Press-Schechter Formalism:
applications, origin of the `fudge' factor 2, modifications
Press-Schechter (PS) Formalism: Preface...

PS assumes

1. the mass-density field is **Gaussian** (accurate at early times).
2. time evolution governed by linear theory: i.e. \(\delta \propto t^{2/3} \).
3. a collapsed object has collapsed when its linear overdensity has exceeded \(\delta_{\text{crit}} = 1.69 \).
Press-Schechter Formalism

Smooth density field on length scale R, i.e. mass scale M.

Smoothed density field obeys Gaussian statistics.

Probability that mass at q inside collapsed object is $P(\delta > \delta_{\text{crit}}|M)$.
Press-Schechter Formalism

If $\delta > \delta_{\text{crit}}$ on scales R, then there exists a radius $R' > R(M')$ at which $\delta = \delta_{\text{crit}}$.
If $\delta > \delta_{\text{crit}}$ on scales R, then there exists a radius $R' > R(M')$ at which $\delta = \delta_{\text{crit}}$. Atom at q must be part in object of mass $M' > M$.
Press-Schechter Formalism

Probability that atom at \mathbf{q} contained in object with mass $> M$

\equiv fraction of all mass in Universe in objects $> M$

homogeneity

$$P(>M) = P(\delta > \delta_{\text{crit}} | M)$$
Press-Schechter Formalism

PS therefore assumed* that:

\[P(> M) = P(\delta > \delta_{\text{crit}} | M) \]

Conceptually, this is (arguably) the least logical step of the derivation
Press-Schechter Formalism

PS therefore assumed* that:

\[P(> M) = 2P(\delta > \delta_{\text{crit}} | M) \]

Conceptually, this is (arguably) the least logical step of the derivation.
The factor of `2' is the infamous fudge factor. More on this later.
Press-Schechter Formalism

\[P(>M) = P(\delta > \delta_{\text{crit}} | M) \]

In previous lecture we derived mass function of collapsed objects

\[n(M) = \frac{\rho_m}{M} \frac{\partial P}{\partial M} \]

Which upon substitution of the expression for \(P(>M) \) led to

\[M^2 n(M) = \rho_m \sqrt{\frac{2}{\pi}} \nu \exp(-\nu^2/2) \left| \frac{\partial \ln \sigma}{\partial \ln M} \right| \]

\[\nu \equiv \frac{\delta_{\text{crit}}}{\sigma(M)} \]
Press-Schechter Formalism

\[P(> M) = P(\delta > \delta_{\text{crit}} | M) \]

In previous lecture we derived mass function of collapsed objects

\[n(M) = \frac{\rho_m}{M} \frac{\partial P}{\partial M} \]

Which upon substitution* of the expression for \(P(>M) \) led to
Press-Schechter Formalism

\[M^2 n(M) = \rho_m \sqrt{\frac{2}{\pi}} \nu \exp(-\nu^2/2) \left| \frac{\partial \ln \sigma}{\partial \ln M} \right| \]

\[\nu \equiv \delta_{\text{crit}} / \sigma(M) \]

From lecture on Gaussian random fields we learned that:

\[\sigma^2(M) = \sigma^2(R) = \int_0^{2\pi/R} \frac{d^3k}{(2\pi)^3} P(k) \]
Some Comments on $\sigma(\mathcal{M})$

$$\sigma^2(\mathcal{M}) = \sigma^2(R) = \int_0^{2\pi/R} \frac{d^3k}{(2\pi)^3} P(k)$$

1. `Smoothing' on scales \mathcal{M} (i.e. R) washes out fluctuations on scales smaller than R, i.e. suppresses power on scales with $k > 2\pi/R$.

2. The powerspectrum $P(k)$ fully specifies $\sigma(\mathcal{M})$.

3. Later, we will see that $P(k)$ is tightly constrained by the CMB.
Some Comments on \(\sigma(M) \)

\[
\sigma^2(M) = \sigma^2(R) = \int_0^{2\pi/R} \frac{d^3k}{(2\pi)^3} P(k)
\]

For \(P(k) \) in standard cosmological model

From Barkana & Loeb, 2001
We discuss the functional form of $P(k)$ later.

Some insight into the power of PS can be seen by writing $P(k) = A k^n$ then...

$$\sigma^2(M) \propto \int_{R^{-1}} dk \ k^{n+2} \propto R^{(-n-3)} \propto M^{(-n-3)/3}.$$

with this, we can write $n(M)$ as

$$M^2 n(M) = \rho_m \sqrt{\frac{2}{\pi}} \nu \exp(-\nu^2/2) \left| \frac{\partial \ln \sigma}{\partial \ln M} \right|.$$
Press-Schechter Formalism

We discuss the functional form of $P(k)$ later.

