated the rocket
launch, it is time to look at the bigger picture. Your
challenge is to change your final frame of reference from
the planet frame to the solar system frame. Details on
your solar system can be found in the SolarSystem ob-
ject held by your instance of the SpaceMission class. Be
careful to include the position, velocity and rotation of
your planet in your calculations.

Later in the project you will be given the option to
launch your rocket at a later point in time, and from
anywhere on the planet. For now you should assume
your rocket launches at t = 0 so that you can use the
initial position and velocity of your home planet from
the SolarSystem object. Your home planet is the planet
with index 0. Furthermore, you should also assume that
the location of your rocket’s launch site is as indicated in
figure 2. You’re only going to use figure 2 in Part
1!

What is meant by “your final frame of reference” is
the time, position, and velocity when you are in space.

The solar system frame is expressed in Astronomical
Units instead of SI units: These include AU for position,
AU/yr for velocity and yr for time.

x

y

home planet

launch site

FIG. 2. The location of the rocket’s launch site at t = 0.

VERIFICATION/CONFIRMATION

Hopefully you have now completed Part 1 of
the project! As a final test of your hard work
use the set launch parameters, launch rocket and
verify launch result methods from the SpaceMission
class to verify that you have found a satisfactory solu-
tion to the challenges. You can find details on how these
methods work in the documentation.

https://lars-frogner.github.io/ast2000tools/
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FIG. 3. Motivational duck.
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AST2000 - Part 1
Tips, Hints & Guiding Questions

I. IN GENERAL

It is very likely that for most of you, AST2000 is the
first university level project-based course you have ever
participated in. There is no denying the project is exten-
sive and demanding; we hope you take this into consid-
eration before you commit yourself to the project variant
of this course.

Working with the project is very different from prepar-
ing for an exam. If you are struggling with Part 1, es-
pecially with respect to programming, please consider
switching to the exam variant of the course. It only gets
more difficult from here.

For you to get started with the project we have writ-
ten the challenges in Part 1 in a slightly more detailed
fashion. Our goal is for you to approach each challenge
with your own perspective so as to find your own solu-
tion. There is no “one correct” way to solve a challenge.
Be sure to familiarize yourself with how you should work
with the project, especially with regards to your project’s
freedom.

One minor thing: the programs we have written to
check your results are based on the same assumptions
and simplifications you have been given. For example,
air resistance is ignored in the rocket launch challenge.
Say you wish to implement a more realistic model and
include air resistance in your calculations; while it is great
for your learning and understanding of physics, it will
only result in your calculations being inconsistent with
ours. Of course, if no assumption or simplification has
been presented, you are free to approach the challenge
however you like. [? ]

II. STATISTICS AND PROBABILITY THEORY

For several students, the idea of integrating functions
in probability theory is probably a new concept. Here are
some highlights of the basics:

Probability distribution functions, in their most basic
form, come as simple single-variable functions such as
f(x). It’s important to realize that f(x) is not “the
probability of x”. If you want to find a probability P
you need to integrate it:

P (a, b) =

∫ b

a

f(x) dx (a)

Equation (a) should be read as “the probability of finding
x somewhere between a and b. When it comes to prob-
ability distribution functions, you cannot ask the proba-
bility of finding x = something. It simply doesn’t exist.
You can only ask for the probability of something like
a ≤ x ≤ b, x ≤ 0, etc.

Let’s assume you have the probability distribution
function f(x). In the event you want to find the mean
(average) value of something else, say g(x), you then need
to compute

〈g(x)〉 =

∫ ∞
−∞

g(x)f(x) dx (b)

Here, g(x) can be anything such as x2, 1/x or ex. Note
the integration limits, those are important when you
want to find the average value of something.

If you want to learn more about probability and statis-
tics, check out STK1100. The course builds the mathe-
matics of probability from its fundamental axioms.

III. MODELLING THE GAS PARTICLES

In FYS 1100 you learned how to find the position of
a particle numerically using F = ma and integrating
with the Euler-Cromer scheme (or any other integration
scheme for that matter). The only difference between
this and simulating the rocket engine is that the rocket
engine contains N particles. What this means is that
at each integration step, you need to move N particles
instead of just 1.

As the simulation is not continuous, a particle will
never actually collide with a wall. You need to check
whether the particles are inside or outside the chamber
for each time step.

For tips and hints on programming the gas model (es-
pecially with regards to wall collisions), see the Python
section of the Numerical Compendium. In particular,
you should definitely have a grasp on the potential use
of vectorization and masking.


	AST 2000 - Part 1Modelling A Rocket Engine
	Abstract
	Goals
	The rocket engine
	Relevant Physics
	Simplifications and Assumptions

	Challenges
	Investigating Boltzmann Statistics
	Simulating Energetic Gas Particles
	Introducing a Nozzle
	The Rocket Engine's Performance
	Simulating a Rocket Launch
	Entering the solar system

	Verification/Confirmation
	In general
	Statistics and Probability Theory
	Modelling The Gas Particles