Some insight into the power of PS can be seen by writing $P(k) = A k^n$ then...

$$\sigma^2(M) \propto \int_{R^{-1}}^R dk \ k^{n+2} \propto R^{(-n-3)} \propto M^{(-n-3)/3}.$$

with this, we can write $n(M)$ as

$$M^2 n(M) = \rho_m \sqrt{\frac{2}{\pi}} \nu \exp(-\nu^2/2) \left(\frac{\partial \ln \sigma}{\partial \ln M} \right) \nu \equiv \delta_{\text{crit}}/\sigma(M) \quad \Rightarrow \quad (n+3)/6$$
Press-Schechter Formalism

We discuss the functional form of $P(k)$ later.

Some insight into the power of PS can be seen by writing $P(k) = A k^n$ then...

$$\sigma^2(M) \propto \int R^{-1} dk \ k^{n+2} \propto R^{(-n-3)} \propto M^{(-n-3)/3}.$$

with this, we can write $n(M)$ as

$$M^2 n(M) = \rho_m \sqrt{\frac{2}{\pi}} \nu \exp(-\nu^2/2) \left| \frac{\partial \ln \sigma}{\partial \ln M} \right|$$

$$= \mathcal{N} M^{(n+3)/6} \exp(-\nu^2/2)$$
Press-Schechter Formalism

We can write $n(M)$ as

$$M^2 n(M) = \rho_m \sqrt{\frac{2}{\pi}} \nu \exp(-\nu^2/2) \left| \frac{\partial \ln \sigma}{\partial \ln M} \right| = \mathcal{N} M^{(n+3)/6} \exp(-\nu^2/2)$$

$$\Rightarrow n(M) = \mathcal{N} M^{(n-9)/6} \exp(-\nu^2/2)$$
Press-Schechter Formalism

\[n(M) = N M^{(n-9)/6} \exp(-\nu^2/2) \]

This mass function already contains a lot of useful information.

Recall that \(\sigma(M) \) becomes smaller as we go to higher mass.

Therefore, \(\nu \equiv \delta_{\text{crit}}/\sigma(M) \) becomes larger as we go to higher mass.
Press-Schechter Formalism

\[n(M) = N M^{(n-9)/6} \exp(-\nu^2/2) \]

This mass function already contains a lot of useful information.

Note that \(\sigma(M) \) becomes smaller as we go to higher mass.

Therefore, \(\nu \equiv \delta_{\text{crit}}/\sigma(M) \) becomes larger as we go to higher mass.

We can then see the following...
Press-Schechter Formalism

\[n(M) = N M^{(n-9)/6} \exp(-\nu^2/2) \]

1. When \(\nu \ll 1 \), i.e. for low masses we have power-law slope.

On galaxy scales \(n \sim -3 \) (approximately), and \(n(M) \sim M^{-2} \).
The Press-Schechter mass function is given by:

\[\frac{dn}{d \log M} \propto M n(M) \]

At different redshifts, denoted by \(z = 0, z = 5, z = 10, z = 20, z = 30 \), the mass function exhibits specific behaviors. The graph illustrates the distribution of matter in the universe at various cosmological epochs, with the redshift \(z \) indicating the time elapsed since the formation of structures.

Barkana & Loeb, 2001
Press-Schechter Formalism

\[n(M) = N M^{(n-9)/6} \exp\left(-\nu^2/2\right) \]

2. Exponential cut-off occurs on mass-scale where i.e. when \(\nu = 1 \Rightarrow \sigma(M) = 1.69 = O(1) \)

In linear theory \(\delta \propto t^{2/3} \), and so \(\sigma(M) \propto t^{2/3} M^{(-n-3)/6} \)

A constant \(t^{2/3} M^{(-n-3)/6} \) corresponds to \(M \propto t^{4/(3+n)} \)

The cut-off mass-scale grows with cosmic time
The Press-Schechter mass function is given by

\[\frac{dn}{d \log M} \propto Mn(M) \]

where \(n(M) \propto M^{-2} \) and the cut-off mass \(M_{\text{cut}} \propto t^{4/(3+n)} \) decreases towards higher redshifts (\(z = 30, 20, 10, 5 \)).

Barkana & Loeb, 2001
Press-Schechter: Comparison to Simulations

Springel et al. 2005, Nature

Wait!! Black solid line is not PS! But, blue-dotted is.
Press-Schechter: Comparison to Simulations

Springel et al. 2005, Nature

\[M^2 n(M) \]

PS blue-dotted. Solid black line: modification of PS (later)
While agreement not perfect. PS captures main features of real halo mass function well.

PS blue-dotted. Solid black line: modification of PS (later)
Comparison to UV-Luminosity Function of Drop-Out Galaxies

The graph shows the comparison of the UV-luminosity function for drop-out galaxies at different redshifts (z≈4, z≈5, z≈6, z≈7, z≈8, z≈10). The brightness is represented on the x-axis (M_{1600,AB}) and the number of galaxies on the y-axis (log_{10} Number / mag / Mpc^3). The bright and faint regions are indicated on the graph.
Comparison to UV-Luminosity Function of Drop-Out Galaxies

Bright
Faint

PS **qualitatively** describes observed z-evolution of starforming galaxies well.

- weak z-evolution at low mass/luminosity end
- steepening of the faint end slope of the mass/luminosity function towards high z
- most apparent evolution in characteristic (cut-off) mass/luminosity scale
Quantitatively there are outstanding issues:

• faint end slope of mass function steeper than faint end slope of luminosity function. This is also the case for luminosity function in other bands.
From Lecture 1: luminosity function local galaxies in `bj’ band.

Luminosity function: number density of galaxies as a function of abs. magnitude M_X.

Schechter function:

$$\phi(L) \equiv \frac{dn}{dL} = \phi_* \left(\frac{L}{L_*} \right)^\alpha \exp \left(- \frac{L}{L_*} \right)$$
Comparison to UV-Luminosity Function of Drop-Out Galaxies

Quantitatively there are outstanding issues:

- faint end slope of mass function steeper than faint end slope of luminosity function. This is also the case for luminosity function in other bands.
- massive end of the mass function cuts off `slower' than luminosity functions (more on this later)
Press-Schechter Theory: Strength & Weakness

Strength. PS theory provides intuition into the process of structure formation in the Universe:

- in the standard cosmological model [encoded in \(P(k) \)] low-mass objects form first, more massive objects later (‘**hierarchical**’ build-up of structure)
Strength. PS theory provides intuition into the process of structure formation in the Universe:

- in the standard cosmological model [encoded in $P(k)$] low-mass objects form first, more massive objects later (‘hierarchical’ build-up of structure)

First stars, galaxies & black holes must have formed in low-mass collapsed halos:

Additional physical restrictions:

- mass of collapsed object must exceed Jeans (or Filter) mass
- gas inside collapses object must have been able to cool.
Intermezzo: First Stars/Galaxies

First stars, galaxies & black holes must have formed in low-mass collapsed halos:

Additional physical restrictions:
- mass of collapsed object must exceed Jeans (or Filter) mass
- gas inside collapses object must have been able to cool.

Recall: cosmological Jeans/Filter mass of the order 10^4-10^5 solar masses

\[\frac{dn}{d \log M} \propto M n(M) \]

Barkana & Loeb, 2001

\sim \text{comoving number density of star forming galaxies}
Intermezzo: First Stars/Galaxies

First stars, galaxies & black holes must have formed in low-mass collapsed halos:
Additional physical restrictions:
• mass of collapsed object must exceed **Jeans (or Filter) mass**
• gas inside collapses object must have been able to cool.

not restrictive
Cooling inefficient when \(T < 1\times10^4 \text{K} \). Cooling only efficient when the virialization process heats gas to \(T_{\text{vir}} > 1\times10^4 \text{K} \). Collapsed structures in which \(T_{\text{vir}} \approx 1\times10^4 \text{K} \) are `atomically cooling' halos.

Intermezzo: First Stars/Galaxies

First stars, galaxies & black holes must have formed in low-mass collapsed halos:

Additional physical restrictions:
- mass of collapsed object must exceed Jeans (or Filter) mass
- gas inside collapses object must have been able to **cool**.

Recall: cooling curve, which quantifies efficiency with which gas can cool.

\[
C(T) \equiv \frac{\Lambda(T)}{n_H^2}
\]

Cooling inefficient when \(T < 1\times10^4 \text{K} \). Cooling only efficient when the virialization process heats gas to \(T_{\text{vir}} > 1\times10^4 \text{K} \). Collapsed structures in which \(T_{\text{vir}} \sim 1\times10^4 \text{K} \) are `atomically cooling' halos.
Intermezzo: First Stars/Galaxies

First stars, galaxies & black holes must have formed in low-mass collapsed halos:
Additional physical restrictions:

- mass of collapsed object must exceed Jeans (or Filter) mass
- gas inside collapses object must have been able to **cool**.

Possible in collapsed structures inside `*atomically cooling*’ halos (i.e $T_{\text{vir}} > 1\,\text{e}^4 \, \text{K}$).

Still plenty of these halos, but $n(M,z)$ very sensitive to M and z
Intermezzo: First Stars/Galaxies

First stars, galaxies & black holes must have formed in low-mass collapsed halos:
Additional physical restrictions:
• mass of collapsed object must exceed Jeans (or Filter) mass
• gas inside collapses object must have been able to **cool**.

more restrictive than Jeans mass constraint

First stars, galaxies formed in `atomically cooling' halos with $T_{\text{vir}}=1\times10^4$ K -> high enough to trigger cooling via collisional excitation of HI.

THE FIRST GALAXIES: ASSEMBLY UNDER RADIATIVE FEEDBACK FROM THE FIRST STARS

Andreas H. Pawlik, Miloš Milosavljević, and Volker Bromm

Submitted to ApJ

ABSTRACT

We investigate how radiative feedback from the first stars affects the assembly of the first dwarf galaxies. To this end we perform cosmological zoomed smoothed particle hydrodynamics simulations of a dwarf galaxy assembling inside a halo reaching a virial mass $\sim 10^8 M_\odot$ at $z = 10$. The simulations

Example of recent work on this...
Intermezzo: First Stars/Galaxies

First stars, galaxies & black holes must have formed in low-mass collapsed halos:
Additional physical restrictions:
• mass of collapsed object must exceed Jeans (or Filter) mass
• gas inside collapses object must have been able to cool.

First stars, galaxies formed in `atomically cooling’ halos with $T_{\text{vir}}=10^4 \text{ K}$ -> high enough to trigger cooling via collisional excitation of HI.

Caveat: cooling actually is possible in lower mass halos at high density via molecular hydrogen (H_2), enabling star formation in `minihalos'. However, `photoionization heating' (more later) by radiation from these first stars remove gas from minihalos, and suppress subsequent starformation.
Press-Schechter Theory: Strength & Weakness

Strength. PS theory provides intuition into the process of structure formation in the Universe:
- in the standard cosmological model [encoded in P(k)] low-mass objects form first, more massive objects later (`hierarchical’ build-up of structure)

Weaknesses.
- Contains this fudge factor.
- Only treats gravity at the linear level (ignores all complexities of gravitational collapse!)
Press-Schechter Theory: Strength & Weakness

Strength. PS theory provides intuition into the process of structure formation in the Universe:
- in the standard cosmological model [encoded in P(k)] low-mass objects form first, more massive objects later (‘hierarchical’ build-up of structure)

Weaknesses.
- Contains this fudge factor.
- Only treats gravity at the linear level (ignores all complexities of gravitational collapse!)

Good news.
- Fudge factor can be understood and derived from ‘first’ principles.
Recall PS: \[M^2 n(M) = \rho_m \sqrt{\frac{2}{\pi}} \nu \exp\left(-\nu^2/2\right) \left| \frac{\partial \ln \sigma}{\partial \ln M} \right| \]

Sheth & Tormen (1999) proposed the following modification:

\[\nu \exp\left(-\nu^2/2\right) \rightarrow A\left[1 + (a\nu^2)^{-p}\right] \sqrt{a\nu^2} \exp\left(-a\nu^2/2\right) \]
Recall PS: \(M^2 n(M) = \rho_m \sqrt{\frac{2}{\pi}} \nu \exp(-\nu^2/2) \left| \frac{\partial \ln \sigma}{\partial \ln M} \right| \)

Sheth & Tormen (1999) proposed the following modification:

\[\nu \exp(-\nu^2/2) \rightarrow A[1 + (a\nu^2)^{-p}]\sqrt{a\nu^2} \exp(-a\nu^2/2) \]

Modification is based on `ellipsoidal' collapse. Thus far, we assumed spherical collapses (spherical top-hat model). In Gaussian random fields, the average shape of fluctuations and the collapse criterion delta_crit depends on nu (more on this later).
Sheth-Tormen: Comparison to Simulations

Springel et al. 2005, Nature

$M^2 n(M)$

PS blue-dotted. Solid black line: Sheth Tormen modification